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ABSTRACT
In this paper we provide an overview of some recently devel-

oped Bayesian models and algorithms for estimation of sparse sig-
nals. The models encapsulate the sparseness inherent in audio and
musical signals through structured sparsity priors on coefficients in
the model. Markov chain Monte Carlo (MCMC) and variational
methods are described for inference about the parameters and co-
efficients of these models, and brief simulation examples are given.

1. INTRODUCTION

In applications such as coding, noise reduction, missing data, source
separation and music transcription, models can be represented as
sums of large numbers of ‘atoms’ drawn from some large and possi-
bly over-complete dictionary. Within this framework we may write:

x(t) = ∑
k∈K

ckgk(t) (1)

where ck are some unknown coefficients and gk(t) are elements
of some dictionary K of ‘atoms’, or elementary components from
which the signal is composed. We will consider the dictionary of
basis functions to be fixed and known in this paper, although it is
possible to consider learning these also from the data. The dictio-
nary should contain all of the important component types present
in an audio signal, including, at least, oscillating functions. To mo-
tivate the discussion, we consider the Gabor representation, where
the atoms are windowed oscillating exponential functions of many
different frequencies, aimed at modelling the non-stationary oscil-
lations at different times and frequencies of an audio signal,

x(t) =
M−1

∑
m=0

N−1

∑
n=0

cm,n gm,n(t), gm,n(t) = g
(

t− n
N

L
)

e2π j m
M t ,

where g(t) is some appropriate window function (e.g. Gaussian,
Hamming, Hanning, etc.) that is shifted to different locations in
time and frequency by time-shift and multiplication with a complex
exponential function. See [1, 2] for examples of its use in audio re-
construction. Many other dictionary types are possible. For exam-
ple, see [3] for related models using a modified DCT (MDCT) ba-
sis, which is orthogonal, and [4, 5] for an approach which combines
several MDCT bases with different time-frequency resolutions to-
gether in one single model. Other possible dictionaries could in-
clude wavelets, or other custom-made atoms suitable for modelling
of audio.

Observed data are modelled as some function of x(t), usually
including a random noise disturbance. In the simple case of additive
noise we have

yt = ∑
k∈K

ck gk(t)+dt , t ∈ {0, ...,L−1} (2)

Typically, the noise term dt is modelled as independent and white
Gaussian noise, dt ∼ N(0,σ2

d ), although the general methods de-

scribed here are adaptable to more realistic non-white and non-
Gaussian settings. Another setting where such models can be use-
fully employed is in source separation. In this cases a number of
sources, each modelled as x(t) above, are mixed together, and the
task is to reconstruct the sources from the observed noisy mixture,
see [3] for details.

Generally the task will be to extract estimates of the underlying
sourse x(t), or equivalently, estimates of the coefficients ck for each
source. It is desired to favour sparse solutions, i.e. solutions for
which many of the estimated coefficients ck are zero or close to zero,
but also that the coefficients should have physical interpretability
(in our case, persistence over time and/or frequency). We here re-
gard this sparse signal extraction task as a Bayesian inverse problem
[1]. This requires a direct time series modelling of the data, rather
than modelling in some ‘transform domain’, for example MDCT or
discrete Fourier coeffients, although in cases where the atoms are
an orthogonal basis (for example the MDCT or orthogonal wavelet
bases), the two approaches will often coincide.

In the remainder of this paper we discuss choices of models and
prior distributions that favour sparse, meaningful solutions, and dis-
cuss general computational methods for dealing with the complex
models that arise. Owing to the space limitations of this format we
have not been able to include a full list of relevant references from
the literature beyond our own work, and other background mate-
rial: for these see the bibliographies of the cited applications and
methods papers [1, 3].

2. SPARSE MODELS AND PRIOR DISTRIBUTIONS

The above models in their basic form do not assume any sparse-
ness of the coefficients {ck}. However, the dictionaries of atoms
may be highly over-complete, that is there may be many alterna-
tive representations of a given signal using different values of {ck}.
Moreover, the direct inclusion of noise terms dt means that many
possible estimated signals may be consistent with the noisy data.
It would seem natural to push estimates of the coefficients towards
sparse sets, having as few non-zero elements as possible, while still
being consistent with the data. A common approach to this idea
is to pose the problem as a constrained optimisation, according to
criteria such as least squares fitting, and L1 minimisation of the co-
efficients. A disadvantage with such approaches is that they may
not lead to physically meaningful or interpretable results, with the
knock-on effect that undesired artefacts may be perceived in any re-
construction of the estimated waveforms. Anyone who has worked
in the audio processing area will know just how susceptible audio
signals are to the introduction of audible artefacts - owing to the ear
and brain’s very sensitive and nonlinear perception mechanisms.

