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Abstract. This paper deals with audio source separation using super-
vised non-negative matrix factorization (NMF). We propose a prior
model based on mixtures of Gamma distributions for each sound class,
which hyperparameters are trained given a training corpus. This formu-
lation allows adapting the spectral basis vectors of the sound sources
during actual operation, when the exact characteristics of the sources
are not known in advance. Simulations were conducted using a ran-
dom mixture of two speakers. Even without adaptation the mixture
model outperformed the basic NMF, and adaptation furher improved
slightly the separation quality. Audio demonstrations are available at
www.cs.tut.fi/~tuomasv.

1 Introduction

Separation of mixtures of sound sources has many applications in the computa-
tional analysis of audio, speech enhancement, and noise-robust speech recogni-
tion. Particularly, non-negative matrix factorization (NMF) and its extensions
have produced good results [1,2,3].

The signal model in non-negative spectrogram factorization approximates the
spectrum vector xt in frame t as a weighted sum of N basis vectors bn:

xt ≈
N∑

n=1

bngn,t, (1)

where gn,t is the gain of the nth component in frame t = 1, . . . , T .
The basis vectors and gains can be estimated by minimizing the error of the

approximation (1). In audio signal processing, the divergence

T∑

t=1

F∑

f=1

d(xt,f ,
∑

n

bn,fgn,t) (2)

where d(p, q) = p log(p/q) − p + q, has turned out to produce good results [1].
Here bn,f denotes the fth entry of bn, and f is the frequency index. The same
procedure can be derived from a maximum likelihood perspective

p(x1:T |b1:N , g1:T,1:N ) =
T∑

t=1

F∑

f=1

δ(xt,f −
N∑

n=1

sn
t,f )

N∏

n=1

p(sn
t,f |bn,fgn,t) (3)

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 646–653, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.cs.tut.fi/~tuomasv


Mixtures of Gamma Priors for NMF Based Speech Separation 647

where each spectrogram entry xt,f equals the sum xt,f =
∑N

n=1 s
n
t,f of component

spectrograms sn
t,f having Poisson distribution p(sn

t,f |bn,fgn,t) = Po(sn
t,f ; bn,fgn,t)

[5,6]. The divergence (2) can be efficiently minimized using the multiplicative
update rules proposed in [7].

When training material of each source in isolation is available, NMF can be
used in “supervised mode”, i.e., to train class conditional basis spectra of each
source in advance [2,3,4]. In the training phase, all the training material of a
specific sound class is first concatenated into a single signal, and the spectrogram
of the resulting signal is then decomposed into a sum of components using NMF.
This results to a class specific set of basis vectors for each source. For the actual
separation, the trained basis vector sets of all the source classes are combined and
a mixture signal can then be processed using the learned spectra. The previous
studies have kept the basis vectors fixed and re-estimated the gains only.

In the real world scenarios, it is either not possible to have training material of
a particular target source, or the acoustic conditions in the training and actual
operation stages vary. In these situations, adaptive models may be advantageous.
One obvious possibility is to train prior distributions p(bn|Θ) instead of fixed
parameters b∗

n. Rennie et al. [4] obtained better results in the separation of two
speakers by using prior distributions instead of fixed spectra. The computational
burden caused by prior distributions can be alleviated if appropriate conjugate
priors are chosen, so that one can retain the efficiency of the original NMF algo-
rithm in maximum a posterior (MAP) estimation [5] as explained in Section 2,
or in a full Bayesian treatment [6].

This paper discusses the supervised use of NMF where the basis vectors are
trained in advance using material where each sound class is present in isolation.
We propose here a practical procedure to estimate a Gamma mixture prior model
for basis vectors. Section 4 shows simulations using mixtures of two speakers,
where the proposed method is shown to outperform the existing ones.

