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Abstract

Infinite mixture models are commonly used for clusteringe@an sample from
the posterior of mixture assignments by Monte Carlo metlodisd itsmaximum
a posteriorisolution by optimization. However, in some problems thet@asr
is diffuse and it is hard to interpret the sampled partitigsi. In this paper, we
introduce novel statistics based on block sizes for reptegpsample sets of par-
titionings and feature allocations. We develop an elenbased definition of en-
tropy to quantify segmentation among their elements. Themprmepose a simple
algorithm calledentropy agglomeratiofEA) to summarize and visualize this in-
formation. Experiments on various infinite mixture posiesias well as a feature
allocation dataset demonstrate that the proposed statete useful in practice.

1 Introduction

Clustering aims to summarize observed data by groupindgtsents according to their similarities.
Depending on the application, clusters may represent wiglisging to topics, genes belonging to
metabolic processes or any other relation assumed by theygelapproach. Infinite mixture mod-
els provide a general solution by allowing a potentiallyinnited number of mixture components.
These models are based on nonparametric priors such aslBirrocess (DP) [1, 2], its super-
class Poisson-Dirichlet process (PDP) [3, 4] and constmstsuch as Chinese restaurant process
(CRP) [5] and stick-breaking process [6] that enable foatiahs of efficient inference methods [7].
Studies on infinite mixture models inspired the developnoéseveral other models [8, 9] includ-
ing Indian buffet process (IBP) for infinite feature model®[11] and fragmentation-coagulation
process for sequence data [12] all of which belong to Bapastaparametrics [13].

In making inference on infinite mixture models, a sample $@aatitionings can be obtained from
the posteriot. If the posterior is peaked around a single partitioningpttemaximum a posteriori
solution will be quite informative. However, in some cades posterior is more diffuse and one
needs to extract statistical information about taedom partitioninginduced by the model. This
problem to ‘summarize’ the samples from the infinite mixtposterior was raised in bioinformatics
literature in 2002 by Medvedovic and Sivaganesan for clirgjegene expression profiles [14]. But
the question proved difficult and they ‘circumvented’ it ksing a heuristic linkage algorithm based
on pairwise occurence probabilities [15, 16]. In this paper approach this problem and propose
basic methodology for summarizing sample sets of partitgsias well as feature allocations.

Nemenmaret al. showed in 2002 that the entropy [17] of a DP posterior wasgljodetermined

by its prior hyperparameters [18]. Archet al. recently elaborated these results with respect to
PDP [19]. In other work, entropy was generalized to panitigs by interpreting partitionings
as probability distributions [20, 21]. Therefore, entragyerges as an important statistic for our
problem, but new definitions will be needed for quantifyinfprmation in feature allocations.

In methods such as collapsed Gibbs sampling, slice sampétrgspective sampling, truncation methods
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In the following sections, we define the problem and intraduamulative statisticfor representing
partitionings and feature allocations. Then, we develojpngrpretation for entropy function in
terms ofper-element informatiom order to quantify segmentation among their elementsalfyin

we describentropy agglomeratio(EA) algorithm that generates dendrograms to summarize sam
ple sets of partitionings and feature allocations. We destrate EA on infinite mixture posteriors
for synthetic and real datasets as well as on a real datasetlgiinterpreted as a feature allocation.

2 Basic definitions and the motivating problem

We begin with basic definitions. Partitioning of a set of elements:] = {1,2,...,n} is a set of
blocksZ = {Bi,...,B|z} such thatB; C [n] andB; # @ foralli € {1,...,n}, B;NB; =0
forall i # j, andu;B; = [n].2 We write Z I [n] to designate tha¥ is a partitioning ofjn].3 A
sample seff = {Z() ..., Z(T)} from a distributionr(Z) over partitionings is a multiset such that
ZW ~w(Z)forallt € {1,...,T}. We are required to extract information from this sample set

