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Abstract

In this paper, we develop a novel online algo-
rithm based on the Sequential Monte Carlo
(SMC) samplers framework for posterior in-
ference in Dirichlet Process Mixtures (DPM)
(DelMoral et al., 2006). Our method gener-
alizes many sequential importance sampling
approaches. It provides a computationally ef-
ficient improvement to particle filtering that
is less prone to getting stuck in isolated
modes. The proposed method is a particular
SMC sampler that enables us to design so-
phisticated clustering update schemes, such
as updating past trajectories of the parti-
cles in light of recent observations, and still
ensures convergence to the true DPM tar-
get distribution asymptotically. Performance
has been evaluated in a Bayesian Infinite
Gaussian mixture density estimation prob-
lem and it is shown that the proposed algo-
rithm outperforms conventional Monte Carlo
approaches in terms of estimation variance
and average log-marginal likelihood.

1 Introduction

In recent years, Dirichlet Process Mixtures (DPM)
model (Antoniak, 1974) has been one of the most
widely used and popular approach to nonparametri-
cal probabilistic models. Originally, DPM have been
widely used as a building block in hierarchical models
for solving density estimation and clustering problems
where the actual form of the data generation process
is not constrained to a particular parametric family.
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Provided that inference can be carried out effectively
for the DPM, at least in principle, any density can
be approximated with arbitrary precision. However,
exact inference is unfortunately intractable. Yet due
to the mentioned potential advantages of nonparamet-
ric approaches, there has been a surge of interest to
the DPM model and efficient inference strategies based
on variational techniques (Blei and Jordan, 2004) and
Monte Carlo Markov Chain (MCMC) (Escobar and
West, 1992; Jain and Neal, 2000).

By construction, the DPM model is exchangable and
the ordering of data does not matter. However, for
inference it is nevertheless beneficial to process data
sequentially in some natural order. Such an approach
gives computational advantages especially for large
datasets. In the literature a number of online infer-
ence techniques have been proposed to estimate an
artificially time evolving DPM posterior (MacEachern
et al., 1999; Quintana, 1996; Fearnhead, 2004).

However, it is argued that sequential importance sam-
pling is not an appropriate method for models with
static parameters and especially large datasets due to
the degeneracy phenomenon and accumulated Monte
Carlo error over time (Quintana and Newton, 1998).
The sampler becomes ’sticky’, meaning that previously
assigned clusterings can never be updated according to
the information provided by the latest observations. In
order to overcome this drawback, we propose an effi-
cient sequential Monte Carlo sampler that estimates
the sequentially evolving DPM model posterior. Un-
like the existing methods (MacEachern et al., 1999;
Quintana, 1996; Fearnhead, 2004), our algorithm en-
ables us to update past trajectories of the particles in
the light of recent observations. The proposed method
takes advantage of the SMC sampler framework to de-
sign such update schemes (DelMoral et al., 2006).
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2 Dirichlet Process Mixtures (DPM)

In a batch Bayesian setting, the joint distribution cor-
responding to a finite mixture model over N observa-
tions y = {yi}, i = 1 . . . N , can be defined as follows:

p(θ, z, y) = p(z)

(
N∏

i=1

g(yi|θzi
)

)
k∏

j=1

p(θj). (1)

Here, for i = 1 . . . N , zi ∈ {1 . . . k} denotes the cluster
index of the i th observation and θ = {θj}, j ∈ {1 . . . k}
denote the cluster conditional parameters where k
refers to the maximum number of clusters. We will
use z = {zi}, i = 1 . . . N to refer to clustering vari-
ables, that we also call cluster labels or simply labels.

However, the number of mixture components is of-
ten unknown in practice and the DPM model provides
an elegant solution for construction of mixture models
with unknown number of components. In the sequel,
we will refer to the target posterior as

π(x) ≡ p(z, θ|y) (2)

where x = {z, θ}. It is advantageous to construct a
mixture model sequentially, where data arrives one by
one. To denote the sequential construction, we extend
our notation with an explicit ’time’ index n.

We denote the observation sequence at time n by yn =
{yn,1 . . . yn,n}. Each observation yn,i, i = 1, . . . n, is
assigned to a cluster where zn,i ∈ {1, . . . kn} is the
cluster label and, kn ∈ {1 . . . n} represent the number
of clusters at time n. The vector of cluster variables
is defined as zn = {zn,1 . . . zn,n} and corresponding
cluster parameters are represented with the parameter
vector θn = {θn,1 . . . θn,kn

}.