Here we describe alternative approaches to sparsity that are
based on Bayesian prior probability models. The principal un-
knowns in the above systems (ignoring for now the statistics of
the noise sources σ2

d and any mixing coefficients for source separa-
tion), are the coefficients {ck}. One might be tempted to consider a
likelihood-based solution to the problem. In the above models the
likelihood functions are routinely obtained from the independent



Gaussian noise assumption. Take for example the additive noise
model (2). Then,

p(yt |{ck}) = p(yt |x(t)) =
1√

2πσ2
d

exp

(
− 1

2σ2
d

(yt − x(t))2

)

and

p(y0:L−1|{ck}) =
L−1

∏
t=0

p(yt |{ck})

where the notation y0:L−1 is shorthand for [y0, y1, ..., yL−1]T .
However, for overcomplete dictionaries, the maximum likeli-

hood solution is ill-defined, since many parameter combinations can
have the same likelihood. Again, it is quite typical then to formulate
a regularised likelihood problem, using for example the L1 norm of
the coefficients as a regulariser. Such an approach can equivalently
be regarded as a Bayesian solution to the problem, as discussed be-
low, where we consider more general Bayesian approaches to regu-
larisation.

Suppose now that we know some prior probability distribution
for the unknown coefficients, say p({ck}), then inference can be
performed as a Bayesian inverse problem. The posterior distribution
is defined as

p({ck}|y0:L−1) =
1
Zy

p({ck})p(y0:L−1|{ck})

where
Zy =

∫

{ck}
p(y0:L−1|{ck})d{ck}

is a normalising constant independent of {ck}.
Given a suitable form for the prior distribution the coefficients,

and hence the signal, can then be inferred by computational meth-
ods. Consider now, however, the prior distribution, which is of
primary importance in construction of an appropriate estimation
scheme. The prior distribution in a Bayesian model expresses prior
belief about the coefficients, in the form of a probability distribu-
tion. We would wish that the prior represented physical meaning-
ful and interpretable knowledge about audio signals, which should
include information about how coefficients are related to one an-
other (dependence structures) and also how they are individually
distributed (marginal distributions). The simplest choices of prior
will, however, assume prior independence of all coefficients, and
identical distribution for each coefficient, i.e.

p({ck}) = ∏
k∈K

p(ck)

Quite a lot can be achieved with an independent model of this type.
Perhaps the simplest useful choice would be a zero-mean Gaussian,
p(ck) = N (0,σ2

c ), and with σ2
c estimated somehow or known in

advance. We will however describe below models that incorporate
non-Gaussianity and dependence between coefficients, in order to
exploit better the known characteristics of audio and musical sig-
nals.

2.1 Heavy-tailed prior distributions
While the above model is highly limited, and does not encourage
sparsity in any particularly useful way, we will see that very useful
results can be achieved through introduction of an unknown scale
parameter σck for each normal component, i.e.

p(ck|σck ) =N (0,σ2
ck )

and then assigning some prior distribution p(σck ) in a hierarchi-
cal Bayesian scheme. It is now well known that coefficient distri-
butions in speech and audio are non-Gaussian and heavy-tailed in
many standard dictionaries, see e.g. [6, 3]. Supposing that scale

parameters are mutually independent a priori, then the joint prior
distribution becomes

p({ck,σck}) = ∏
k∈K

p(ck|σck )p(σck )

We are now in a much richer class of heavy-tailed prior distributions
for coefficients, the scale mixture of normals (SMiN) [7] class, also
commonly referred to as the scale mixture of Gaussians (SMoG)
class. The implied prior distribution for each ck is obtained by
marginalising the scale parameter as follows:

p(ck) =
∫ ∞

0
p(ck|σck )p(σck )dσck

and now we can see that this is a (continuous) mixture of normal
distributions, each with different scale parameter. The SMiN rep-
resentation includes a wide range of important heavy-tailed distri-
butions, such as the Student-t, the symmetric α-stable, the double
exponential, the generalised Gaussian, and the generalised hyper-
bolic distribution, each obtained through a different choice of the
mixing distribution p(σck ). The reason we specify models in terms
of scale mixtures rather then just in terms of the implied prior dis-
tribution itself, is mostly computational: there are very efficient
versions of iterative algorithms such as EM, Markov chain Monte
Carlo (MCMC) and variational approaches when a conditionally
Gaussian structure such as this is maintained. Possibly the simplest
member of the SMiN class to deal with (at least computationally) is
the Student-t distribution, which is obtained when λk = 1/σ2

ck has a
gamma distribution, with parameters α > 0 and β > 0,

p(λk) = G(λk|α ,β ) =
β α

Γ(α)
λ α−1

k exp(−βλk), (0 < λk <∞)

(3)

(or equivalently, p(σck ) has the square-root inverse gamma distri-
bution). The resulting marginal prior distribution is then the zero-
mean Student-t, with precision (inverse-scale) parameter α/β and
degrees of freedom 2α ,

p(ck) = S(ck|0,α/β ,2α)∝ (1+ c2
k/β )−(α+1/2)

By suitable choice of α and β it is possible to model more or less
heavy-tailed distributions, which favour highly sparse or less sparse
solutions. A quite extreme special case of this class takes the limit
as both α and β tend to zero. In this case very sparse solutions are
favoured and the mixing distribution is the improper Jeffreys’ prior
[8] p(λk) ∝ 1/λk. This prior was used to good effect by [?] in a
general setting for inducement of sparsity and by [9] in an audio
enhancement setting.

2.2 Dependence structures for the coefficients
The use of independent scale mixture priors across the coefficients
can achieve a certain amount and can certainly be used to estimate
sparse signals consistent with the data. However, the independence
assumption is a quite a severe limitation from several perspectives.
First, when using an independent heavy-tailed prior, there is no
strong penalisation of individual large components from the dictio-
nary becoming isolated in the reconstructed coefficient map. This
can lead to artefacts or unnatural sounding reconstructions of an au-
dio signal. Second, it does not tally with the known structures of
audio signals: we expect a certain degree of continuity of activity
across time and/or frequency; to put it crudely, tonal components
of a speech or music signal are expected to continue at the same or
similar frequency for a number of time frames in the data, while
transients are expected to be active across a range of frequency
components but localised in time, see Fig. 1 for a typical musical
example. Some kind of prior modelling of this effect will lead to
more interpretable structures in the reconstructed coefficient maps,



and also to fewer perceived artefacts in the reconstructed signals.
Such dependence structures may be modelled at various levels of
the Bayesian hierarchical models: directly at the level of the coeffi-
cients ck, at the level of the scale parameters σck , or at a higher level
in the hierarchy. Here we describe the latter approach, in which an
‘activity’ variable γk ∈ {0,1} is associated with each coefficient ck,
in addition to its scale parameter σck . This activity variable is able
to switch the coefficient to precisely zero with non-zero probabil-
ity, which is not a feature of other models considered thus far in
the paper. Hence we have a direct control over the sparsity of the
estimated model.

Figure 1: Spectrogram of musical extract. Note both horizontal and
vertical structure in coefficient map

The basic structure can be summarised as follows,

p(ck |σck ,γk) = (1− γk)δ0(ck)+ γkN (ck |0,σ2
ck ), γk ∈ {0,1}

where δ0(ck) is the Dirac δ -function centred at zero.
Of course, as before, the activity variables could be considered

as independent of one another. However, advantage can be gained
from consideration of the dependence over time and frequency that
is likely to be present in real audio signals. A general framework for
formulating this is the Markov random field [10]. In such a model,
local dependencies are specified through a prior conditional distri-
bution of activity variables, conditioned on a local neighbourhood
of surrounding activity variables:

p(γk |γ−k) = p(γk |γN (k))

where γ−k refers to all γ j variables except for γk itself, andN (k) is a
local neighbourhood of coefficient indices which are typically cho-
sen to be close to coefficient k in both time and frequency. Some
standard special cases that fit into this framework are the Markov
chain in time (favours continuity of ‘tonal’ coefficients across time
but not frequency), and the Markov chain in frequency (favours con-
tinuity of ‘transient’ components across frequency, but not in time)
- see [1, 2] for various examples of these.