Our motivation is the following problem: a set of observedneénts(zy,...,,) are clustered
by an infinite mixture model with parametetd”) for each componerit and mixture assignments
(#1,. .., 2n) drawn from a two-parameter CRP prior with concentraticend discount! [5].

z ~ CRP(z;a,d) %)~ p(o) T | 2,0 ~ F(x;| 0%)) (1)
In the conjugate case, @li*) can be integrated out to getz; | z_;, z) for samplingz; [22]:

md [ F(2;0) p(Qlz_i,2—i) A0 if k< KT
p(zi | i) o /p(z,x,b‘) df oc { mTite JE@ilt) pOla—i, z-i) =

?Ltgff; J F(x:|0) p(0) do otherwise

)

There areK+ non-empty components amg elements in each componeént In each iterationg;
will either be put into an existing componént K or it will be assigned to a new component. By
sampling allz; repeatedly, a sample set of assignmefitsare obtained from the posteripfz | ) =
7(Z). Thesez() are then represented by partitioning€) F [n]. The induced sample set contains
information regarding (1) CRP prior over partitioning stiure given by the hyperparametéas d)
and (2) integrals ovet that capture the relation among the observed elenfents. . , z,,).

In addition, we aim to extract information from feature aldions, which constitute a superclass of
partitionings [11]. Afeature allocatiorof [n] is a multiset of blocks” = { By, ..., B|p} such that
B; C [n]andB; # (foralli € {1,...,n}. Asamplesef = {F(") ... F(T)} from a distribution
7(F) over feature allocations is a multiset such that) ~ 7(F) for all t. Current exposition will
focus on partitionings, but we are also going to show how tatissics apply to feature allocations.

Assume that we have obtained a samplefsef partitionings. If it was obtained by sampling from
an infinite mixture posterior, then its blockse Z® correspond to the mixture components. Given
a sample sek, we can approximate any statisfi¢Z) overn(Z) by averaging it over the séf:

T
Z0 2D~ onz) = %;f(Z(“) ~ (f(Z) )r(2) 3)

Which f(Z) would be a useful statistic fof ? Three statistics commonly appear in the literature:

First one is thenumber of block$Z|, which has been analyzed theoretically for various nonpara
metric priors [2, 5]. It is simple, general and exchangalité wespect to the elements], but it is
not very informative about the distributior{Z) and therefore is not very useful in practice.

A common statistic ipairwise occurencavhich is used to extract information from infinite mixture
posteriors in applications like bioinformatics [14]. Faven pairs of elementéa, b}, it counts the
number of blocks that contain these pairs, writtep[{a,b} C B;]. Itis a very useful similarity
measure, but it cannot express information regardingiogistamong three or more elements.

Another statistic i€xact block size distributiofreferred to as ‘multiplicities’ in [11, 19]). It counts
the partitioning’s blocks that contain exacttyelements, writtery .[| B;| = k|. It is exchangable
with respect to the elemenfts], but its weighted average over a sample set is difficult trpret.

2\We use the term ‘partitioning’ to indicate a ‘set partiti@s distinguished from an integer ‘partition’.
3The symbol I’ is usually used for integer partitions, but here we useriffartitionings (=set partitions).



Let us illustrate the problem by a practical example, to Wwhie will return in the formulations:

Z(l) = {{1731677}1{2}7{475}} Sl :{1’2’3’4}
E3 = {Z(l)’ Z(Q), Z(3)} Z(2) = {{1,356}7 {21 7}7 {475}} SQ = {1’376’ 7}
Z® ={{1,2,3,6,7},{4,5}} S3 ={1,2,3}

Suppose that; represents interactions among seven genes. We want to cenfgasubsets of
these genes;, S2, S3. Theprojectionof a partitioningZ + [n] onto.S C [n] is defined as the set
of non-empty intersections betweSrandB € Z. Projection ontds' induces a partitioning aof.

