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Abstract: We describe a statistical approach to application classification from net-
work traffic flows. The packet payloads are not investigated, instead we just derive
easy to collect statistics such as packet size, download/upload direction, protocol and
interarrival time, along with ip-number:port pairs. Each flow is modeled by a mixture
of Markov models. We employ a nonparametric Bayesian approach to identify flow
clusters. An important feature of our clustering method is that we don’t have to spec-
ify the number of clusters in advance and the model is able to infer new flow types in
an unsupervised manner. We illustrate our approach on a real dataset collected from
live traffic.
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1. Introduction
New generation wireless technologies enable operators to provide broadband coverage.
Especially with the introduction of LTE and smart phones, network management for
data traffic is becoming a harder problem everyday. Data traffic is increasing rapidly and
network operators cannot respond fast enough to demands for the capacity increase.
The expectation is that demands on the infrastructure will be comparable or even
exceed the current utilization of conventional fixed broadband connections. The trend
is already clear, data transmitted in networks for mobile users is increasing fast and
the operators need to find ways to reduce their investment per traffic. It is therefore
more important than ever before to observe the network utilization and take necessary
actions in terms of maintaining QoS per application, hence optimize the network usage
for improved customer satisfaction and still remain profitable.

1.1 Application Types and Traffic Identification/Classification
Network operators need to understand the application types and the type of traffic they
generate so that they can prioritize types of traffic they choose, track the utilization of
their network and determine the mobile data usage characteristics of their subscribers
to improve their service. Hence, network traffic identification is an important and
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challenging problem as it plays a crucial role in network management, in particular
quality of service, security, and trend analysis. It is hence necessary that efficient
data driven computational techniques are developed for classification of user and traffic
types.

Current traffic identification methods can be grouped in roughly four categories:

• Payload-based (Requiring DPI),

• Flow-based (packet size, stream features),

• Host-based (analyze the behavior of the host)

• Network-wide (analyze the connectivity patterns of multiple hosts engaging in
communication)

Methods from all categories have their potential limitations and drawbacks, especially
for detection of novel and emerging applications that create their unique traffic patterns.

In order to identify selected type of network usage relevant to their business needs,
network operators are currently using payload based identification techniques, such as
deep packet inspection (DPI) tools. Such tools analyze packet content and bit streams
to infer the type of packet being transmitted. If configured correctly,they can identify
a flow with minimum ambiguity by signature matching and the resulting classification
accuracy is typically quite high. Whilst possible in principle, the amount of investment
required to inspect all the traffic in detail is huge. Moreover, identifying the signatures
is not always easy, as new applications types constantly emerge, the content is often
encrypted, and providers seek new ways to fool package inspections. Such approaches
therefore require constant maintenance and in practice deep packet inspection mecha-
nisms deployed by the operators are configured for detecting flows important for the
operator’s business leaving a high fraction unidentified. This observation suggests that
some form of Bulk Data Analysis may prove to be very useful to classify the total flow
data into coarse application types such that the network operators can identify the
main trends in order to see “the big picture”. This does not necessarily need to be
done in real time, or in an online fashion. Rather, employing statistical techniques, it
is often possible to identify application types from a tiny fraction of the data that is
being transmitted.

The flow-based techniques depend on bulk data processing where easy to measure
stream properties such as packet size, packet inter-arrival time, packet direction (up-
load/download) or protocol tag are available to profile and classify a given stream.
Such features are easily obtained from packet headers so that the actual payload can
be discarded entirely.

The host based and network-wide methods, rather than looking directly at flow based
features, investigate the source and destination pairs and analyze the underlying struc-
ture that can often be represented as a graph [1, 2]. Such a graph based analysis
captures intrinsic behavior of a user (or a destination such as a web service) by also
looking at ’who interacts with whom’. Consequently, the resulting methods are poten-
tially more robust against simple alterations of the flow based statistics and are harder
to fool. However, these techniques require more extensive data collection and are viable
only at the backbone, where most of the streams are observed.
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2. Objective
In this paper, our goal is to develop methodologies that are robust to manipulations in
flow characteristics and do not require inspection of the payload, i.e. without DPI in
order to detect a broad range application types that generate a certain group of packets,
such as video, peer-to-peer file sharing, gaming. Traditionally, an application could be
inferred simply via investigation of the IP-port number, however this approach is no
longer effective as there are now many different kinds of network applications, some
of which deliberately change their behavior in order not to be detected, most notably
file sharing or data streaming applications based on peer-to-peer protocols. Another
difficulty is that due to privacy requirements and computational burden, it is desirable
that classification algorithms are allowed to use only partial information present in the
network data and avoid deep packet inspection (DPI).

While there are several different approaches to traffic classification [3, 4, 1], in this
work, we are interested in flow-based clustering [5, 6, 7]. We are going to use flow
statistics between two communicating pairs, ignoring everything else such as the payload
of the network packages, DNS information, connectivity patterns of hosts, etc. We
collected our real data by monitoring our own network activity. The individual flows
labels in the real data may not be known, but we know which flows belong to which
application.

