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Abstract— In this work we propose a novel algorithm
that approximates sequentially the Dirichlet Process Mixtures
(DPM) model posterior. The proposed method takes advantage
of the Sequential Monte Carlo (SMC) samplers framework
to design an effective annealing procedure that prevents the
algorithm to get trapped in a local mode. We evaluate the
performance in a Bayesian density estimation problem with
unknown number of components. The simulation results sug-
gest that the proposed algorithm represents the target posterior
much more accurately and provides significantly smaller Monte
Carlo error when compared to particle filtering.

Keywords-Bayesian nonparametrics, Dirichlet process mix-
ture, sequential Monte Carlo

I. INTRODUCTION

In recent years, Dirichlet Process Mixtures (DPM) have

been one of the most popular approach to probabilistic

modelling [1], [2], [3]. Originally, DPM have been widely

used as a building block in hierarchical models for solv-

ing density estimation and clustering problems, where the

actual form of the underlying density is not constrained

to a parametric family. If inference can be carried out

effectively in a DPM, at least in principle, any density can

be approximated with arbitrary precision. Inference in a

DPM model is unfortunately intractable, hence there has

been a surge of interest for efficient inference strategies. In

this context, variational approximations [4] and Monte Carlo

Markov Chain (MCMC) [5] techniques are widely used.

Inference in DPM is closely linked to clustering, and

hence inherently a batch operation where the order of data

should not matter. However, even if the data generating

process is not sequential, it might be nevertheless beneficial

to process data online in some prespecified order. Such se-

quential processing may give computational advantages for

large datasets. Moreover this provides a natural tempering

effect, i.e., a sequence of inference problems with increasing

difficulty in contrast to one hard problem directly to be

solved by a batch algorithm. Intuitively, it is more beneficial

to “reuse” past inference instead of starting from scratch

each time a new observation arrives. Therefore, develop-
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ment of online inference techniques have been proposed to

estimate the time evolving DPM posterior [2], [3].

In this work we propose a novel sequential Monte Carlo

sampler that estimates the sequentially evolving DPM model

posterior. Our algorithm differs from the existing sequential

methods [2], because it enables us to update past trajectories

of the particles in the light of recent observations. Unlike

the conventional approaches [3] that apply Gibbs moves to

the weighted set of particles, the proposed method takes

advantage of the SMC sampler framework [6] to design an

annealing scheme that prevents the algorithm to get stuck

in a local mode due to slow mixing property of the Gibbs

sampler. In contrast to our previous work [7], here we

concentrate on using an annealing scheme that utilizes a

single proposal kernel. We also show that the sequential

algorithm proposed in [3] is also a particular instance of

the SMC framework.

II. DIRICHLET PROCESS MIXTURES (DPM)

In this section we will construct a mixture model se-

quentially, where data arrives one by one. To denote the

sequential construction, we extend our notation with an

explicit ’time’ index n. We denote the observation sequence

by yn = {yn,1 . . . yn,n}. Each observation yn,i, i = 1, . . . n,

is assigned to a cluster where zn,i ∈ {1, . . . kn} is the

corresponding cluster label and, kn ∈ {1 . . . n} represents

the number of existing clusters at time n. The vector of

cluster variables is defined as zn = {zn,1 . . . zn,n} and

corresponding cluster parameters are represented with the

parameter vector θn = {θn,1 . . . θn,kn
}.

The DPM model assumes that the cluster parameters are

independently drawn from the prior π(θn) and the obser-

vations are independent of each other conditional on the

assignment variable zn,i. Hence the DPM posterior density

π(xn) can be expressed as,

πn(xn) ∝ p(zn)

kn∏

j=1

p(θn,j)
n∏

i=1

p(yn,i|θn,zn,i
) (1)

where xn = {zn, θn}. The prior on clustering variable vector
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zn is formulated by Eq.(2) in a recursive way,

p(zn,i+1 = j|zn,{1:i}) =

{
lj

i+κ
, j = 1, .., ki

κ
i+κ

, j = ki + 1
(2)

where ki is the number of clusters in the assignment zn,{1:i}.

In Eq.(2) lj is the number of observations that zn,{1:i}

assigns to cluster j and κ is a ’novelty’ parameter [8]. In

our work, we assume that conjugate prior is chosen for the

parameters to ensure the conjugacy. Typically given zn, the

parameter θn can be integrated out and the DPM posterior

distribution can be calculated up to a normalizing constant.

III. SEQUENTIAL MONTE CARLO SAMPLERS

In sequential Monte Carlo algorithms such as particle

filtering, we sample from a sequence of target densities

evolving with a countable index n, π1(x1) . . . πn(xn), each

defined on a measurable space (En, En) where xn ∈ En.