The DPM model assumes that the cluster parameters
are independently drawn from the prior π(θ) and the
observations are independent of each other conditional
on the assignment variable zn,i. Hence the DPM pos-
terior density πn(xn) can be expressed as,

πn(xn) ∝ p(zn)

kn∏

j=1

p(θn,j)
n∏

i=1

g(yn,i|θn,zn,i
) (3)

where xn = {zn, θn}. The prior on clustering variable
vector zn is formulated by Eq.(4) in a recursive way,

p(zn,i+1 = j|zn,{1:i}) =

{
lj

i+κ
, j = 1, . . . , ki

κ
i+κ

, j = ki + 1
(4)

where ki is the number of clusters in the assignment
zn,{1:i}. lj is the number of observations that zn,{1:i}

assigns to cluster j and κ is a ’novelty’ parameter.

In our work, we assume that a conjugate prior is cho-
sen such that given zn, the parameter θn can be inte-
grated out and the DPM posterior distribution can be
calculated up to a normalizing constant.

3 Sequential Monte Carlo (SMC)
Samplers

Sequential inference schemes have limited success in
maintaining an accurate approximation to the true
target density. Particularly for large datasets, Monte
Carlo error accumulates over time and the estimation
variance increases (Quintana and Newton, 1998). This
is due to the fact that past states of particle trajecto-
ries (i.e., past clusterings) are not updated with new
observations. The problem can be alleviated by a ret-
rospective method that is able to reassign the previ-
ous clusterings {zn,1 . . . zn,n−1} at time n according
to latest observations received. The SMC samplers
framework enables us to accomplish this in practice
and still ensures convergence to the true target poste-
rior asymptotically (DelMoral et al., 2006).

3.1 The Method

In sequential Monte Carlo algorithms such as particle
filtering, we sample from a sequence of target densities
evolving with a countable index n, π1(x1) . . . πn(xn),
each defined on a common measurable space (En, En)
where xn ∈ En. Conventionally the particle fil-
ter is defined on the sequence of target densities
π1(x1) . . . πn(xn) where corresponding proposal distri-
butions are defined as η1(x1) . . . ηn(xn). The unnor-
malized importance weight wn at time n can be defined
as,

wn =
γn(xn)

ηn(xn)
(5)

where γn is the unnormalized target distribution ac-
cording to πn = γn/Z, and Z is the normalizing con-
stant. In order to derive the importance weights se-
quentially one needs to calculate the proposal distri-
bution ηn(xn) pointwise.

Computation of the importance distribution ηn(xn)
for n > 1 requires an integration with respect to
x1:n−1 = {x1 . . . xn−1} thus a closed form solution to
ηn(xn) is not available except for specifically designed
kernels such as K(xn−1, xn) = K(xn). SMC samplers
(DelMoral et al., 2006) circumvent this limitation us-
ing an auxiliary variable technique which solves the se-
quential importance sampling problem in an extended
space En = {E1 × . . . × En}. One performs impor-
tance sampling between the joint importance distribu-
tion ηn(x1:n) and the artificial joint target distribution
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defined by π̃n(x1:n) = γ̃n(x1:n)/Zn where Zn denotes
the normalizing constant. The algorithm enables us to
calculate efficient weight update equations for a huge
class of proposal kernels Kn(xn−1, xn), such as MCMC
transition kernels.

The proposal distribution ηn(x1:n) of SMC is defined
on the extended space En as follows,

ηn(x1:n) = η1(x1)
n∏

k=2

K(xk−1, xk). (6)

Note that here an integration is no longer required.
However, this comes with the expense of an artificial
target density that is also defined on a larger space:

γ̃n(x1:n) = γn(xn)
n−1∏

k=1

Lk(xk+1, xk). (7)

Here, a sequence of backward kernels Lk(xk+1, xk),
k = {1 . . . n − 1} is introduced to define the artificial
target distribution shown in Eq.(7). By construction,
the joint posterior π̃n(x1:n) defined on the extended
space En admits πn(xn) as a marginal. Therefore the
resultant weight function ensures convergence to the
original target density. The generic SMC algorithm
which is used to sample from a sequentially evolving
target posterior π̃n is presented as follows:

Assume that a set of weighted particles{
W i

n−1,X
i
1:n−1

}Np

i=1
approximate π̃n−1 at time

n − 1. At time n the path of each particle can be
extended using a Markov kernel, Kn(xn−1, xn). The
unnormalized importance weights associated with the
extended particles are calculated according to Eq.(8),

wn(x1:n) = wn−1(x1:n−1)vn(xn−1, xn) (8)

=
γ̃n(x1:n)

ηn(x1:n)

where the incremental term of weight equation,
vn(xn−1, xn), is equal to

vn(xn−1, xn) =
γn(xn)Ln−1(xn, xn−1)

γn−1(xn−1)Kn(xn−1, xn)
. (9)

The discrepancy between ηn and γ̃n tends to grow with
n, consequently the variance of the unnormalized im-
portance weights increases. A resampling step is used
if the variance is above a certain level as measured by,
e.g, effective sample size (ESS).

3.2 Backward kernels

Design of efficient sampling schemata hinges on prop-
erly choosing Ln with respect to Kn. The introduc-
tion of the Ln extends the integration domain from
E to En and eliminates the necessity of calculating

ηn(xn). However increasing the integration domain
also increases the variance of the importance weights.
In (DelMoral et al., 2006) it is shown that the optimal
backward Markov kernel Lopt

k−1 (k = 2, . . . , n) mini-
mizing the variance of the unnormalized importance
weight wn(x1:n) is given for any k by,

Lopt
k−1(xk, xk−1) =

ηk−1(xk−1)Kk(xk−1, xk)

ηk(xk)
(10)

However, the kernel given by Eq.(10) usually does not
admit a closed form solution. Therefore common strat-
egy is to approximate the optimal kernel as close as
possible to provide asymptotically consistent estimates
(DelMoral et al., 2006) . A sensible approximation at a
given time step n can be obtained by substituting πn−1

for ηn−1, where the approximate kernel Ln−1 can be
expressed as in Eq.(11),

Ln−1(xn, xn−1) =
πn−1(xn−1)Kn(xn−1, xn)∫

πn−1(xn−1)Kn(xn−1, xn)dxn−1

(11)

that can yield a closed form solution to the weight up-
date equation if it is possible to calculate the integra-
tion. An alternative to approximate backward kernel
can be obtained as in Eq.(12) by replacing πn−1(xn−1)
by πn(xn−1) and selecting Kn as a MCMC kernel tar-
geting πn in Eq.(11).

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
(12)

Note that, although Eq.(11) is a closer approximation
to the optimal bakward kernel, Eq.(12) can lead to
simpler weight update equations.

4 A SMC sampler for the Dirichlet
Process Mixtures

In this section we will explain the proposed SMC based
algorithm that generates weighted samples from the
DPM model posterior described in Section 2.

Now, assuming conjugacy, we devise an algorithm that
approximates the posterior distribution,

P (zn|yn) ≈

Np∑

i=1

W i
nδZi

n
(zn) (13)

with a set of weighted samples
{
W i

n, Zi
n

}Np

i=1
where

each particle Zi
n encodes an assignment vector of all

datapoints upto time n, formally represented with a
Dirac delta function δZi

n
(zn).

Let us define a forward kernel, Kn, generating samples
from the sequence of distributions built according to
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Eq.(3). We first partition an assignment vector zn =
{zn,r, zn,d, zn,n} where r is a subset of {1, . . . , n − 1},
a set of not necessarily consecutive indicies, and d =
{1, . . . , n − 1} − r. Note that throughout the text we
will call the set zn,r as the active block. We define u =
r∪{n}, and denote −u ≡ d. Exploiting the conjugacy
property, we propose using the following conditional
distribution for Kn as given in Eq.(14).

Kn(zn−1, zn) =δzn−1,−u
(zn,−u) πn (zn,u|zn,−u) (14)

This kernel allows us updating zn,u which includes the
current and some past assignments without changing
the rest zn,−u.

By replacing Kn in Eq.(11) we obtain the straight
derivation to the approximate kernel,

Ln−1(zn, zn−1) =δzn,−u
(zn−1,−u) (15)

× πn−1 (zn−1,r|zn−1,−r) .

