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ABSTRACT
We describe the underlying probabilistic generative signal model of
non-negative matrix factorisation (NMF) and propose a realistic con-
jugate priors on the matrices to be estimated. A conjugate Gamma
chain prior enables modelling the spectral smoothness of natural
sounds in general, and other prior knowledge about the spectra of
the sounds can be used without resorting to too restrictive techniques
where some of the parameters are fixed. The resulting algorithm,
while retaining the attractive features of standard NMF such as fast
convergence and easy implementation, outperforms existing NMF
strategies in a single channel audio source separation and detection
task.

Index Terms— acoustic signal processing, matrix decomposi-
tion, MAP estimation, source separation

1. INTRODUCTION

Time-frequency energy distributions are of central importance in au-
dio signals analysis; particularly, the magnitude spectrogram repre-
sentation displays the magnitude of the time-frequency coefficient
xν,τ as a function of frequenciesν and time indicesτ . In recent
years, one audio modelling approach has focused on non-negativity
of the spectrogram matrixX = {xν,τ} and enforcing a factorisation
asX = TV where bothT andV are matrices with positive entries
(see [2, 3, 4], and references therein). Here,T can be interpreted as
a codebook of spectra, called basis vectors, andV is the matrix of
their gains in each frame. The success of the model stems fromthe
fact that entities of natural sounds can rather well be approximated
as a product of stationary spectrum and time-varying gain. These en-
tities include, for example, individual tones of musical instruments.
A basis vector and its gains can represent, for example, the contribu-
tion of all the tones of a certain musical instrument having the same
pitch, or all the tones of a percussive musical instrument. An ad-
vantage of these methods is computational attractiveness due to fast
converging iterative matrix factorisation techniques [5].

A problem with the standard NMF objective is that the proba-
bilistic interpretation is not explicit and consequently basis vectors
and gains are not well modelled, and as we will show later, areas-
sumed to be independent a-priori for all entries ofT andV. Es-
pecially for music signals, due to the physical properties of musical
instruments and quasi-periodic structure of music, one could clearly
design more informative priors. For example, due to presence of note
events that have a constant pitch, gains in adjacent time-frequency
atoms tends to be correlated. Similarly, due to harmonicityand con-
stant timbre, basis vectors tend to have typically peaks at harmoni-
cally related frequency indicies.
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Existing approaches have tried to model prior knowledge about
basis vectors by initializing an inference algorithm with aset of ba-
sis vectors corresponding to harmonic spectra [3], assuming that this
would enable more robust inference. Alternatively, one canlearn
a set of basis vectors from a training corpus where each source is
present in isolation, and then keep the basis vectors fixed and esti-
mate their gains [6]. This latter approach produces good results when
the spectral characteristics of the training data are equalto those of
the target data. In practice, however, the exact characteristics of the
target signal are often not known, and any mismatch between train-
ing and target data decreases the quality of the obtained solution.
One remedy is adapting all basis vectors but introducing regulari-
sation terms that encode some prior knowledge, such as enforcing
temporal continuity. This strategy has been shown to be effective us-
ing a heuristic approach where a cost function which penalizes large
differences between the gains of adjacent frames [4].

Our goal in this paper is twofold. First we describe in detailthe
underlying probabilistic generative signal model of the NMF and
the nonnegative update equations as a quasi gradient optimisation
strategy. Consequently, given the probabilistic model, wecan im-
pose various prior structures. Here, we use a Gamma chain prior [1]
on the basis vectorsT and gainsV. The resulting algorithm out-
performs existing NMF strategies and opens up the way for a full
Bayesian treatment for model selection.

The paper is organized as follows: Section 2 reviews shortlythe
objective of non-negative matrix factorisation and the related opti-
mization algorithm. Section 3 presents the probabilistic generative
model behind the NMF, and extends it to allow priors for the parame-
ters. Section 4 presents simulation results and Section 5 conclusions.

