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Abstract

This paper describes a generative Bayesian model de-
signed to track an articulated 3D human skeleton in an
image sequence. The model infers the subjects appear-
ance, pose, and movement. This technique provides a novel
method for implicity modelling depth and self occlusion,
two issues that have been identified as drawbacks of exist-
ing models. We also employ a switching linear dynamical
system to efficiently propose skeleton configurations. The
model is verified using synthetic data. A video clip from the
Caviar data set is used to demonstrate the potential of the
methodology for tracking on real data.

1 Introduction

The task of tracking humans in an image sequence has
seen a significant research investment. To date most algo-
rithms consider tracking the body as a solid moving object
that stands out from the background. These models allow
for the general tracking of people as they move through a
scene. These models are unable to assist with understand-
ing detailed behaviour of humans. Articulated models pro-
vide this detail but introduce added complexity to the in-
ference. One particular complexity occurs when body parts
self-occlude each other, for example, when walking is ob-
served in the sagittal plane (side on), it is often difficult to
identify the left and right legs. The ambiguity is reduced
when the legs cross as the layering of legs becomes evident.
Utilising a 3D skeleton model this layering of joints can be
inferred when it is supported by the data. Our inference
model associates a depth with each body part in the image
plane thus allowing occlusion ambiguities to be resolved ef-
ficiently.

The positions of all model objects are tracked in 3D
space allowing the depths of multiple people to be calcu-
lated in the image plane. When scaling this model to a
crowded scene these depths will enable occlusion amongst
crowd members to be appropriately represented. Maintain-
ing 3D locations also allows multiple observations from dif-
ferent locations to be fused in a general framework.

There are several applications for a robust method of

tracking the articulate motion of a human. Surveillance sys-
tems used in public spaces can be improved to interpret the
actions of the individuals. Human Computer Interfaces can
be significantly improved to bypass the traditional inputs of
a keyboard and mouse. Expanding methods of interaction
will enable technology use to become more efficient in ar-
eas such as manufacturing and repair. Visual and motion in-
puts can also be used to enhance the game play in computer
games as is currently being explored by Sony’s EyeToy and
the Nintendo Wii. Enhancing the range and accuracy during
this interaction will increase the possibilities of future game
development.

1.1 Related Work

There is a significant library of literature on tracking hu-
mans in video. Some of the more recent papers include
[2, 4, 13]. In [13] each human object is modelled by a head
position, hight, thickness and 2D inclination. A colour his-
togram is used for the appearance model and three ellipsoids
are used for the shape. Kalman filters are used for the tem-
poral estimation of these parameters. In [2] image features,
calculated on a frame-by-frame basis are use to learn feature
trajectories and then infer independent motion of clustered
features.

Star structures have been used to classify different types
of motion in [6]. The star shape was used as it is an efficient
representation of a person walking when viewed form side-
on. The homogeneous structure used to detect the person
as a whole suffers under occlusion as the detection methods
do not degrade gracefully. Pavolvić uses a Switching Linear
Dynamic System (SLDS) model to track humans walking
from a side-on view [10]. The model described is restricted
to 2D and uses templates learnt from the first frame to match
the object in future frames.

Individual human part detectors have become a standard
method to detect the pose of humans in images [4, 8, 9, 13].
In [8] for static images and [9] for an image sequence a data
driven MCMC algorithm to propose possible body config-
urations is described. The observation likelihood function
is calculated by synthesising the human form and compar-
ing it to the input image. The comparison considers region
coherency, colour dissimilarity with the background, skin



colour likelihood and foreground matching. The results of
the part detectors are integrated to generate proposal maps
of joint configurations. For the image series, a dynamical
model is used to propose a sequence of skeleton configura-
tions. Batch processing is used to enable forward and back-
ward propagation of state information.

2 Human Skeleton Model

Given a person with location and orientation described
by a 6D vector pt = {x, y, z, α, β, γ} and their current pose
defined by the skeleton configuration κt at time instant t,
let the location, orientation and joint positions be described
by Gaussian random variables. The dynamics of the global
position and orientation of the person can be described by
the state space model {Ap,Bp,Qp}

pt ∼ N (pt;Appt−1 + Bp,Qp)
p0 ∼ N (p0; 0,Σp)

In this paper the global motion is restricted to forward
movement. Therefore Ap is the identity matrix and Bp =
[vx, 0, 0, 0, 0, 0]T . The forward velocity vx is a random vari-
able assumed to be normally distributed,

vx ∼ N (vx, µv,x, σv,x) .