2 Supervised Non-negative Spectrogram Factorization

The characteristics of acoustic sources in real environments are highly variable,
hence it is advantageous to have adaptive models that can capture these charac-
teristics. In a probabilistic framework, this can be accomplished by using prior
distributions for the basis vectors bn instead of fixing them. Formally, in the
training phase of supervised non-negative spectrogram factorisation, we ide-
ally wish to estimate class-conditional hyperparameters Θc for each source class
c = 1 . . . C by maximising the marginal log-likelihood:

L(Θc) =
∫
p(sc|bc, gc)p(bc|Θc)p(gc|Θc)dbcdgc (4)

where sc is a known spectrogram from a source class c, and bc and gc denote all
the basis vector and gains of class c, respectively. Then, the actual separation of
mixture spectrogram x is achieved via computation of

p(s1:C |x, Θ1:C)=
∫
δ(x1:T−

C∑

c=1

sc)

[
C∏

c=1

p(sc|bc, gc)p(bc|Θc)p(gc|Θc)

]
db1:Cdg1:C
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However, these integrals can be hard to evaluate and more practical approaches
are taken in practice, such as computing MAP estimates for bc and gc.

As a prior for basis vectors p(bc|Θc), one can use a Gamma distribution
G(bn,f ; kn,f , θn,f) for each element bn,f of each basis vector bn. In the MAP
framework with the Poisson observation model it results to minimizing the sum
of the divergence (2) and the penalty term

N∑

n=1

F∑

f=1

(kn,f − 1) log(bn,f)− bn,fθn,f (5)

which is the logarithm of the Gamma distribution [5], up to additive terms which
are independent of the basis vector entries.

A typical gain prior p(g|Θc) is an exponential distribution with rate parameter
λ which translates to the penalty term λ

∑
n

∑
t gn,t. Sparse prior for the gains

has been found to improve the separation quality [2].
During separation, when the basis vectors are fixed, the MAP estimation of

gains can be obtained by applying iteratively updates

rt = xt./
∑

n

bngn,t gn,t ← gn,t
rTbn

1Tbn + λ
, n = 1, . . . , N, (6)

where ./ denotes element-wise division and 1 is a all-one column vector. Similarly,
when the gains are fixed, the basis vectors can be updated via

bn,f ← kn,f − 1 + bn,f

∑
t(gn,txt,f/

∑
n′ gn′,tbn′,f )

1/θn,f +
∑

t gn,t
(7)

which is guaranteed to increase the posterior probability of the basis vectors
when kn,f ≥ 1 [5]. It is important to note that under this formalism, the basis
is adapted during the actual separation.

3 Training Mixture of Gamma Priors

In single channel source separation, when two or more sources overlap in time
and frequency, we have to use redundancy of the sources to achieve good sound
source separation. Redundancy in frequency can be used efficiently when basis
vectors correspond to entire spectra of sound events instead of just parts of
their spectra. Basis vectors corresponding to entire spectra can be trained by
restricting only one basis vector to be active in each frame.

We make two assumptions which allow us to train efficiently distributions of
basis vectors corresponding to entire spectra: 1) only one basis vector is active in
each frame, and 2) the training data can be normalized so that the normalized
observations correspond to observed basis vectors. The first assumption can be
viewed as an extreme case of sparseness whereas the second cancels out the effect
of gains in training basis vector priors. While this is omitting the variation in the
Poisson model, we find this procedure virtually identical to the more principled
approach where bc are considered as latent.
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A prior for the basis vectors based on the above assumptions can be trained
using a mixture model. In the sequel, we omit the class label c as each class is
learned separately. The model for a source class is

p(b|Θ) =
N∑

n=1

wn

F∏

f=1

G(bn,f ; kn,f , θn,f), (8)

where k, θ are the shape and scale parameters of individual Gamma distributions
and wn are the prior weights. All the hyperparameters are denoted as Θ =
(k, θ, w). We do not model the dependencies between frequency bins so that the
distribution of a mixture component is the product of its frequency marginals.

3.1 Training Algorithm

The observations are first preprocessed by normalizing each observation vector
bt so that the norm of log(bt + ε), where ε is a small fixed scalar, is unity.
The EM algorithm is initialized by running the k-means algorithm with random
initial clusters for 10 iterations using the normalized log-spectrum observations
to get cluster centroid vectors µn. Centroids of linear observations are then
calculated as μn,f = eμn,f − ε. From the linear cluster centroids we estimate
the initial Gamma distribution parameters as kn,f = μ2

n,f and θn,f = 1/μn,f .
This generates a Gamma distribution having mean μn,f and variance 1. Cluster
weights are set to wn = 1/N . The iterative estimation procedure is as follows:

1. Evaluate the posterior distribution zn,t that the nth cluster has generated
the tth observation as

zn,t =
wn

∏
f G(bt,f ; kn,f , θn,f )

∑N
n′=1 wn′

∏
f G(bt,f ; kn′,f , θn′,f )

(9)

2. Re-estimate the mixture weights as

wn =
∑T

t=1 zn,t∑N
n′=1

∑T
t=1 zn′,t

. (10)

3. Re-estimate the shape parameters by solving

log(kn,f )− ψ(kn,f ) = log
(∑

t zn,tbt,f∑
t zn,t

)
−

∑

t

log(bt,f )zn,t (11)

using the Newton-Raphson method, where ψ(kn,f ) = Γ ′(kn,f )/Γ (kn,f) is
the digamma function. We used 10 iterations, and the previous estimates of
kn,f as initial values.

4. Re-estimate the scale parameters as

θn,f =
∑T

t=1 zn,tbt,f
kn,f

∑
t zn,t

. (12)
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The steps 1-4 are repeated for 100 iterations, or until the algorithm converges.
In order to prevent too narrow clusters, we found it advantageous to restrict the
variance of each cluster above a fixed minimum m after each iteration as follows.
The variance of each Gamma distribution is μn,fθ

2
n,f . For clusters for which the

variance is smaller than the minimum limit m, we calculate the ratio yn,f =
m/(μn,fθ

2
n,f ), and then modify the distribution parameters as θn,f ← θn,fyn,f

and kn,f ← kn,f/yn,f . The above procedure sets the variance of the cluster to m
without changing its mean. We also found it advantageous to keep the mixture
weights fixed for the first 90 iterations.

3.2 Alternative Gamma Prior Estimation Methods

In addition to the Gamma mixture model, we tried out alternative methods
for generating the priors. In general, one can generate a Gamma distribution
from fixed basis vectors bn,f obtained with NMF (or by any other algorithm)
by selecting arbitrary shape k, and then calculating the scale as θn,f = bn,f/k.
The mean of the resulting distribution equals bn,f and its variance b2n,f/k scales
quadratically with the mean.

In addition to direct training of the Gamma mixture model parameters,
we obtained good results by applying a Gaussian mixture model for the log-
spectrum observations and then deriving the corresponding Gamma mixture
model by matching the moments of each cluster. We calculated the log-spectrum
as log(bt + ε) and then trained a Gaussian mixture model, which mean and vari-
ance are denoted as μn,f and σ2

n,f , respectively. The mean and variance of the

linear observations are μ̃n,f = eμn,f+σ2
n,f /2 and σ̃2

n,f = (eσ2
n,f − 1)e2μn,f+σn,f ,

respectively. Gamma distributions of linear observations can be generated by
matching the mean and variance as kn,f = μ̃2

n,f/σ̃n,f and θn,f = σ̃n,f/μ̃n,f .

4 Simulations

We evaluated the performance of the proposed methods in separating signals
consisting of two speakers of different genders. We used the Grid corpus [8], which
consists of short sentences spoken by 34 speakers. We generated 300 random test
signals where three sentences spoken by a male speaker and a female speaker were
mixed. Each test signal was generated by concatenating random three sentences
of a random male speaker, concatenating random three sentences of a random
female speaker, and mixing the signals at equal power level.

The data representation is similar to the one used in [2]: the signals were first
filtered with a high-frequency emphasis filter, then windowed into 32 ms frames
using a Hamming window with 50 % overlap between adjacent frames. DFT was
used to calculate the spectrum of each frame, and the spectra were decimated
to 80-band Mel frequency scale by weighting and summing the DFT bins.

In the training phase we learned a model for both genders. We used leave-
one-out training where the model of a gender was trained by excluding each
test speaker at time from the training data, resulting in 18 male and 16 female
models in total. We used only every 10th sentence (in the alphabetical order) of
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the training data to keep the computation time reasonable. The purpose of the
leave-one-out training was to simulate a situation where the exact characteristics
of the target and interfering sources were not known in advance.

4.1 Training Algorithms

Four different algorithms were tested in training the priors:

– NMF estimates fixed priors using the sparse NMF algorithm [1] which uses
the divergence criterion (2). Sparseness factor which produced approximately
the best results was used (the optimal value was different in testing). In order
to test basis vector adaptation, Gamma distributions were generated using
the procedure explained in Section 3.2 with parameter k = 0.01.