In order to derive the importance weights sequentially one

needs to define the sequence of proposal distributions as

η1(x1) . . . ηn(xn) of which closed form solution is not

available.

To eliminate this limitation, Del Moral et al. [6] proposed

an auxiliary variable technique which solves the sequen-

tial importance sampling problem in an extended space

En = {E1 × . . . × En}. SMC sampler performs impor-

tance sampling between the joint importance distribution

ηn(x1:n) and the artificial joint target distribution defined by

π̃n(x1:n) = γ̃n(x1:n)/Zn where Zn denotes the normalizing

constant and

γ̃n(x1:n) = γn(xn)

n−1∏

k=1

Lk(xk+1, xk). (3)

Ln is the backward Markov Kernel from space En+1 to En

and the joint posterior π̃n(x1:n) defined on the extended

space, En, admits πn(xn) as a marginal. Therefore the

resultant weight function ensures convergence to the original

target density. The generic SMC algorithm can be presented

as follows [6].

Assume that a set of weighted particles{
W i

n−1,X
i
1:n−1

}Np

i=1
approximate π̃n−1 at time n − 1. At

time n the path of each particle can be extended using

a Markov kernel, Kn(xn−1, xn). The unnormalized

importance weights, γ̃n(x1:n)/ηn(x1:n), associated

with the extended particles are calculated according

to wn(x1:n) = wn−1(x1:n−1)vn(xn−1, xn) where the

incremental term of weight equation, vn(xn−1, xn), is

equal to

vn(xn−1, xn) =
γn(xn)Ln−1(xn, xn−1)

γn−1(xn−1)Kn(xn−1, xn)
. (4)

Design of efficient sampling schemata hinges on properly

choosing the backward kernel Ln. Assuming Kn is an

Monte Carlo Markov Chain (MCMC) kernel of invariant

distribution πn, an approximate backward kernel can be

formulated as shown in Eq.(5).

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
(5)

Eq.(5) is accepted as a good approximation for πn−1 ≈
πn and yields to the incremental weight, vn(xn−1, xn) =
γn(xn−1)/γn−1(xn−1).

A well known method in order to increase the efficiency

of the sequential importance sampling based approaches is to

apply MCMC moves to each particle using a Gibbs sampler

[3]. In the following section we will explicitly show that

such a method is a special case of the SMC framework

which utilizes MCMC kernels.

IV. MCMC KERNELS FOR DPM MODELS

In this section, we will define the forward Kernel Kn

generating samples from the sequence of distributions built

according to Eq.(1). We first partition an assignment vector

zn = {zn,r, zn,d, zn,n} where r is a subset of {1, . . . , n −
1}, a set of not necessarily consecutive indicies, and d =
{1, . . . , n − 1} − r. Note that throughout the text we will

call the set zn,r as the active block. We define u = r∪{n},

and denote −u ≡ d.

Now, let us define a forward kernel as follows,

Kn(zn−1, zn) = δzn−1,−u
(zn,−u) Kn(zn,n, zn,r|zn−1) (6)

where Kn(zn,n, zn,r|zn−1) is a valid MCMC kernel apply-

ing a single Gibbs iteration targeting the full conditional

distribution πn(zn,n, zn,r|zn,−u).
The backward kernel for the MCMC kernel can be ob-

tained by substituting Eq.(6) into Eq.(5) and the resulting

incremental weight update equation is,

vn(zn−1, zn) =
γn(zn−1,r, zn,−u)

γn−1(zn−1)
. (7)

Eq.(7) is independent of the MCMC kernel Kn hence valid

for any initialization of the kernel. Note that when the

active block is selected as the set r = {1 . . . n − 1}, Eq.(7)

corresponds to the S4 algorithm utilized by [3].

Intuitively, the algorithm first samples the latest clus-

tering label zn,n using the full conditional distribution

πn(zn,n|zn−1) and updates the active block zn,r using a

Gibbs sampler. In a sequential problem the posterior distri-

bution changes over time and new modes of the posterior dis-

tribution may emerge as new observations are received. The

algorithm must have good mixing property to explore the

modes of the time evolving posterior distribution and achieve

a good approximation to the true target posterior. However,

conventional sequential and batch algorithms based on Gibbs

sampler may fail to represent the modes of the true target

posterior due to slow convergence property of the Gibbs

samplers and will likely to stuck in local modes particularly

when the posterior distribution has a multi modal form where
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the modes are isolated. To deal with this problem, in the next

subsection we introduce an algorithm that converges to the

true DPM posterior as the new observations are received

sequentially.