PROJ(Z,S) = {BNS}tpez\{0} = PROJ(Z,S)F S (4)
Let us represent gene interactiongzft) andZ(?) by projecting them onto each of the given subsets:

PROJ(ZM S)) ={{1,3},{2}, {4}} PROJ(Z®,Sy) ={{1,3},{2}, {4}}
PROJ(ZM S5) ={{1,3,6,7}} PROJ(ZP,Sy) ={{1,3,6},{7}}
PROJ(ZM S5) = {{1,3},{2}} PROJ(Z®,S5) ={{1,3},{2}}

Comparing$; to Sy, we can say thas; is ‘more segmented’ thafi,, and therefore genes i
should be more closely related than thosé&'in However, it is more subtle and difficult to compare
Sy to S3. A clear understanding would allow us to explore the subSets [n] in an informed
manner. In the following section, we develop a novel and g@@proach based on block sizes that
opens up a systematic method for analyzing sample sets axtiignings and feature allocations.

3 Cumulative statistics to represent structure

We definecumulative block size distributioror ‘cumulative statistic’ in short, as the function
or(Z) = ,[|Bi| > k], which counts the partitioning’s blocks of size at lelastVe can rewrite the
previous statistics: number of blocks @5 7 ), exact block size distribution a%,(Z) — ¢x+1(2),

and pairwise occurence ag(PROJ(Z,{a,b})). Moreover, cumulative statistics satisfy the fol-
lowing property: for partitionings ofn], ¢(Z) always sums up ta, just like a probability mass
function that sums up td. When blocks ofZ are sorted according to their sizes and the indicators
[|Bi| > k] are arranged on a matrix as in Figure 1a, they form a Youngaiagshowing that(2)

is always the conjugate partition of the integer partitibr¥o As a resultgp(Z) as well as weighted
averages over severa|Z) always sum up ta, just like taking averages over probability mass func-
tions (Figure 2). Therefore, cumulative statistics of ad@n partitioning ‘conserve mass’. In the

2% = {{1,3,6,7}, {2}, {4,5}} PROJ(Z™M,81) = {{1,3},{2}, {4}}
Br={2} 1 [IBil=1 Bi={2} 1 [IB1l>1
By ={4,5} 2 [IB212>1||B2|>2 By ={4} 1 [IB21>1
Bs ={1,3,6,7} 4 |[IBal>1|IBs|>2[|Bs| >3||Bs| >4 B3 ={1,3} 2 |IBsI>1||B3|>2
p(ZzM) = 3 2 1 1 #(PROJ(ZM,S)) = 3 1
(a) Cumulative block size distribution for a partitioning (b) For its projection onto a subset

Figure 1: Young diagrams show the conjugacy between aipaitiy and its cumulative statistic
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Figure 2: Cumulative statistics of the three examples aeil #verage: all sum up to
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case of feature allocations, since elements can be omittegbeated, this property does not hold.

Z + [n] = Y (@) =n = D {¢(Z) )z =n (5)

k=1 k=1

When we project the partitioning onto a subsef C [n], the resulting vectop(PROJ(Z, S))
will then sum up tdS| (Figure 1b). A ‘taller’ Young diagram implies a ‘more segrtenli subset.

We can form a partitioningZ by inserting elements, 2, 3,4, ... into its blocks (Figure 3a). In
such a scheme, each step brings a new element and requiresdecision that will depend on all
previous decisions. It would be better if we could deterntireewhole path by few initial decisions.

Now suppose that we know from the start and we generate an incremental sequence sétsub
Sy = {1}, S2 = {1,2}, S5 = {1,2,3}, S4 = {1,2,3,4}, ...according to a permutation i

= (1,2,3,4,...). We can then represent any path in Figure 3a by a sequeR&6t/(Z, S;)
and determine the whole path by two initial paramet&rando. The resulting tree can be simplified
by representing the partitionings by their cumulativeistiés instead of their blocks (Figure 3b).