Given our choices of the forward and backward ker-
nels, now we are able to write the expression for the
incremental weight function given in Eq.(9) as follows,

vn(zn−1, zn) =
γn(zn,−u)

γn−1(zn−1,−r)
. (16)

The proposed scheme can also be seen as a generaliza-
tion of a conventional particle filtering weight update
scheme. The particle filter simply uses the forward
kernel Kn(zn−1, zn) = δzn−1

(zn,−n)πn(zn,n|zn,−n). In
this case only the clustering variable zn,n is updated
upon arrival of the new observation that yields the
weighting function given in Eq.(17).

vpf
n (zn−1, zn) =

γn(zn,−n)

γn−1(zn−1)
(17)

The sequential imputation scheme (Liu, 1996) and
many particle filtering based methods (Quintana and
Newton, 1998; Chen and Liu, 2000) use the simplified
incremental weight update function given by Eq.(17).
Note that such a kernel selection strategy is not ca-
pable of updating the active set zn,r according to the
new observations, therefore can yield to poor estima-
tion performance.

In order to render our sampling approach more effi-
cient by making more global moves we wish to change
a block of variables, i.e., choose the cardinality of the
index set r as large as possible. However, when the
cardinality of r increases, the time required for the ex-
act computation of the incremental weight in Eq.(16)
grows exponentially. In the sequel, we will define
MCMC and approximate Gibbs type moves where the
associated weight update equations can be computed
efficiently. This leads to low complexity algorithms for
sampling from the time evolving DPM posterior dis-
tribution.

4.1 MCMC kernels

We first define the forward kernel as

Kn(zn−1, zn) = δzn−1,−u
(zn,−u)

× Kn(zn,n, zn,r|zn−1) (18)

where Kn(zn,n, zn,r|zn−1) is a valid MCMC kernel ap-
plying a single Gibbs step targeting the full conditional
distribution πn(zn,n, zn,r|zn,−u). Intuitively, this ker-
nel updates the active block using a Gibbs sampler
and constructs the proposal distribution using the se-
quence of full conditional distributions.

A corresponding backward kernel can be obtained by
substituting Kn(zn−1, zn) into the Eq.(12). This yields
in the following incremental weight update equation,

vgb
n (zn−1, zn) =

γn(zn−1,r, zn,−u)

γn−1(zn−1)
. (19)

Note that as a consequence of the chosen backward
kernel, Eq.(19) is independent from the initialization
of the Gibbs moves. If the active block set is selected
as r = {1 . . . n − 1}, the update equation in Eq.(18),
will be equal to the one introduced in (MacEachern
et al., 1999) as S4 algorithm.

The above schema depends exclusively on local Gibbs
moves. As is the case in the application of the Gibbs
sampler, we may expect to get stuck in local modes due
to slow mixing especially when the posterior distribu-
tion is multi modal. In such situations, annealing is a
general strategy to pass through low probability barri-
ers. However, as one modifies the target density grad-
ually, finding the correct schedule is crucial. On the
other hand, in the SMC framework we don’t have to
choose a schedule explicitly. We are free to choose any
forward kernel, provided we compute the correspond-
ing incremental weight. Here, we propose a forward
kernel which targets the modified full conditional dis-
tribution, πn(zn,n, zn,r|zn,−u, ρn). Note that bridging
is achieved simply by changing the novelty parameter
of the underlying Dirichlet process to ρn. The SMC
theory guarantees that we still target the original tar-
get density.

A valid backward kernel can be obtained by replacing
πn with the modified version of the target distribution
πn(.|ρn) in Eq.(12) and the resulting weight update
equation can be represented as follows,

van(zn−1, zn) =
γn(zn)

γn−1(zn−1)
(20)

×
πn(zn−1,r|zn−1,−r, ρn)

πn(zn,u|zn,−u, ρn)
.

While we are able to escape low probability barriers,
the modified full conditional distribution introduces a
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further approximation. Thus, we advise still choosing
the ρn converging to the true κ with the increasing
time index n. Note that this is merely a choice, not a
requirement in contrast to a tempered Gibbs sampler,
where the final density must coincide with the true
target.

4.2 Sequential approximation

As we rely on a blocked Gibbs sampler, we are con-
strained by low dimensional blocks. The key idea in
this method is to approximate sequentially to the ex-
act full conditional distributions given by Eq.(14) and
Eq.(15). As in the previous section, we are free to
choose any approximation to the full conditionals as
these are merely used as our proposal density. Asymp-
totically, the SMC sampler ensures convergence to true
target posterior even approximations to these full con-
ditional distributions are defined. Note that the ap-
proximations, should be selected as close as possible
to the full conditionals to obtain an efficient sampler.