In practice one does not know in advance whether to ex-
pect transient behaviour (persistence across frequency) or tonal be-
haviour (persistence across time), so a generic model should be able
to adapt to the signals as they are found. An example of this is
found in [1] where a Markov random field encouraging both tran-
sients and tonal components is shown to be able to estimate contigu-
ous ‘patches’ of activity in speech signals. As a possible extension
of these approaches which might consider a direct classification of
activity into ‘transient’, ‘tonal’, or both, with different model be-
haviour in each we might consider extending these models to indi-
cate different types of activity. The indicator variable might then
take one of three possible values:





γk = 0, inactive
γk = 1, active - ‘tonal’
γk = 2, active - ‘transient’

with a Markov random field structure designed to model the differ-
ent behaviours of each type of activity. Such an approach has not
yet been investigated to our knowledge, but could potentially give
a useful performance advantage, with in addition a classification of
the time-frequency surface into different types of activity. As an
alternative, dictionaries with different characteristics can be com-
bined together - see for example [4] in which two or more orthogo-
nal MDCT bases are combined together within a Bayesian scheme -
one aimed at capturing ‘tonal’ components and another of capturing
‘transient’ components.

3. INFERENCE METHODS FOR SPARSE MODELS

The models as posed in the previous section have a large number of
unknowns: {ck}, {σck} and {γk}. In addition there may be other
parameters or hyperparameters which are unknown, for example
α and β in the gamma distribution if we are using the Student-t
version of the prior, and the noise variance σ2

d . If source separa-
tion is being carried out the mixing matrix A is also likely to be an
unknown parameter. We group these additional parameters into a
vector θ . From the likelihood and prior modelling considerations
reviewed above, Bayes’ Theorem may once again be used to write
a posterior distribution for all unknowns, conditioned on the data:

P = p({ck,γk},θ |y0:L−1)∝ p(y0:L−1|{ck,γk},θ)p({ck,γk}|θ)p(θ)
(4)

There are various inference tasks that might interest us. In signal
reconstruction problems (noise reduction, interpolation of missing
values, source separation) the signal x(t) itself will be of interest.
Since this can be obtained directly by a linear transformation of the
coefficients, see (1), we will consider here just the task of estimation
of the coefficients {ck}. Suppose for example that a posterior mean
estimate of the coefficients is required (which would yield a min-
imum mean-squared error performance under the assumed model
and prior). This can be formulated as a high-dimensional integral:

E[{ck}|y0:L−1] =
∫
{ck}p({ck,γk},θ |y0:L−1)dθd{γk,ck}

which cannot be calculated in closed form for the models consid-
ered here (except for the simple fixed Gaussian case, which is not of
interest for sparse modelling). Alternatively, in applications such as
source coding, we may require an estimate of the activity variables,
in order to determine which coefficients are significant for coding
purposes. This can be estimated in a similar fashion (here taking
a Maximum a posteriori approach rather than a posterior mean for
the discrete activity variables:

ˆ{γk}= argmax
∫

p({ck,γk},θ |y0:L−1)dθd{ck} (5)

where the integral is now over all variables except for the activ-
ity map {γk}. In either case above, numerical approximation tech-
niques must be employed. We consider here Monte Carlo and deter-
ministic (variational) approaches, which provide different trade-offs
in performance and speed.

3.1 Monte Carlo Approaches to Computation
In the Monte Carlo approach a large number of (possi-
bly dependent) samples is drawn from the joint distribution
p({ck,γk},θ |y0:L−1). Then, under suitable conditions, the poste-
rior mean for each coefficient is estimated simply as the arithmetic
mean of the samples:

ĉk =
1
N

N

∑
n=1

c(n)
k

where {c(n)
k }N

n=1 are the N samples for variable ck. This result is
very simple and general, but the art lies in drawing of samples from



the posterior distribution. This can be achieved by many means, for
example rejection sampling or importance sampling. For this type
of highly complex problem, however, Markov chain Monte Carlo
(MCMC) methods are the most competitive approach, albeit at high
computational expense. See [11, 12] for full details of Monte Carlo
methodology, and MCMC methods in particular.

The two main components of a MCMC algorithm are the
Gibbs’ Sampler and the Metropolis-Hastings sampler. These two
methods give recipes for construction of Markov chains which con-
verge in the limit (as number of samples becomes large) to a desired
‘target’ distribution (p({ck,γk},θ |y0:L−1) in our case).