Based on this concept, we defioemulative occurence distributiq€OD) as the triangular matrix
of incremental cumulative statistic vectors, writl&n, (Z, o) = ¢ (PROJ(Z, S;)) whereZ + [n],
o is a permutation ofn] andsS; = {o1,...,0;} fori € {1,...,n}. COD matrices for two extreme

paths (Figure 3c, 3e) and for the example partitionitiyy (Figure 3d) are shown. For partitionings,
ith row of a COD matrix always sums uptpeven when averaged over a sample set as in Figure 4.
Z+ [n] = > Aix(Zo) =i = > (Aik(Z2,0) )niz) =i (6)
k=1
Expected COD matrix of a random partitioning expresses\fijudation of elements by the differ-
ences between its rows, and (2) cumulation of block sizebéylifferences between its columns.

As an illustrative example, considefZ) = CRP(Z|a,d). Since CRP is exchangable and projec-
tive, its expected cumulative statistip(Z)) . for n elements depends only on its hyperparam-
eters(a, d). As aresult, its expected COD matux = (A(Z,0))~(z) is independent of, and it

{{1} {2}, {3}, {4}} {(4,0,0,0) $1.39
{{1,4}, {2}, {31}

ﬁ{{l} (2,4}, {3}}

{1y, {2}, 8} — 3,0,0

A ﬁ%}%‘}?}Q{B{i}}’}}’ <" / )\)«(3’1’0’0) o
; .3}, {4}}
. 3} {41}

..... (1.3}, (2}) 5 (2 o) ey 2,0,0) 10.69
{{1} {2}}—3{{1},{273}} { . 0 T(2,1,1,0) {0.56
: {{1.2}, (3} / / .
{{1';}_>{{172}} ey {{1,2,3}) Aoy {{1,2,3,4}} (1) o (1,1) weeee 5 (1,1, 1) eeeed (1,1,1,1) Lo =

(a) Form a partitioning by inserting elements (b) Form the statistic vector by inserting elements

1] 1[1] 1]
11 2(2]0 2|0
111 3[2]1]0 3/0]0
AHERE 4|3]|1]o]o alofo]o
1f1)1f1]1 5312101010 5(0f{o0]0]o0
1|11 f1f1]1 6[3]12]1]0]0f0 6|lojofo]ofo
tfafa]a]ef2]1] 7[3]2]1]1]o]o]0] 7]ofofo]o]o]o]
(c) All elements into one block (d) COD matrixA(Z™®,(1,...,7)) (e) Each element into a new block

Figure 3: Three COD matrices correspond tottlvee red dotted patton the trees above
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- 1 - 1

1[ro 1[i0
0.8 0.8

2 [1.7[0.3 - 3 [1.0[1.0 o
3 [1.7[1.0[0.3 506 6 [1.0[1.0[1.0 g 06
4 [2.7[1.0f0.3]0.0 £ 04 7 [1.3[1.0[1.0[0.7] S 04
5 [2.7[2.0]0.30.0[0.0 0.2 2 |1.7[1.3]1.0/0.7[0.3 0.2
6 [2.7]2.0[1.0]0.3]0.0[0.0] 4 [2.7]2.3]1.0[0.7]0.30.0
7 [2.7]2.3[1..0]0.7]0.3[0.0]0.0| 0% 3 4 5 6 7 5 [2723[roforoso0fo] 3 6 7 2 2 s

Figure 4: CODs and entropies ovBs for permutationg1,2,3,4,5,6,7) and(1,3,6,7,2,4,5)

satisfies an incremental formulation with the parameferd) over the indices € N, k € Z+:

atdlis if k=1
- ) — ) i+a -
Box =0 Aok = Aok + (k—1=d)(Bini=Bin)  gtherwise @)
i+a

By allowingk = 0 and setting\; o = — 4, andAq ; = 0 for & > 0 as the two boundary conditions,
the same matrix can be formulated by a difference equatientte indices € N, k£ € N:

(Ai+1,k — Alk)(l + Oé) = (Ai_’kfl - Azk)(k —1- d) (8)
By settingA = A we get an infinite sequence of matric&§™ that satisfy the same equation:

(A =AM +a) = AN, Ak —1-d) = Al ©)
Therefore, expected COD matrix of a CRP-distributed rangartitioning is at a constant ‘equilib-
rium’ determined byx andd. This example shows that the COD matrix can reveal specifiar-in
mation about a distribution over partitionings; of cours@iactice we encounter non-exchangeable
and almost arbitrary distributions over partitioninggy(ethe posterior distribution of an infinite
mixture), therefore in the following section we will devpla measure to quantify this information.

4 Entropy to quantify segmentation

Shannon’s entropy [17] can be an appropriate quantity tosoreasegmentation’ with respect to
partitionings, which can be interpreted as probabilityribsitions [20, 21]. Since this interpretation
does not cover feature allocations, we will make an altéreatlement-based definition of entropy.

How does a blockB inform us about its elements? Each element has a propdrtidsi, let us call
this quantityper-element segment sizaformation is zero fotB| = n, sincel/n is the minimum
possible segment size. |IB| < n, the block supplies positive information since the segrseg is
larger than minimum, and we know thitsga segment size could be smaller if the block were larger
To quantify this information, we definger-element informatioffor a block B as the integral of
segment sizé /s over the rangg B|, n] of block sizes that make this segment smaller (Figure 5).

"1 n
pei,(B) = / —ds = log — (10)
Bl S |B|

In pei,, (B), n is a ‘base’ that determines the minimum possible per-elémegment size. Since
segment size expresses #ignificanceof elements, the function integrates segment sizes over the
block sizes that make the elemeldss significantThis definition is comparable to the well-known
p-value which integrates probabilities over the values that mhkeobservationsiore significant

:|§ 0.4
5= o
2 4 6 8 10 12
| B n block size |B]

Figure 5: Per-element information f&  Figure 6: Weighted information plotted for each
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25¢ Subset occurence:  Projection entropy:

>:[8 C By H(PROJ(Z,S))
27 aeB beB aeB beB o
N
; 5
> Q
0 0 =
s 4l a€B beEB acB beB
.g wn
E [
Q ~~
051 Q
=
&

o

2 4 6 8 10 12 ce B ce B
number of elements n

Figure 7:H(Z) in incremental construction of Figure 8: Comparing two subset statistics

We can then compute the per-element information suppliedgartitioningZ, by taking a weighted
average over its blocks, since each bldgke Z supplies information for a different proportion

| B|/n of the elements being partitioned. For largewveighted per-element information reaches its
maximum neatB| =~ n/2 (Figure 6). Total weighted information fdf gives Shannon’s entropy
function [17] which can be written in terms of the cumulatstatistics (assuming,,+1 = 0):

12| 12
n

(z) =3 Bl g, ) = 3 Pl F1 = LD ~sn@)E e} ()
i=1 i=1 g k=1

n

Entropy of a partitioning increases as its elements becoore segmented among themselves. A
partitioning with a single block has zero entropy, and aifpanting with »n blocks has the maximum
entropylogn. Nodes of the tree we examined in the previous section (Eigb) were vertically
arranged according to their entropies. On the extendedFigere 7) nth column of nodes represent
the possible partitionings of. This tree serves as a ‘grid’ for botti (Z) and¢(Z), as they are
linearly related with the general coefficieh;g log 7 — % log +5). A similar grid for feature
allocations can be generated by inserting nodes for cumelstiatistics that do not conserve mass.

To quantify the segmentation of a subsgtwe computerojection entropyHd (PROJ(Z, S)). To
understand this function, we compare itstabset occurende Figure 8. Subset occurence acts as a
‘score’ that counts the ‘successful’ blocks that contaimflS, whereas projection entropy acts as a
‘penalty’ that quantifies how muchi is being divided and segmented by the given blaBks Z.