3. Methodology
In this section, we will investigate a selected subset of most relevant approaches for
flow analysis. More exhaustive surveys can be found in [8] and [9]. Flow-based analysis
depends on the features extracted from connection streams (flows) between two com-
municating parties. A flow is characterized by the IP addresses and port numbers of
source and destination nodes together with the protocol they use for the transmission.
Unlike payload based methods, flows features can be extracted without the need of the
inspection of the pay-load, therefore it is not affected by the privacy and encryption
issues. Some of the flow features that are commonly used are flow duration, port num-
bers (for UDP and TCP), number of packets, maximum, minimum and average packet
sizes, packet inter-arrival times (mean and variance) or average flow rate. However a
given flow must be first extracted from a captured stream of packages before its features
can be extracted. It is easy to identify a TCP flow, since TCP is a connection based
protocol which starts and ends with predefined signals. However identifying UDP flows
requires more attention but can be done by matching two host-ip:port-number pairs.

3.1 Statistical Approaches to flow-based analysis
Recent attempts for the flow-based analysis include some unsupervised, supervised and
semi-supervised machine learning algorithms. Moore and Zuev [6] uses a supervised
Naive Bayes algorithm together with Kernel Density estimators. Additionally they em-
ploy Fast Correlation-Based Filter for feature selection, which. identifies the important
or redundant flow features among all. Their data come from the monitoring of the
internet traffic of a research center for 24 hours over a period of one week. Only header
information is stored and protocols other than TCP is disregarded. For the super-
vised learning, they manually classify TCP flows into categories such as bulk, database,
interactive, mail, services, www, P2P, attack, games, multimedia.
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Erman et. al. [10] compare the supervised Naive Bayes algorithm with an unsuper-
vised Expectation Maximization based clustering algorithm (AutoClass). They report
that the unsupervised algorithm outperforms the supervised one. Although they use
the same features used in Moore’s work [6], these features are extracted from a different
data set. This data set was collected at the servers of the University of Auckland for
72 hours in 2001 and is publicly available. However, it is out-dated since many ser-
vices have changed their behavior since then, for example P2P services started to use
randomly changing port numbers.

Rotsos et. al. [5] give a custom probabilistic graphical model for the flow-based
traffic classification. They use a semi-supervised approach by labeling a small portion
of the data set manually, and using both labeled and unlabeled data, since in most cases
one has to deal with large sets of flows without being able to label them. They employ a
Naive Bayes training method and use an Expectation Maximization algorithm to infer
the model parameters as well as the categories of the unlabeled flows. This line of
research is relevant for our line of work from a methodological perspective as it enables
one to use partially labeled data.

3.2 Overview of Machine Learning Methodology
In recent years techniques form Bayesian statistics became very popular in diverse
fields such as machine learning, bioinformatics, finance and signal processing. The
common aspect in all these applications is the presence of noisy data and the uncertainty
regarding the underlying data generating process. Moreover, plenty of expert knowledge
is available, however it is not clear how to incorporate this into a rigorous statistical
framework. Bayesian techniques offer an elegant solution to this problem by the use of
probabilistic models in a general and well-defined computational framework. A Bayesian
model consists of two components:

• a prior distribution summarizing expert knowledge in terms of unobserved pa-
rameters,

• a likelihood component which describes the conditional probability of observed
data given a particular setting of parameters.

By calculating the posterior probabilities of the parameters one can infer desired
information about the data generation process as well as carry out model comparison
and selection.

We are using a Bayesian machine learning approach for traffic analysis and the clus-
tering of services and users. In the Bayesian approach, a model with a set of parameters
is proposed to explain the behavior of the data. Among all possible parameter sets, the
one with the highest probability of explaining the data is selected. For example, using
stochastic blockmodels one can model users and services according to usage statistics.
In the Bayesian framework this is done as follows: let D be a matrix that describes the
observed usage amounts of services vs users. Let U and S be category assignment of
all users and services, and B be the parameter showing the usage trend of users in a
user category to the services in a service category (for all user-service category pairs).
The modeling step involves introducing a conditional probability of observing D given
U, S and B and the best category assignments and usage parameters B∗, U∗, S∗ are
determined as those that maximize this probability. Moreover, if more than one model
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are proposed for a given data set, one can compare the expectations of observing the
dataset under the given models. The expectation of observing data under a model is
calculated by integrating the probability of observing D for a give parameter set over
all possible parameter sets by taking the prior probabilities of parameter sets into the
account. For example in the above scenario, we could have to decide between two
models which try to divide users and services into different number of categories.

Quite generally approaches as described above require exhaustive search among
all possible parameter sets for parameter estimation, and integration over parameters
when the goal is model selection. These operations may be intractable to compute or
there may be no easy mathematical closed-form equations for them. In such cases one
employs approximation methods such as Expectation-Maximization or Gibbs Sampling.