The Gibbs’ Sampler can be used when conditional distributions
for unknowns, or preferably groups of unknowns, can readily be
sampled from. In our models we might for example consider the
following natural grouping, or partition, of the unknowns:

{ck}, {σck}, {γck}, θ

Then, the so-called full conditional distribution for each parameter
- the distribution of that parameter conditioned on the data and on
all remaining parameters - is calculated,

p({ck}|{σck}{γck}, θ ,y0:L−1), p({σck}|{ck}, {γck}, θ ,y0:L−1)

p({γck}|{ck}, {σck}, θ ,y0:L−1), p(θ |{σck}, {ck}, {γck}, y0:L−1)

The algorithm is then initialised at some, essentially arbitrary, value
{ck}(0), {σck}(0), {γck}(0), θ (0). Each iteration of the Gibbs’ Sam-
pler then simply cycles through the conditional distributions, sam-
pling with replacement from each in turn. For example, moving
from samples at iteration n−1 to iteration n, we have:

{ck}(n) ∼ p({ck}|{σck}(n−1) {γck}(n−1), θ (n−1),y0:L−1)

{σck}(n) ∼ p({σck}|{ck}(n), {γck}(n−1), θ (n−1),y0:L−1)

{γck}(n) ∼ p({γck}|{ck}(n), {σck}(n), θ (n−1),y0:L−1)

θ (n) ∼ p(θ |{σck}(n), {ck}(n), {γck}(n), y0:L−1)

where ‘∼’ denotes an independent random draw from the distribu-
tion to the right. The algorithm then iterates until convergence to
the target posterior has been achieved (this is known as the ‘burn-
in’ time), after which time samples can be used in Monte Carlo
estimation.

The above conditional sampling steps may still not be feasible
in practice - for our model this depends on the choice of dictionary
(orthogonal/non-orthogonal) and the prior on the activity variables.
Instead the parameters must be partitioned further into smaller sub-
partitions. Even so, it may not be feasible to perform all of the
conditional draws required. At this point the conditional draws may
be replaced by random draws according to a Metropolis-Hastings
rule, adopting a so-called Metropolis-within-Gibbs, or ‘hybrid’,
sampling scheme, see [11] for full details. In our models above
most steps can be achieved by Gibbs sampling, but a few of the
hyperparameters, such as α in the gamma distribution may require
a Metropolis-Hastings update. Many additional complexities and
alternative schemes have of course been overlooked in this brief
overview.

3.2 Variational (Deterministic) Methods
Monte Carlo methods described in the previous section rely on gen-
erating samples from the intractable target posterior density, typi-
cally via simulation of a Markov chain with the desired target pos-
terior density. An alternative class of methods, based on determin-
istic approximations, has been applied extensively, notably in ma-
chine learning and statistical physics for inference in large models.
While lacking theoretical guarantees of MCMC methods (which are
nevertheless only valid when substantial computational resources
are available), with only a fixed amount of CPU power, variational

methods have proven to be viable alternatives in many practical sit-
uations.

There are various deterministic methods that can be viewed
as variational methods [13]. One particularly simple variational
method, that is algorithmically very similar to the Gibbs sampler,
is the structured mean field, also known as variational Bayes, see
[14, 15, 13] and references therein.

The main idea in variational Bayes is to approximate the ex-
act posterior distribution P = Ψy

Zy
defined in (4) with a simple dis-

tribution Q. The variational distribution Q is chosen such that
its expectations can be obtained in easily, preferably in closed
form. One such distribution is a factorised one Q = ∏α Qα
where α is an index that runs over disjoint clusters of variables,
much as the parameters are partitioned into blocks for the Gibbs’
sampler described above. For example, for the variable selec-
tion problem in (4), neglecting the parameter theta for now,
we can take Q = ∏kQ(ck)Q(γk). In this case, the set of clus-
ters would be C = {Cα} = {{c1} . . .{cK},{γ1} . . .{γK}}. Al-
ternatively, we could choose a clustering {{c1:K},{γ1} . . .{γK}}
whereQ=Q(c1:K)∏kQ(γk) or {{γ1,c1} . . .{γK ,cK}} whereQ=
∏kQ(γk,ck), and where K is the total number of atoms in the dic-
tionary K.