A partitioning Z and a permutation of its elements induce antropy sequencg:, . .., h,) such
thath;(Z,0) = H(PROJ(Z,S;)) whereS; = {o1,...,0;} fori € {1,...,n}. To find subsets of
elements that are more closely related, one can seek paiomstathat keep the entropies low. The
generated subsefs will be those that are less segmentedby Z. For the example problem, the
permutationl, 3,6, 7, ... keeps the expected entropies lower, compardd203, 4, ... (Figure 4).

5 Entropy agglomeration and experimental results

We want to summarize a sample set using the proposed sitigtiermutations that yield lower
entropy sequences can be meaningful, but a feasible digocian only involve a small subset of the
n! permutations. We definentropy agglomeratiofEA) algorithm, which begins from 1-element
subsets, and merges in each iteration the pair of subseétg¢tdithe minimum expected entropy:

Entropy Agglomeration Algorithm:
1. Initialize U « {{1},{2},...,{n}}.
Find the subset pa{tS,, S, } C ¥ that minimizes the entropy H(PROJ(Z, Sa U Sb)) )r(z)-
Updatel « (P\{Sa, Sp}) U {Sa U Sp}.
If || > 1thengoto 2.
Generate the dendrogram of chosen pairs by plotting naimirantropies for every split.

o s~ w DN



The resulting dendrogram for the example partitioningssh@vn in Figure 9a. The subsdts 5}
and{1, 3,6} are shown in individual nodes, because their entropies eme ZBesides using this
dendrogram as a general summary, one can also generate peaifcsdendrograms by choos-
ing specific elements or specific parts of the data. For alddtaiement-wise analysis, entropy
sequences of particular permutatiensan be assessed. Entropy Agglomeration is inspired by ‘ag-
glomerative clustering’, a standard approach in bioinfatios [23]. To summarize partitionings
of gene expressions, [14] applied agglomerative cluggdmynpairwise occurences. Although very
useful and informative, such methods remain ‘heuristicéhese they require a ‘linkage criterion’ in
merging subsets. EA avoids this drawback, since projeetidropy is already defined over subsets.

To test the proposed algorithm, we apply it to partitionisgmpled from infinite mixture posteriors.
In the first three experiments, data is modeled by an infiniteure of Gaussians, where =
0.05,d = 0, p(8) = N(0|0,5) and F'(z|f) = N (z|6,0.15) (see Equation 1). Samples from the
posterior are used to plot the histogram over the numberaufikds, pairwise occurences, and the
EA dendrogram. Pairwise occurences are ordered accomlithgetEA dendrogram. In the fourth
experiment, EA is directly applied on the data. We descramhexperiment and make observations:

1) Synthetic data(Figure 9b): 30 points ofR? are arranged in three clusters. Plots are based on
450 partitionings from the posterior. Clearly separating three clusters, EA also reflects their
qualitative differences. The dispersedness of the firstetis represented by distinguishing ‘inner’
elements 1, 10, from ‘outer’ elements 6, 7. This is also seamades of gray in pairwise occurences.

2) Iris flower data (Figure 9c): This well-known dataset contains 150 pointsRdnfrom three
flower species [24]. Plots are based on 150 partitioningaiobtl from the posterior. For conve-
nience, small subtrees are shown as single leaves and afeareriabeled by their species. All of
50 A points appear in a single leaf, as they are clearly seghfeom B and C. The dendrogram
automatically scales to cover the points that are more taicewith respect to the distribution.

3) Galactose datgFigure 9d): This is a dataset of gene expressions by 82Gge26€ experimental
conditions [25]. First 204 genes are chosen, and first twerkebf gene names are used for labels.
Plots are based on 250 partitionings from the posterior. PQ(ritbosomal protein) genes and 12
HX (hexose transport) genes appear in individual leavethdrdarge subtree on the top, an ‘outer’
grouping of 19 genes (circles in data plot) is distinguisfiech the ‘inner’ long tail of 68 genes.