– Gamma mixture model was trained using the algorithm in Section 3.1.
– Gaussian mixture model was trained using log-spectrum observations, and

the Gamma mixture model was generated as explained in Section 3.2.
– Gaussian mixture model was trained using linear-spectrum observations and

the Gamma mixture model was generated by matching the moments.

The above algorithms are denoted as NMF, Gamma, Gaussian-log, and Gaussian-
lin, respectively. All the algorithms were tested with 30 and 70 components per
speaker. We found that it is advantageous to control the variance of the trained
distributions by scaling their parameters as kn,f = kn,f/q and θn,f = θn,fq, which
retains the mean of the distribution but scales its variance by q. Value q = 0.1
produced approximately the best results. Normalizing each basis vector to unity
norm and scaling the distributions accordingly by multiplying the scale parameter
was also found to improve the results slightly.

4.2 Testing

In the test phase, the bases of male and female speakers obtained by a particular
training algorithm were concatenated. Each of the 300 test signals was processed
using sparse NMF by applying the update rules (6) and (7). Sparseness factor λ
which produced approximately best result was used.

All the algorithms were tested with fixed and adaptive bases: adaptive bases
used the distributions obtained from the training, whereas fixed based were
set equal to the mean of each prior distribution. The basis vectors in all the
algorithms were initialized with the mean of each prior distribution, and random
positive values were used to initialize the gains.

The basis vectors and gains were estimated using each test signal at time.
The weighted sum of male basis vectors in frame t is calculated as mt =∑

n∈M bngn,t, whereM is the set of male basis vectors. Similarly, the weighted
sum ft of female basis vectors is calculated using the set of female speaker basis
vectors. The male speaker spectrum m̂ in each frame is then reconstructed as

m̂t = xt. ∗mt./(mt + ft), (13)

where .∗ and denotes element-wise multiplication. Female spectra are obtained
as xt − m̂t.
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The quality of separation was measured by the signal-to-noise ratio of the
separated spectrograms. The SNRs were averaged over both the speakers in all
the test signals.

4.3 Results

The average signal-to-noise ratios of each of the tested algorithm are illustrated
in Table 1. The Gamma and Gaussian-log methods produce clearly better results
than NMF and Gaussian-lin. Adaptive bases increase the performance of Gamma
method, but for other methods the effect is small. A larger number of components
improves significantly the performance of all the methods except NMF.

Sparseness in testing was found to improve the quality of the separation
slightly. Figure 1 illustrates the performance of the Gamma method with dif-
ferent sparseness factors λ. Sparseness improved more clearly the performance
of the NMF training, but the results are omitted because of space limitation
restrictions. Figure 1 also illustrates the effect of scaling the variances of the
distributions. Value q = 0 corresponds to fixed priors, and larger values (adap-
tation) improve the quality slightly up to certain value of q.

All the parameters of the training algorithms were not completely optimized
for this application, so final judgment about the relative performance of Gamma
and Gauss-log methods cannot be made. However, the results show that these
models perform clearly better than NMF in training the basis vectors.

Table 1. Average signal-to-noise ratios of the tested methods in dB, obtained with
fixed and adaptive basis vectors and with either 30 or 70 components per source. The
best algorithm in each column is highlighted with bold face font.

30 components 70 components

method fixed adaptive fixed adaptive

NMF 5.68 5.71 5.57 5.55

Gamma 6.55 6.73 6.95 7.04

Gaussian-log 6.54 6.56 7.02 7.03

Gaussian-lin 3.34 3.27 3.75 3.71
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Fig. 1. The effect of the sparseness factor λ (left panel) and the distribution variance
scale q (right panel) on the average signal-to-noise ratio
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5 Conclusions

We have proposed the use of a Gamma mixture model in representing the ba-
sis vector distributions in supervised non-negative matrix factorization based
sound source separation. The proposed method is shown to produce better re-
sults than previous sparse NMF training. In addition to better separation quality,
the method also simplifies the training since there is no need to tune the sparse-
ness factor in NMF. Mixture model training also opens up new possibilities of
incorporating hidden state variables in the model, which allow modeling the
temporal dependency in the signals.
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