We assume that there are Q clustering variables in the
active block and we further enumerate them

zn,r =
{
zn,r1

. . . zn,rQ

}
(21)

where rq denotes the q’th index of the block at time
n with q = 1 . . . Q . In the sequel, we will design
an approximation that enables us to design kernels
where the computational load increases linearly with
Q. Hence, we can chose an active block with size Q
quite large in practice.

We propose the following approximation to the for-
ward kernel Kn,

Kn(zn−1, zn) =δzn−1,−u
(zn,−u) π̂n (zn,u|zn,−u) (22)

where

π̂n(zn,u|zn,−u) = πn(zn,n|zn,r, zn,−u, ρn) (23)

×

Q∏

i=1

πn−1,−r{i+1:Q}
(zn,ri

|zn,−u, zn,r{1:i−1}
, ρn).

We assume r{i:j} is empty for i > j. The ra-
tionale beyond this choice is as follows: we drop
all the observations corresponding to the active
block, including the last observation and incorporate
them one by one in a new (possibly random) or-
der. Recall that in Eq.(23), πn−1,−r{i+1:Q}

(z|z′, ρn) =
p(z|z′, {yn−1,1:n−1} − {yn−1,ri+1

. . . yn−1,rQ
}) denotes

the modified full conditional distribution given the all
observations excluding the ones indexed by r{i+1:Q}.
Note that approximations of this form are quite com-
mon in approximate inference for state space models,
where q corresponds to a time index; we merely omit
the effect of the ’future’ observations.

The formulation given by Eq.(23) enables us to recur-
sively calculate and sample the overall kernel density
function π̂n(zn,u|zn,−u) efficiently with a reasonable
complexity even for large values of Q. Note that the
scheme introduced in Eq.(23) processes the observa-
tions sequentially in the indexed order {r1 . . . rq} and
finally extends the space using the proposal function
πn(zn,n|zn,r, zn,−u, ρn). Clearly, due to exchangability
of the DPM model, there is no need to process the ob-
servations in a fixed order. To diminish the effects of
the particular processing order, it is preferred to apply
a random permutation of the indicies in r at each step
of the algorithm.

A similar sequential procedure is also required to ap-
proximate the backward kernel given by

Ln−1(zn, zn−1) =δzn,−u
(zn−1,−u) (24)

× π̂n−1 (zn−1,r|zn−1,−r)

where

π̂n−1(zn−1,r|zn−1,−r) = (25)

Q∏

i=1

πn−1,−r{i+1:Q}
(zn−1,ri

|zn−1,−u, zn−1,r{1:i−1}
, ρ′n).

According to the resampling scheme given in
Section.4.4 it is convenient to select ρ′n = ρn in or-
der to construct a good approximation to the optimal
backward kernel. Note that given the same index order
r1 . . . rQ, Eq.(25) will have the same functional form
with the right most hand side of Eq.(23) when ρ′n = ρn.

Finally, using the given approximations for the forward
and backward kernels the weight update equation can
be arranged according to Eq.(9) as follows,

vsq(zn−1, zn) =
γn(zn)

γn−1(zn−1)
(26)

×
π̂n−1(zn−1,r|zn−1,−r)

π̂n(zn,u|zn,−u)
.

4.3 Mixture kernels

In Monte Carlo computations for solving high dimen-
sional complex problems, it is common practice to re-
sort to a collection of kernels rather than committing
to a fixed choice. One can define a mixture kernel in
the context of a SMC algorithm as follows,

Kn(zn−1, zn) =

M∑

m=1

αm
n (zn−1)K

m
n (zn−1, zn) (27)

where m ∈ {1 . . . M} is the mixture label, αm
n denotes

the selection probability of the mixture component at
time n,

∑M

m=1 αm
n (zn−1) = 1, and Km

n (zn−1, zn) de-
notes the forward kernel corresponding to the m’th
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component. In order to circumvent the computational
burden of Eq.(27), a backward kernel of the form of a
mixture is proposed in (DelMoral et al., 2006).