A. Annealed kernels for DPM mixtures

Conventional approach defined in Section IV applies

Gibbs moves to each particle in order to obtain weighted

samples from a sequence of target distributions given

by π1(z1), . . . , πn(zn). This paper proposes an annealing

scheme to improve the efficiency of posterior estimation.

In literature annealing schemes have been widely used to

handle isolated modes in batch processing. It is adopted to

importance sampling to construct good proposal distribu-

tions for sampling sequence of distributions [9]. To achieve

our goal let us construct an annealed time evolving target

posterior as, π′
1(z

′
1), . . . π

′
n(z′n), where π′

n is also defined

on the measurable space (En, En) and z′n ∈ En. The

notation ′ is used to denote the annealed target posterior

π′
k(z′k) = πk(zk|κ = αk) where z′k = zk, k = {1 . . . n},

and annealing is achieved by changing the parameter αk

of the underlying Dirichlet process. Note that αk is the

prior parameter on the number of components where higher

values yields higher number of mixture components . Hence

the idea behind constructing a sequence of annealed target

posterior distributions is to obtain intermediate distributions

that cover the high probability regions of the time evolving

true target posterior. In other words, the annealed distribu-

tions are DPM models with relaxed parameters for which

the particle filter approximation is hopefully more efficient

than the true target. In the following we will explain how

we define the annealed target distribution π′
n(z′n) as an

intermediate step to estimate the time evolving true target

posterior πn(zn).
In order to sample the sequence of annealed target distri-

bution, let us define a forward kernel as follows,

Kn(z′n−1, z
′
n) =δz′

n−1,−u

(
z′n,−u

)
Kn(z′n,n, z′n,r|z

′
n−1) (8)

where Kn(z′n,n, z′n,r|z
′
n−1) is an MCMC kernel which tar-

gets the conditional distribution π′
n(z′n,n, z′n,r|z

′
n,−u). Using

Eq.(5), the backward kernel can be written as in Eq.(9),

Ln−1(z
′
n, z′n−1) =

π′
n(z′n−1)Kn(z′n−1, z

′
n)

π′
n(z′n)

(9)

and the incremental weights for the annealed target posterior

can be obtained as follows,

v′
n(z′n−1, z

′
n) =

γ′
n(z′n)π′

n(z′n−1,r|z
′
n−1,−u)

γ′
n−1(z

′
n−1)π

′
n(z′n, z′n,r|z

′
n,−u)

(10)

where the weights associated with the particles can be

calculated according to w′
n(z′1:n) = w′

n−1(z
′
1:n−1) ×

v′
n(z′n−1, z

′
n). Assuming

{
W ′

n
(i)

}Np

i=1
represents the nor-

malized weights approximating to π′
n(z′n), we perform

a resampling step if effective sample size, Neff =[∑Np

i=1(W
′
n

(i)
)2

]−1

, is below a predefined threshold.

Finally, in order to approximate to the target distribution

πn(zn), we use a Dirac kernel of the form Kn(z′n, zn) =
δz′

n
(zn) and find the weights according to wn(z1:n) =

w′
n(z′1:n) × vn(z′n, zn) where vn(z′n, zn) = γn(zn)/γ′

n(z′n).
Specification of the active block size r shown in Eq.(10)

is an important issue in the design of proposed sampler. In

order to limit the computational cost required at each time

step we initially determine a constant block size Q and index

the block with r1 . . . rQ. The indexes of the active block is

incremented by Q as each new observation is received. The

blocks do not overlap to each other and update scheme is

cycled whenever all the clustering labels up to time n are

updated. Note that similar block update strategies are also

used in [10] under the SMC samplers framework.

V. TEST RESULTS AND CONCLUSIONS

Our goal in this section is to illustrate the effectiveness of

the SMC samplers framework for online inference in DPM

models. For this purpose, we compare performance of three

samplers namely; the SMC-G which utilizes conventional

Gibbs moves on the DPM space [7], the proposed SMC

sampler (SMC-A), and the Particle filter (PF). Results are

reported in terms of mean estimates and respective standard

errors. Mixture density estimates obtained by the SMC-G

and SMC-A samplers are also provided for visual compari-

son.

Performance of the algorithms are evaluated for the

standard Gaussian mixture density estimation problem with

unknown number of components. It is assumed that obser-

vations are drawn from a univariate Gaussian with unknown

mean µ and variance σ2, hence θ = {µ, σ2}. The distribution

of the parameters µ and σ2 are respectively chosen as normal

and inverse-gamma, to ensure the conjugacy condition.