4. Model
We describe the network flows as Markov processes and our basic assumption is that
similar flows are different instances generated by Markov process with the same param-
eters, while distinct flows come from Markov processes with a different set of parameters
and are therefore classified as belonging to different groups/clusters. Thus as we in-
spect flows one by one, a decision has to be made whether the given flow is member of
one of the clusters which we have already established from inspection of the previous
flows (and if so, which cluster), or whether it belongs to a new cluster. The natural
probabilistic framework to model this type of approach is the Dirichlet process mixture
model [11].
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(a) A cluster of 5 flows with large down packets.
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(b) A cluster of 5 flows with small up and down pack-
ets.

Figure 1: Visualization of two network flow clusters obtained from real data. Each horizontal
line represents a flow. The x-axis represents the time, y axis represents packet size in kB and
flows have been vertically offset for clarity. Black upward (grey downward) arrows designate
up (down) packets. Arrow lengths represent packet sizes. It can be seen that the flows in each
cluster have similar properties. In (a), the prevalence of long grey arrows shows that the flow
consists mostly of down packets. In part (b), sizes of up and down packets are comparable
and mostly small.

Specifically, we employed a Gibbs sampler to infer the number of clusters and cluster
assignments of the flows for both synthetic and real data. A network flow f is a chain of
packets s1:T transmitted according to a protocol between a source node and destination
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node. Each packet has the following properties: arrival time, protocol, up/down flag,
and size. In our simulation studies, we have only used up/down information and size,
st = {up/down, size}. Moreover, the size in bytes is quantized into S levels, so each
packet st is an element of a state space with cardinality 2× S. Each flow is generated
by a first order Markov process p(st|st−1; θ) where θ are the model parameters (initial
state distribution and transition matrix). The complete data set F = {f 1, f 2, . . . , fN}
is generated by a Dirichlet mixture process.

At each step, a new flow is generated by either one of the available Markov models,
or a new Markov model is introduced with a probability dictated by a Polya-urn scheme.
The parameter α is the concentration parameter, which affects the tendency to generate
new Markov models. In the process, flows that are generated by the same Markov model
form a cluster.

As the number of flows increase, the inference for the cluster assignments can become
intractable, since the total number of possible ways in which N objects can be clusters
grows super exponentially with N . We have therefore used a collapsed Gibbs sampler
for sampling from the probability distribution over the possible ways of clustering the
set of N flows.

5. Results
In the experiments done with synthetic data, we have observed that the total number
of clusters formed by the Gibbs sampler is close to the ground truth, i.e. the number of
clusters from which the synthetic data has been created, and the clusters successfully
group together flows that are generated from the same Markov model.

In order to further validate our approach we captured network traffic generated by
a variety of popular applications: video streaming (VIDEO), voice over IP (VoIP) and
peer to peer (P2P). A DPI tool [12] was used to determine the type of each flow in the
captures. We only include flows identified by the DPI tool as a protocol corresponding
to the above application types. The 9681 flows obtained in this way were subsequently
clustered. Figure 2 shows the cluster assignment of the flows lumped into the categories
VIDEO, VoIP and P2P. The thickness of a line connecting a category with a cluster in-
dicates the fraction of data size of a given category assigned to the category in question.
The barplots to the right of each cluster indicate the fraction of category flow data size
contained therein. As can also be seen from Figure 1, displaying two clusters obtained
from the classification of real data, our method is clearly able to cluster flows with sim-
ilar characteristics together. A straightforward classification mechanism is as follows:
we cluster a flow using our method and to choose the application type acccording to
the most likely application type in that cluster. Figure 2 suggests that for our dataset
the cluster conditional densities for Video and P2P are rather crisp suggesting that our
simple approach is able to distinguish between those applications in an unsupervised
way. Our current research is directed to the investigation of semisupervised discrimi-
native approaches and an evaluation of the classification performance on a larger test
set.

6. Discussions and Conclusions
We have shown that our method distinguishes flows directly associated with different
application types with high accuracy. In classifications that avoid DPI such a pre-
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Figure 2: Result of the clustering of 9681 flows categorized as video, voice over IP (VoIP)
and peer to peer (P2P), see text for further details.

selection is not available and instead all we have is a collection of flows. By selectively
capturing flows associated with different types of applications and classifying these into
groups we essentially establish a dictionary which may be used for type inference when
new flows or collections of flows are encountered. Whenever a new type of application
is observed, our nonparametric method allows for the creation of new clusters, which
means adding new words to the dictionary. We thereby establish correspondences be-
tween applications and a collection of words, very similar to the indexing of documents
by keywords. This type adaptivity is naturally suited for the analysis of network traf-
fic, since new types of applications emerge frequently. Another important point is that
many types of applications are not necessarily discernible by a single tell-tale flow but
rather by a collection of flows triggered by them. This is particularly the case for file-
sharing and generally for peer-to-peer network traffic. Thus having a framework that
accommodates classification of a collection of flows as well as individual flows will have
much more flexibility in its performance. We are currently working on an extension
and refinement of such an approach.
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