Ln(zn, zn−1) =

M∑

m=1

βm
n (zn)Lm

n (zn, zn−1) (28)

where βm
n is the backward mixture component selec-

tion probability at time n,
∑M

m=1 βm
n (zn−1) = 1. Now,

this definition enables us to perform importance sam-
pling on an extended space E×E×M by the definition
of a latent kernel selector variable Mn, taking values
M = {1 . . . M}, m ∈ M. Consequently the weight
function for each mixture component can be expressed
as given in Eq.(29).

vn(zn−1, zn,m) =
γn(zn)

γn−1(zn−1)
(29)

×
Lm

n−1(zn, zn−1)β
m
n (zn)

Km
n (zn−1, zn)αm

n (zn−1)

In our work we define three different algorithms la-
beled as SMC-1, SMC-2 and SMC-3 each utilizes a dif-
ferent kernel. The SMC-1 algorithm employs the for-
ward kernel given by Eq.(18) and updates the weights
according to Eq.(19).

The SMC-2 algorithm uses a mixture kernel in order
to admit the Gibbs sampler to make global moves in
the DPM space. When the selection probabilities α
and β are chosen equal and independent of the zn and
zn−1 respectively, the mixture weight update function
for m = 1 and m = 2 can be given by Eq.(19) and
Eq.(20) respectively.

In SMC-3 we use the mixtures of the forward kernel
given by Eq.(18) and Eq.(22) where the sequential con-
struction enables us to define a backward kernel inde-
pendent from the modified forward kernel parameter
ρn. The associated weight update functions are cal-
culated according to Eq.(19) and Eq.(26) respectively
when selection probabilities α and β are equal and
chosen independent of z.

4.4 Algorithmic details

As denoted before, in our work, we propose an ac-
tive block to be updated as each new observation ar-
rives. In order to limit the computational cost required
at each time step we determine a constant block size
Q and index the block with r1 . . . rQ. Similar block
update strategies have also been proposed in (Doucet
et al., 2006) under the SMC samplers framework. In
our scheme the indexes of the active block r1 . . . rQ

are incremented by Q as each new observation arrives.
Whenever the last index value is rQ > n then we set

r = {1 . . . Q}. Note that according to the sequen-
tial construction defined in Eq.(23) the approxima-
tions will be less accurate for the algorithm SMC-3
with the increasing size Q.

In order to prevent particle degeneracy, in a SMC
framework it is required to perform occasional resam-
pling steps when the effective sample size drops be-
low a predefined threshold. Intuitively, this step se-
lects the high weighted particles and discards the low
weighted ones. However, discarding the low weighted
particles prematurely may prevent an algorithm to
explore promising modes of the time evolving pos-
terior distribution. It is quite common in practice,
that a mode initially less dominant becomes more pro-
nounced when a larger fraction of the data is pro-
cessed. Hence for the DPM model, we found it crucial
to apply the resampling step on the modified target
distribution π(.|ρ) instead of the true target posterior
π in order to prevent the low weighted particles to be
discarded too early.

We calculate the weights as follows: We first calcu-
late the unnormalized weights for the modified tar-
get distribution πn(.|ρn) according to w

′

n = wn ×

γn(zn|ρn)/γn(zn). Assuming that, {W
′(i)
n } represents

the normalized weights, we apply systematic resam-

pling if effective sample size, Neff = 1/
∑Np

i=1(W
′(i)
n )2

is below a predefined threshold. Following the resam-
pling, a reweighting step, wn = γn(zn)/γn(zn|ρn), is
being carried out, in order to find the weights approx-
imating to the true target posterior.

5 Test Results

Our goal in this section is to illustrate the effective-
ness of the SMC samplers framework for online in-
ference in DPM models. For this purpose, we com-
pare performance of SMC samplers each detailed in
Section.4.3, namely; SMC-1, SMC-2, SMC-3, Particle
filter (PF) (MacEachern et al., 1999; Fearnhead, 2004)
and a batch algorithm, Gibbs sampler (GS) (MacEach-
ern, 1994). Performance has been reported in terms of
log-marginal likelihoods, mean, variance estimates and
respective standard errors. Mixture density estimates
are also provided for visual comparison.