4) IGO (Figure 9e): This is a dataset of intergovernmental orgditns (IGO) [26,v2.1] that con-
tains IGO memberships of 214 countries through the year5-2800. In this experiment, we take
a different approach and apply EA directly on the datasetjpmeted as a sample set of single-block
feature allocations, where the blocks are IGO-year tuphelsedements are the countries. We take
the subset of 138 countries that appear in at least 1000 cf2B66 blocks. With some excep-
tions, the countries display a general ordering of contmelRrom the ‘outermost’ continent to the
‘innermost’ continent they are: Europe, America-AustadiZ, Asia, Africa and Middle East.

6 Conclusion

In this paper, we developed a novel approach for summargangple sets of partitionings and fea-
ture allocations. After presenting the problem, we introetlicumulative statistics and cumulative
occurence distribution matrices for each of its permuregjto represent a sample setin a systematic
manner. We defined per-element information to compute pyptgsequences for these permutations.
We develope@ntropy agglomeratio(EA) algorithm that chooses and visualises a small subset of
these entropy sequences. Finally, we experimented withuwadatasets to demonstrate the method.

Entropy agglomeration is a simple algorithm that does ngtiire much knowledge to implement,

butit is conceptually based on the cumulative statistichawee presented. Since we primarily aimed
to formulate a useful algorithm, we only made the essengéihdions, and several points remain
to be elucidated. For instance, cumulative statistics aainbestigated with respect to various
nonparametric priors. Our definition of per-element infatimn can be developed with respect to
information theory and hypothesis testing. Last but nadtleggorithms like entropy agglomeration
can be designed for summarization tasks concerning vatypes of combinatorial sample sets.
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(a) Example partitionings:

zM = {{1,3,6,7}, {2}, {4,5}}
z® = {{1,3,6},{2,7},{4,5}}
z3) = {{1,2,3,6,7},{4,5}}

Number of blocks

2
15
1
0.5
0 2 3

Galactose data:

4,5
2 Pairwise occurences
L
1,36
0 02 04 06 08
entropy
452713686
Number of blocks
. . : 100
(b) Synthetic data: ¢
15 H
@ g 50
: @@ % 11
9
90 ) :
05 : 0
< 0 3 5 7 91113
0 @@ 8
©@ @ % Pairwise occurences
O
-05 @ @ gg
) ) 10
-15 % 20
-15 -1 -05 0 0.5 1 15 0 1
entropy 30 10 20 20
(c) Iris flower data:
Number of blocks 2c 2
ic A A B. ¢
i X %
60 2¢ or x %ﬁ‘ B
4C o X B o X
20 12¢ X, o
1c -2
20 ?g -4 -2 0 2 4
1B iectiorR4 2
50A 1B,16 (PCA projectionrR™ — R*)
0 1B
5 6 7 8 1B
2B
- 28
Pa||se occureces % (d) Galactose data:
N 5B,1C
— 1B
18 2r  HX
18 Lothers s RP
1c 0 %
11B,8C
3C o
8B,1C
0 1 ~
50 100 150 entropy ‘—‘4 -3 -2 -1 0 1 2

Number of blocks

50
40
30
20
10

0

9 11 13 15 17 19

(PCA projet:lioriR20 — ]Rz)

Pairwise occurences

50

100 150

0 05 1
entropy

15

(e) IGO data:

germany
russia
poland
hungary
romania
bulgaria
luxembourg
ireland
spain
portugal
italy
greece

ul

france
netherlands
belgium
wgermany
iceland
norway
finland
sweden
denmark
yugoslaviaserb
switzerland
austria
usa
japan
canada
soafrica
newzealand
australia
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Figure 9: Entropy agglomeration and other results from #pegments (See the text)
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