2. NON-NEGATIVE MATRIX FACTORISATION

In NMF, the goal is to find entrywise non-negative matricesT and
V such that

(T∗,V∗) = arg min
TV

D(X||TV) (1)

whereX is an entrywise non-negative matrix andD could be Eu-
clidian distance, or divergence defined as

D(X||Y) =
X

ν,τ

[X]ν,τ log[X]ν,τ/[Y]ν,τ − [X]ν,τ + [Y]ν,τ

Here we use the divergence since it has been found to produce better
results in audio signal analysis [4]. SinceX is fixed, we can use the
divergence function

d(x, y) = −x log(y) + y (2)



and write the equivalent optimisation problem

(T∗,V∗) = arg min
TV

X

τ,ν

d([X]τ,ν , [TV]τ,ν) (3)

In general, this optimisation problem is not convex with respect to
both T andV. Therefore finding the global optimum cannot be
guaranteed by any optimisation method. However, the problem is
convex with respect toT andV separately, which allows for finding
of locally optimal solutions.

Because of their computational effectiveness and simplicity, the
multiplicative updates proposed in [5] have been extensively used to
solve the problem (3). The convergence proof in [5], which essen-
tially hinges upon bounding termslog

PI
i=1 tν,ivi,τ of the objective

by a variational bound, can be interpreted as follows: for fixed non-
negative parametersxν,τ andtν,i, ν = 1, . . . , F , i = 1, . . . , I, and
variablesvi,τ which are restricted to non-negative values, the func-
tion

c =

F
X

ν=1

d(xν,τ ,

I
X

i=1

tν,ivi,τ ) (4)

is non-increasing under simultaneous update of allvi,τ , i = 1, . . . , I
using the rule

vi,τ ← vi,τ

PF
ν=1 tν,ixν,τ/(

PI
i′=1 tν,i′vi′,τ )

PF
ν′=1 tν′,i

(5)

The rule has been applied to solve (3) by keeping firstT fixed and
applying (5) to updateV, then keepingV fixed and updatingT,
and repeating the updates until the values converge. In practice, this
variational approach has been found to be efficient in estimating V

andT, since it automatically obeys the non-negativity restrictions.

3. POISSON OBSERVATION MODEL

In the sequel, we illustrate that the objective (3) can be derived start-
ing from a probabilistic model1. Assume that the magnitude at each
time-frequency atomsi

ν,τ produced by theith source is Poisson dis-
tributed:

si
ν,τ ∼ PO(si

ν,τ ; tν,ivi,τ ), (6)

wherevi,τ is the gain of theith basis vector in frameτ andPO is
the Poisson distribution defined as

PO(x; λ) = e−λλx/Γ(x + 1). (7)

Here,Γ(x) denotes the gamma (generalised factorial) function. The
Poisson distribution is defined only for discretex, but in practise
the accuracy ofx does need to be limited by having a large integer
scale. We assume that the total magnitude of the observed signal
xν,τ in each time-frequency point is the sum of the magnitudes of
individual sources2, i.e., xν,τ =

PI
i=1 si

ν,τ . The sum of indepen-
dent Poisson-distributed random variables is also a Poisson random
variable with intensity parameter equal to the sum of individual in-
tensity parameters. Therefore,

p(xν,τ |tν,1:I , v1:I,τ ) = PO(xν,τ ;
I

X

i=1

tν,ivi,τ ), (8)

1Such as an observation has been made before in many studies, but here
it is crucial to formulate the mathematical details.

2We note that this assumption is physically unrealistic, since in general
for two superinposed sourcesξ1 andξ2, the magnitude of the superposition
x = |ξ1 + ξ2| can not be written as the superposition of the magnitudes of
individual sources, i.e.x 6= |ξ1| + |ξ2|.

wheretν,1:I denotes theνth column ofT andv1:I,τ theτ th row of
V, respectively. Assuming that each time-frequency point isstatis-
tically independent conditional onT andV, the entire model can be
denoted using matrix notation by

p(X|T,V) =
Y

τ,ν

e−[TV]ν,τ [TV]
[X]ν,τ
ν,τ

Γ([X]ν,τ + 1)
(9)

The maximum likelihood solution is given by

(T∗,V∗) = arg max
T,V

log p(X|T,V)

where

log p(X|T,V)

=
X

ν,τ

−[TV]ν,τ + [X]ν,τ log([TV]ν,τ )− log(Γ([X]ν,τ + 1))

=+ −
X

ν,τ

d([X]ν,τ , [TV]ν,τ ) (10)

Here=+ denotes equal up to irrelevant constant terms (i.e.f ∝
g ⇔ log f =+ log g). We see that this objective is identical to the
objective (3) optimised by NMF.