The problem is the standard Gaussian mixture density
estimation problem with unknown number of compo-
nents. Our model is standard and assumes that obser-
vations y are drawn from a univariate Gaussian with
unknown mean µ and variance σ2, θ = {µ, σ2} where
the number of mixtures are unknown. The distribu-
tion of the parameters µ and σ2 are chosen as normal
and inverse-gamma, respectively to ensure the conju-
gacy condition.
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Table 1: True model parameters
Mixture weights Mean Std. dev.

Data-1 (D-1) 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) 1/2,1/6,1/3 0,2,4 0.5,0.5,2.5

Apart from the resampling threshold and the number
of particles, several algorithm parameters need to be
set: The selection probabilities of the forward and the
backward kernels (α and β), active block size (q), and
the parameter sequence ρn. The selection probabilities
determine the shape of the forward and backward ker-
nels therefore an appropriate choice is crucial. Selec-
tion probabilities of the forward and backward kernel
are set to αm = {0.9, 0.1} and βm = {0.9, 0.1} respec-
tively. Note that m = 2 corresponds to the modified
kernel component and we practically observed that a
small weight is often enough to obtain a good mixing
property. Increasing the weighting of the modified ker-
nel often increase the algorithms ability to explore new
modes. Even a single kernel where αm = {0, 1} can be
used for certain dataset where modes are highly iso-
lated. The parameter sequence ρn is updated accord-
ing to a geometric update function (Neal, 2001) where
the common parameter is set to 1/150 and the initial
value is set to ρ1 = 1. The active block size q is set
to 4. This choice seems to balance well computational
burden with inference quality.

To alleviate the degeneracy, we applied systematic re-
sampling scheme. The resampling scheme for SMC-2
and SMC-3 is applied according to Section 4.4. For a
fair comparison the particle size is selected as Np =
1000 for particle filter, Np = 200 for SMC algorithms
and we performed 1000 iterations by Gibbs sampler
where the first 300 were used for the burn-in period.
All the results are reported for 100 independent Monte
Carlo runs. We selected two test sets (D-1 and D-2)
generated from a Gaussian mixture model. Each data
set has 1000 points, and the results are reported se-
quentially for 200, 500 and 1000 observations. Both
datasets are generated from a model comprising of
three mixture components with parameters given in
Table.1. In order to evaluate the performance of the
proposed kernels we performed two tests that aim
to assess the mixing property (ability to escape local
modes) as well as the consistency and quality of the
estimate (bias and low variance).

Table 2: Estimated average Log-marginal likelihoods,
mean values and respective Monte Carlo errors (in
parenthesis) for SMC-1, SMC-2, SMC-3, PF and GS

Dataset-1 (D-1), κ = 0.05
Estimated Mean

Algo. Log-marg. 200 500 1000
SMC-1 -723.4 (102.8) 2.11 (0.014) 2.51 (0.233) 2.67 (0.243)
SMC-2 -711.2 (4.41) 2.15 (0.006) 3.10 (0.025) 3.10 (0.020)
SMC-3 -711.1 (3.22) 2.15 (0.007) 3.09 (0.011) 3.09 (0.010)

PF -727.6 (52.9) 2.10 (0.015) 2.35 (0.181) 2.49 (0.249)
GS 2.69 (0.239)
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Figure 1: Estimated mixture densities by the
(a) SMC-1 and (b) SMC-3 algorithm for 50 Monte
Carlo runs.

Sampling based inference schemes get stuck in local
modes of the posterior distribution, particularly when
the novelty parameter is chosen too small for the given
problem. In order to compare the mixing property of
the proposed algorithms we set the novelty parame-
ter to a very low value of κ = 0.05 and compare the
mixture densities estimated by SMC-1 and SMC-3 al-
gorithms, respectively. We performed the test by gen-
erating a total of 1000 observations from the model
D-1 which comprise three overlapping mixture com-
ponents. As a gold standard reference we performed a
very long Gibbs sampler run and observed that the
estimated number of components is 2.16, 3.09 and
3.11 for 200, 500 and 1000 observations consecutively.
Fig.1 (a) and (b), respectively illustrate the estimated
mixture densities obtained by SMC-1 and SMC-3 for
50 Monte Carlo runs. It is clear that SMC-3 can repre-
sent all tree components of the mixture density for all
runs. However, in nearly half of the runs, the SMC-1
estimates 2 mixture components because it gets stuck
to a local mode. The mean estimates of log-marginal
likelihood and the number of components are given in
Table.2 for SMC-1, SMC-2, SMC-3, PF and GS. The
results show that the mean estimate of the SMC-2 and
SMC-3 are very close to the long run estimate of the
Gibbs sampler, however SMC-1, PF and GS underesti-
mate the mean value even when the observation size is
1000 and GS requires a longer burn-in period in order
to converge to the true posterior distribution. SMC-2
and SMC-3 are also superior in means of marginal log-
likelihoods.