To reduce the computational requirement of tracking the
global motion, the mean shift algorithm [3] could be used
to generate efficient proposal locations in a new frame. The
rotation variables need still to be inferred but the admissible
range of rotational changes in human motion is generally
small and well predictable and thus efficient inference is
possible.

The dynamics of the joint positions are defined within
a local coordinate framework with the origin at the center
of the body, the x-axis though the sagittal plane, the y-axis
through the coronal plane and the z-axis through the trans-
verse plane. The coordinate system is illustrated in Figure 1.
The dynamics of the local joints are defined by a SLDS
model, defined by {Amt

κ ,Cmt
κ ,Qmt

κ ,Rmt
κ , µmt

κ ,Σmt
κ },

where mt describes the index of the model at time t. The
number of known linear models is denoted by M . The
SLDS is learnt from motion capture data acquired at a rate
of 120 Hz, to time-align the dynamic system Am is raised
to the power 120/30 for video capture at 30 Hz. Details of
the learning process for these models is described in Sec-
tion 2.1. The dynamics of the local joints is given by

xκ,t ∼ N (xκ,t;Amt
κ xκ,t−1,Qmt

κ )
κt ∼ N (κt;Cmt

κ xκt ,R
mt
κ )

The initial state of the dynamic system for a newly ob-
served body is estimated from the library of possible states
defined by the SLDS. For repetitive behaviours, such as
walking, selecting the initial phase is equivalent to identi-
fying the phase of the system. The initial state and rate of
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Figure 1. Global and Local coordinate system
with camera and skeleton positions.

evolution define all future states. The likelihood that any
states be selected as the initial state is assumed to be uni-
form across the library,

xκ,0 = xκ,δ

δ ∼ U (δ; 0, Tm) .

The time instant of switching between linear models is pa-
rameterised by µm and σm, where µm denotes the mean
period that model m is active and Σm describes the vari-
ance of this measure. The next switching instant τj is given
by

τj ∼ N (τj ; τj−1 + µm, σm) (1)

The transition from model mτj−1 to model mτj is given by
the M × M transition matrix Am. For the walking be-
haviour used in this paper Am is the identity matrix.

The SLDS describes the joint positions relative to the hu-
mans local coordinate system. To generalise the model for
arbitrary camera locations the local joint positions (κt) are
projected to positions in a global coordinate system via the
projection matrix parameterised by the individual’s location
vector pt

κg,t = H (pt) κt

H (pt) is defined as,

H (pt) =
[

R T
0 1

]
T (x, y, z) =

 x
y
z


R = Rx (α)Ry (β)Rz (γ)

The rotations around the axis are defined with cα = cos (α)
and sα = sin (α) as



Rx (α) =

 1 0 0
0 cα sα

0 −sα cα

 Ry (β) =

 cβ 0 −sβ

0 1 0
sβ 0 cβ


Rz (γ) =

 cγ sγ 0
−sγ cγ 0
0 0 1


Given a known, fixed, camera location and orientation

pc = {x, y, z, α, β, γ}, the global joint positions are pro-
jected into the the observed image space, denoted by J =
[u, v, 1]T by

Jt = K [Rc|tc]κg,t K =

 f 0 px

0 f py

0 0 1


The image space is defined by N = W × H pix-
els, where u = [−(W − 1)/2, (W − 1)/2] and v =
[−(H − 1)/2, (H − 1)/2]. The camera properties are en-
capsulated by K which includes the focal plane, f , and prin-
ciple point, px, py . Rc defines the rotation of the camera,
and tc = −Rc [xc, yc, zc]

T denotes translation. For a more
detailed description of the camera transformation matrix see
[7, pp. 153–158].