3.1. Gain prior p(V)

In the following, we propose that both the basis vectors and gains
are unobserved random variables which are to be estimated from the
data. We assume that the prior factorises asp(T,V) = p(T)p(V).
To model continuation across time, we will use a Markov chainon
gains. A suitable prior, that guarantees that the gains are strictly non-
negative, and positively correlated (i.e., slowly varyingin time) can
be constructed by a so called Gamma-chain [1]. HereG(y; a, b) is
the gamma distribution defined fory > 0 as

G(y; a, b) = ya−1b−ae−y/b/Γ(a), (11)

A Gamma chain is constructed by using auxiliary variableszi,τ as
follows.

zi,1 ∼ G(zi,1; a + 1, (ab)−1)

vi,τ |zi,τ ∼ G(vi,τ ; a, (zi,τa)−1)

zτ+1,i|vi,τ ∼ G(zτ+1,i; a + 1, (vi,τa)−1)

Here,a is a coupling parameter that affects the affinity between the
gains of adjacent frames. Whena is large, adjacent frames are cou-
pled more strongly. The auxiliary variables are needed to ensure
positive correlationand conjugacy, a technical condition that leads
to closed form fixed point equations as in standard NMF. The above
Gamma chain is a single parameter version of the model presented
in [1] where the valueaz = a + 1 is used in the distribution of the
auxiliary variables. The resulting model is a collection ofindepen-
dent Gamma chains for the gains of each sourcei.

The relevant terms in the log-prior function are given as

log p(V,Z) =+
I

X

i=1

a log(zi,K+1)− zi,1ab

+

I
X

i=1

K
X

τ=1

2a[log(vi,τ ) + log(zi,τ )]− vi,τzi,τa− zi,τ+1vi,τa

=+−

I
X

i=1

"

d(a, abzi,1) +

K
X

τ=1

d(a, vi,τzi,τa) + d(a, vi,τzi,τ+1a)

#

(12)where we define[Z]i,τ ≡ zi,τ .



3.2. Basis vector priorp(T)

In this paper, we assume a prior where each entry of the basis vector
matrix is assumed to be independently drawn from a Gamma distri-
bution:

p(tν,i) = G(tν,i; αν,i, β
−1
ν,i ) = t

αν,i−1

ν,i β
αν,i

ν,i e−tν,iβν,i/Γ(αν,i)
(13)

The hyperparametersαν,i andβν,i of the model can be selected in-
dividually for each basis vectort1:F,i. For example,β1:F,i can be
selected such that typical basis vectors have peaks at harmonically
related frequencies. We assumep(T) =

QI
i=1

QF
ν=1 p(tν,i) and

consequently, the logarithm of the prior can be written as

log p(T) =+
I

X

i=1

F
X

ν=1

(αν,i − 1) log(tν,i)− tν,iβν,i

= −

I
X

i=1

F
X

ν=1

d(αν,i − 1, tν,iβν,i) (14)

3.3. Inference

Given the model, the joint posterior distribution is given by Bayes’
rulep(Z,V,T|X) ∝ p(X|V,T,Z)p(Z,V,T) which factorises to
p(X|V,T)p(Z,V)p(T). The MAP state can be found as

arg max
Z,V,T

{log p(X|V,T) + log p(Z,V) + log p(T)} (15)