In order to measure the consistency of the proposed
algorithms, the performance of the algorithms for dif-
ferent parameter settings are reported in Table.3 for
D-1 and D-2, respectively. The novelty parameter is
set to κ = 0.5 which avoids the algorithms to stuck
at a local solution. The mean estimate for the long
Gibbs sampler run is 3.73 for D-1 and 4.63 for D-2
at n = 1000. As it is shown in Table.3, PF, GS and
SMC algorithms provide very close mean estimates to
the long run Gibbs sampler for D-1. Monte Carlo stan-
dard error of the mean estimate for particle filter grad-
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Table 3: Estimated average Log-marginal likelihoods,
mean values and respective Monte Carlo errors (in
parenthesis) for SMC-1, SMC-2, SMC-3, PF and GS

Dataset-1 (D-1), κ = 0.5
Estimated mean

Algo. Log-marg. 200 500 1000
SMC-1 -708.9 (1.54) 2.99 (0.038) 3.61 (0.061) 3.71 (0.056)
SMC-2 -708.6 (0.96) 3.00 (0.025) 3.61 (0.044) 3.69 (0.036)
SMC-3 -708.9 (1.20) 2.96 (0.025) 3.60 (0.042) 3.69 (0.038)

PF -712.4 (9.86) 2.98 (0.041) 3.70 (0.272) 3.79 (0.293)
GS 3.68 (0.055)

Dataset-2 (D-2), κ = 0.5
Estimated mean

Algo. Log-marg. 200 500 1000
SMC-1 -1117.3 (0.35) 4.14 (0.035) 4.54 (0.068) 4.65 (0.091)
SMC-2 -1117.3 (0.31) 4.14 (0.021) 4.53 (0.064) 4.63 (0.129)
SMC-3 -1117.2 (0.29) 4.13 (0.019) 4.50 (0.054) 4.58 (0.086)

PF -1117.7 (0.98) 4.14 (0.030) 4.56 (0.119) 4.73 (0.281)
GS 4.68 (0.095)

ually increases with the observation size and reaches
to a value of 0.293 at n = 1000 whereas all three SMC
samplers achieve approximately 8 times lower errors.
It can be concluded that all SMC algorithms provide
a significant performance improvement over PF with
the same computational cost and they are also more
reliable. When we compare the SMC-1, SMC-2 and
SMC-3, non of the algorithms outperform the others
in means of Monte Carlo error. The results also show
that performance of the SMC algorithms and GS are
comparable for the dataset D-1 when κ = 0.5.

A similar performance has also been reported for the
dataset D-2. The mean estimate of PF, GS, SMC and
the long run Gibbs sampler are very close. All three
SMC algorithms and GS provide comparable Monte
Carlo errors for mean estimates while they are lower
for PF. The results obtained for D-1 and D-2 also in-
dicate that, SMC-2 and SMC-3 achieve reliable esti-
mates at different parameter sets.

6 Conclusion

In this paper we propose novel sequential Monte Carlo
algorithms for the DPM model with a conjugate prior.
In contrast to the existing sequential importance sam-
pling methods, the local moves are designed to update
clustering labels that enable the introduced algorithms
to obtain efficient samples from the time evolving pos-
terior even for large dataset sizes.

We have evaluated the performance of the conventional
particle filter, Gibbs sampler and SMC samplers with
different kernel setting, on two different datasets. Test
results show that SMC based methods provide more
reliable estimates compared to conventional particle
filter and proposed mixture kernel can better repre-
sent the modes of the posterior distribution compared
to a SMC sampler utilizing Gibbs moves. We also
conclude that the SMC framework is a competitive al-
ternative to the conventional Gibbs sampler for the
DPM models. As future work, we envision various ap-

plications in hierarchical Bayesian models with a DPM
prior. Finally, while we have concentrated exclusively
on the conjugate setting, we believe that the actual
added benefit of the SMC framework can be realized
in the non-conjugate setting where the model param-
eters need also be sampled.
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