An intuitive interpretation of the mean field method is minimis-
ing the Kullback-Leibler (KL) divergence with respect to (the pa-
rameters of) Q where

KL(Q||P) = 〈logQ〉Q−
〈

log
1
Zy

ψy

〉

Q
(6)

Using non-negativity of KL, [16], one can obtain a lower bound on
the normalisation constant Zy

logZy ≥ 〈logψy〉Q−〈logQ〉Q ≡ F [P ,Q]+H[Q]

Here, F is interpreted as a negative energy term and H[Q] is the
entropy of the approximating distribution. The maximisation of this
lower bound is equivalent to finding the “nearest”Q toP in terms of
KL divergence and this solution is obtained by a joint maximisation
of the entropy H and F (minimisation of the energy) [17]. The
solution is in general not available in closed form but is obtained as a
result of a deterministic fixed point iteration. It can be easily shown,
e.g. see [13, 18], that each factor Qα of the optimal approximating
distribution should satisfy the following fixed point equation

Qα ∝ exp
(
〈logψy〉Q¬ααα

)
(7)

where Q¬ααα ≡ Q/Qα , that is the joint distribution of all factors
excluding Qα . Hence, the mean field approach leads to a set of
(deterministic) fixed point equations that need to be iterated until
convergence.

The above fixed point equation can be viewed as a generalisa-
tion of the Expectation-Maximisation (EM) algorithm and Iterative
Conditional Modes (ICM) [19]. Now suppose we choose some fac-
tors α in the variational distribution Q as degenerate point mass
distributions with location parameter C∗α and we denote this set of
indices as M. We have

Q =

(
∏

α 6∈M
Qα

)(
∏

α∈M
δ (Cα −C∗α )

)

Without loss of generality assume that we have two clusters Q =
Q1(C1)Q2(C2) = Q1(C1)δ (C2 −C∗2 ) where M = {2}. The fixed
point equation implies the (E step)

Q1(C1) ∝ exp
(
〈logψy(C1,C2)〉Q2(C2)

)

= ψy(C1,C∗2 )



Note that this quantity is proportiOnal to the full conditional
p(C1|C∗2 ,y). Similarly, the M step is equivalent to finding the lo-
cation parameter C∗2 as

Q2(C2) ∝ exp
(
〈logψy(C1,C2)〉Q1(C1)

)

C∗2 = argmax
C2
Q2(C2)

The latter step can be also seen as the minimiser of KL(δ (C2 −
C∗2 )||Q2(C2)). Finally when we choose all variational distribu-
tions to be degenerate, we obtain Q = Q1(C1)Q2(C2) = δ (C1 −
C∗1 )δ (C2−C∗2 ) a simple coordinate ascent algorithm that is known
as ICM.

C∗1 = argmax
C1

ψy(C1,C∗2 )

C∗2 = argmax
C2

ψy(C∗1 ,C2)

4. APPLICATION ISSUES

The above modelling structures and computational methods are
very general and may be used to construct algorithms for denoising,
interpolation, source separation, multi-resolution modelling and
coding, to name but a few. The choice of computational method-
ology between deterministic (variational or EM) and Monte Carlo
(MCMC) is largely a matter of taste, and very often the code struc-
ture will be quite similar for the two approaches (the same partition-
ing of the parameter space may well be adopted for both a Gibbs’
Sampler and a variational method, for example), and computational
burden will be very similar per iteration of the algorithms. Vari-
ous comparative simulations have been made, using both types of
inference method. To summarise, variational methods are generally
faster converging, but MCMC has been found to outperform it in
testing scenarios, for example source separation models with near-
degenerate mixing scenarios. One comparative simulation is shown
in Figs. 2.a and 2.b . Here a set of damped sinusoidal functions
forms the dictionary and we attempt to estimate the activity vari-
ables according to (5). Synthetic data are generated from the true
prior model. We have generated 100 independent cases from the
model. In figure 2.a, we compare the likelihood of the configura-
tion found by both methods. In figure 2.b, we show the distribution
of edit distance errors, where we count the number of mismatches
between the true and estimated activity variable configuration. This
is constructed as a testing problem and we see that the MCMC gen-
erally finds higher likelihood solutions with fewer errors in the ac-
tivity variables.

Other applications of the methods span source separation, de-
noising, interpolation of missing data and general inference for co-
efficient structure, see [1, 3, 2, 5] for details. Particularly impressive
results have been obtained for the interpolation of missing data [2].
We anticipate that developments of these models and methods will
have many more interesting applications across the musical audio
area and the methods will also find use in other areas of science and
engineering, such as for financial or biomedical data analysis.
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