We substitute the terms in (15) with the expressions in (10),(12),
and (14). Since the log-posterior is now written as a sum of the
divergence function defined in (2), the MAP estimator can be de-
rived directly by applying the rule (5) on the sum of the terms(10),
(12), and (14). To simplify the notation, let us definemν,τ =

xν,τ/(
PI

i=1 tν,ivi,τ ) for all ν = 1, . . . , F andτ = 1, . . . , K. The
update rule (5) for each of the parameters is given as

tν,i ← tν,i
(αν,i − 1)/tν,i +

PK
τ=1 vi,τmν,τ

βν,i +
PK

τ ′=1 vi,τ ′

(16)

vi,τ ← vi,τ
2a/vi,τ +

PF
ν=1 tν,imν,τ

a(zi,τ + zτ+1,i) +
PF

ν′=1 tν′,i

(17)

zi,τ ←

8

>

<

>

:

1/(v1,i + b) τ = 1

2/(vi,τ + vτ−1,i) 1 < τ < K + 1

1/vi,τ τ = K + 1

(18)

It can be seen that the update rules differ from the basic NMF updates
[5] only by additive terms in the numerator and denominator,which
are caused by the priors.

The MAP estimation algorithm works in an iterative fashion,
first updating all the basis vectors using (16), then all the gains using
(17), and (18), and repeating the updates until the algorithm con-
verges. According to the proof [5], the value of the posterior dis-
tribution (15) is guaranteed to be non-decreasing under each of the
updates.

By settingb = 0, the gain prior becomes independent of the
overall level of the gains. Thus, unlike the cost term in [4],the tem-
poral continuity objective implemented by the Gamma chain does
not require fixing the scale of the parameters. However, to ensure
the numerical stability of the algorithm, in each iterationwe scale
the variance of the gains of each source to unity, and compensate
this by re-scaling the basis vectors and auxiliary variables.

4. SIMULATION EXPERIMENTS

The effect of the proposed priors is shown in two studies where the
basis vector priors and gain priors are tested separately.

Fixed basis vectors

Basis vectors estimated from the mixture signal, Gamma priors
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Fig. 1. Gains of the bass drum basis vector estimated using three
different NMF algorithms. The bass drum onset times are marked
with crosses and snare drum onset times with circles, respectively.
The proposed method (bottom plot) is able to estimate gains where
the interference caused by other sources is smaller than in the other
algorithms.

4.1. Basis vector priors

In the first study we examine the benefit of the basis vector prior by
an example signal of a drum pattern consisting of bass drum, snare
drum, and hi-hats. The gain prior is not used here. The magnitude
spectrogram of the signal was factorised into three sources(I = 3)
using three NMF algorithms. The first algorithm, basic NMF, es-
timates the basis vectors and gains blindly from the mixturesignal
by minimizing the divergence. The second algorithm uses fixed ba-
sis vectors, which were trained for each source using material where
the source was present in isolation but the instruments usedto pro-
duce the sounds were not identical to those in the mixture. The third
algorithm is the proposed method which uses Gamma priors forthe
basis vectors. We set the shape parameterαν,i of the prior of all the
basis vectors equal to1, and the scale parametersβ−1

ν,i equal to the
fixed basis vectors trained for the second algorithm.

The gains were estimated using all the three algorithms sepa-
rately. Figure 1 illustrates the gains corresponding to thebass drum
basis vector for three different algorithms. All the algorithms pro-
duce large peaks at correct bass drum hits. However, the firstand
second algorithm also produce smaller erroneous peaks correspond-
ing to the snare drum hits. Because the sounds in the materialused
to train the basis vectors are not identical to the sounds in the mix-
ture, the second algorithm patches the mismatches by representing
parts of snare drum spectra by bass drum basis vectors. On theother
hand, because a part of the snare drum spectra can be represented
with a bass drum spectra, the blind NMF algorithm is not able to
learn the basis vectors accurately enough. The proposed algorithm
circumvents these problems and produces gains where snare drum
hits do not affect the excitations of the bass drum basis vector.