To alleviate the degeneracy, a systematic resampling

scheme is applied for sequential algorithms when Neff <
4/5Np . For a fair comparison the number of particles is

selected as Np = 1000 for particle filter and Np = 100 for

SMC algorithms. Results are reported for 100 independent

Monte Carlo runs for each model. The active block size Q
is set to 9.

The initial annealing parameter for annealed target dis-

tribution is set to α1 = 1 and it is geometrically updated

according to αn = αn−1 + cα(κ − αn−1), n ∈ N, at each

time step where the common parameter, cα, is set to 1/100.

Note that as n → ∞, αn will converge to κ that ensures

convergence to the true target posterior with the increasing

time.

Two test sets (D-1 and D-2) are generated from a Gaus-

sian mixture model comprising three mixture components.

Parameters of the generated data are given in Table.I where

µi, σi, and pi, for i ∈ {1 . . . 3}, denote the mean, standard
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Table I
TRUE MODEL PARAMETERS

p1, p2, p3 µ1, µ2, µ3 σ1, σ2, σ3

Data-1 (D-1) 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) 1/2,1/6,1/3 0,2,4 0.5,0.5,2.5
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(a)

−2 0 2 4
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Figure 1. Estimated mixture densities by the a) SMC-G and b) SMC-A
algorithm for 100 Monte Carlo runs. SMC-A represent all tree components
of the mixture density in all runs.

deviation and the mixture weight for each component, re-

spectively. Each data set has 1000 points, that we run the

test sequentially for 200, 500, and 1000 samples.

In order to illustrate the estimation quality of the proposed

algorithm we set the novelty parameter to a very low value of

κ = 0.05. Note that a low κ value will cause the posterior to

have isolated modes and leads to a hard inference problem.

This test aims to assess the ability of the algorithms to escape

from local modes. We perform the test by generating a total

of 1000 observations from the model D-1 which comprise

three overlapping mixture components. In Fig. 1 (a) and (b),

the mixture densities plotted for each run of the SMC-G and

SMC-A algorithms, respectively. We observe that SMC-A

can represent all tree components of the mixture density in

all runs of the algorithm whereas SMC-G commonly gets

trapped at a local mode and fits 2 mixture components to

the data for several runs (nearly the half) of the algorithm.

We also report the mean estimate and the standard errors

(in parenthesis) of the number of components in Table.II

for SMC-G and SMC-A. The results illustrate that SMC-A

is able to converge to the true number of components (3)

for a small number of observations, however the SMC-G

algorithm does not converge even when the observation size

is 1000.

Table II
ESTIMATED MEAN VALUES AND RESPECTIVE MONTE CARLO ERRORS

FOR SMC-G AND SMC-A

Observation intervals
Algo. 200 500 1000

D-1 SMC-G 2.05 (0.002) 2.54 (0.249) 2.71 (0.255)
D-1 SMC-A 2.13 (0.003) 3.05 (0.012) 3.07 (0.003)

In order to examine the performance of the algorithms

under different parameter regimes, we set the novelty pa-

rameter to a larger value of κ = 0.5. This tends to

lead to a ’smoother’ posterior density where inference is

arguably simpler. The estimated mean values of the number

of components and the standard errors for the test sets D-1

Table III
ESTIMATED MEAN VALUES AND RESPECTIVE MONTE CARLO ERRORS

FOR SMC-G, SMC-A AND PF

Observation intervals
Algo. 200 500 1000

D-1
SMC-G 2.99 (0.037) 3.58 (0.041) 3.69 (0.035)
SMC-A 3.00 (0.033) 3.57 (0.025) 3.65 (0.024)

PF 2.95 (0.032) 3.55 (0.226) 3.69 (0.285)

D-2
SMC-G 4.17 (0.039) 4.57 (0.075) 4.66 (0.126)
SMC-A 4.16 (0.026) 4.54 (0.081) 4.65 (0.115)

PF 4.16 (0.037) 4.55 (0.145) 4.76 (0.357)

and D-2 are reported in Table.III. As it is shown in Table.III,

both PF and SMC algorithms provide almost identical mean

estimates for both datasets. However, SMC-G and SMC-A

can achieve significantly lower standard error compared to

PF at n = 1000. This results show that SMC sampler

approach provides more reliable estimates than the particle

filter for the harder inference problem at the same com-

putational cost. For the simpler problem, both algorithms

(SMC-A and SMC-G) show comparable performance.

As future work it is appealing to extend the proposed

algorithm to a non conjugate setting where the parameters

of the model need to be also sampled.
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