Table 1. Average detection error rates and SDRs of the tested algo-
rithms. The best result in each column is highlighted in bold.

algorithm det. error rate (%) SDR (dB)
all pitched drums all pitched drums

EUC 28 28 30 6.6 7.6 4.5
DIV 26 28 23 7.6 9.0 4.7
DIV-SQ 24 25 22 8.5 9.8 6.0
GAMMA 25 28 20 10.1 12.3 6.0

4.2. Gains

The effect of the Gamma chain prior was evaluated quantitatively in
an unsupervised sound source separation task where random acous-
tic mixtures of tones of musical instruments were separatedinto
sound sources. Basis vector priors were not used in this study. 300
random mixtures were generated by selecting random musicalin-
struments and pitches from an acoustic database described in [4].
Random amount repetitions, timings, durations, etc. were allotted
for the tones according to the procedure described in [4].

The baseline algorithms include the basic NMF algorithms based
on the minimization of the Euclidean distance between and the diver-
gence between the magnitude spectrograms. These are denoted by
EUC and DIV in the following. The NMF algorithm [4] where tem-
porally continuous gains were favored by using a cost term which
is the squared difference of the gains of adjacent frames is denoted
by DIV-SQ, and the proposed Gamma chain algorithm is denoted
by GAMMA. Different values ofa were tested and the one which
produced approximately the best results was used in the simulations.
Basis vector priors were not used in this evaluation.

In the simulations, each mixture was separated into sourcesby
using all the algorithms. At the moment there is no reliable method
for the estimation of the number of sources in this framework, and
therefore we tested each of the algorithms separately with 5, 10, 15,
and 20 basis vectors. Each source was reconstructed asŝi

τ,ν =

xτ,νvτ,iti,ν/(
PI

i′=1 vτ,i′ti′,ν). The quality of the separation was
evaluated by comparing the separated sources to the original sources.
Each separated source was assigned to an original source by using
the signal-to-distortion ratio (SDR) between them as a distance mea-
sure as described in [4]. If an original source was not assigned sep-
arated sources, the source is said to be undetected. The detection
error rate was calculated as the ratio of the total number of unde-
tected sources and the total number of sources. The quality of the
separated sources was measured by calculating the SDR between
each separated source and the corresponding original source. Only
a single separated source per an original source was used to avoid
over-fitting (see [4]). The SDR was averaged over all the sources.
The averages were calculated also separately for pitched instrument
sources and percussive sources.

4.3. Results

The average detection error rate and SDR are shown in Table 1.The
results for DIV, EUC, and DIV-SQ are slightly different fromthose
presented in [4], because of the slightly different source reconstruc-
tion method. The proposed method allows better average detection
accuracy and SDR than the basic NMF algorithms. It produces ap-
proximately equivalent average detection error rate to theDIV-SQ
method, the performance being slightly worse for pitched instru-
ments and slightly better for percussive instruments. The SDR of
pitched instruments obtained with the proposed method is signifi-
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Fig. 2. The effect of the coupling parametera on the average detec-
tion error rate and average SDR. The solid line is the averageof all
sources, the dashed line is the average of pitched instruments, and
the dotted line is the average of percussive instruments.

cantly better than the one obtained with the other methods.
The effect of the value ofa is illustrated in Figure 2. The case

a = 0 corresponds to the DIV algorithm. It can be seen that increas-
ing the value ofa increases the detection accuracy of percussive in-
struments and the SDR of all the instruments until a certain point,
after which the quality decreases.

5. CONCLUSIONS

This paper proposes a Bayesian extension to the NMF where theen-
tries of the unknown matrices are considered as unobserved random
variables. We use a Gamma Markov chain prior for the gains and
Gamma prior for the basis vectors. These conjugate Gamma pri-
ors enable finding the maximum likelihood solution of the parame-
ters by extending the simple and efficient multiplicative updates of
the original NMF algorithm, where the likelihood is guaranteed to
be non-increasing under each update and therefore the algorithm is
guaranteed to converge. The prior structures (both on gainsand basis
vectors) help to overcome some problems and enable better quality
in one-channel source separation than the existing NMF algorithms.
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