Given two connected joints denoted by Ja,t and Jb,t,
a body part is defined by the rectangle sk = [wk, hk],
k = {a, b} where, a and b are index’s of the joints and
k is an index over the body parts. There are a total of K
body parts. The region enclosed by sk in the image plane
corresponds to the estimated position where the body part
would be observed given no occlusion. The rectangle is de-
fined by its width wk and height hk, the rectangle is oriented
such that its major axis coincides with the line connecting
the joints Ja,t and Jb,t. To simplify the model the height
is equal to the distance between joints, hk = ‖Ja,t − Jb,t‖
and wk is a random variable distributed according to

wk ∼ P (wk)

Occlusion is the biggest source of errors in previous hu-
man tracking papers cited in the introduction. For each body
joint we define a depth variable za. The depth value is mea-
sured perpendicular to the image plane and can be calcu-
lated directly from the 3D skeleton model

za =
[

0 0 1 0
]
κg,t

Background pixels are defined to have a depth of z = 0.
The depth of a body is calculated from the mean of the two
connecting joints. Body parts have depths greater than 0,
the greater the value the more likely the body part will be
visible. To maintain this property the depth of all body parts
are normalised.

Given model parameters, pc, pt, κt and wk we define a
variable ri to indicate how likely pixel i will corresponds to
body part k.

p (r1:N |zk, wk) = C (r;πi,0, . . . , πi,k, . . . , πi,K)

πi,j =
exp (gi,k)

K∑
k′=0

exp (gi,k′)

gi,0 = 0
gi,k = zkφ (sk, Jt,k, xi)

where C is the categorical distribution with cell probabilities
πi,k. The indicator function φ (sk, Jt,k, xi) = 1 if xi is
located within the region of the body part and 0 otherwise.

This model has an explicit method for representing self
occlusion of body parts through the indicator variable ri. If
two body parts, k and k′ are co-located at pixel i, the depth
variables zk and zk′ enable the model to explicitly describe
the probability of observing the appearance of either object
relative to their distance from the camera. Therefore if zk <
zk′ then the appearance model ϕk is more likely than ϕk′ .
As the difference in depth approaches zero the appearance
model of either body part become equally likely.

2.1 Dynamical Model

To model the evolution of the pose throughout the im-
age sequence we use a switching linear dynamic system.
SLDS’s are shown to have superior performance modelling
skeleton dynamics than linear systems [1]. Subspace tech-
niques are used to segment data captured from a motion
capture system to train the individual linear systems [11].
For walking behaviour demonstrated in this paper two lin-
ear systems are learnt, a left and right leg swing model. For
each model we learn the dynamics in the form

xt = Am
κ xt−1 + Bm

κ + ε ε ∼ N (0,Qm
κ )

yt = Cm
κ xt + e e ∼ N (0,Rm

κ )

A standard EM algorithm is used to learn the parame-
ters Am

κ , Bm
κ , Cm

κ and the initial conditions x0. The EM
algorithm is initialised from a closed from subspace solu-
tion. To reduce the complexity of the optimisation, Princi-
ple Component Analysis was applied to the skeleton con-
figuration reducing it from 56 angles to 8 dimensions. Fig-
ure 2 demonstrates the accuracy of the learnt model to de-
scribe the walking motion. Expanding the framework to
infer a richer set of behaviours simply requires expanding
the number of linear systems contained within the model.
Data for training the models was obtained from the CMU
motion capture database (mocap.cs.cmu.edu).

2.2 Appearance Model

Given two connected joints denoted by positions Ja and
Jb, we know that there is a rigid connecting bone, denoted
by index value k. We will assume that each bone has a fixed
width wij . The appearance of the bone will be modelled as a
Gaussian with mean ϕk and variance Σϕ, where ϕk denotes
the mean colour in the colour space and Σϕ denotes the
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Figure 2. Comparison between motion cap-
ture (solid line) and simulated (dashed line)
human walking motion. The data shown is
the angle of the right knee (lower line pair)
and hip (upper line pair) joints.

noise. Background pixels are similarly modelled as Gaus-
sian random variables with mean bi and variance Σb. The
3D red-green-blue colour space is used throughout this pa-
per. The noise models of the background and foreground
pixels are parameterised separately to allow the noise of the
foreground pixels to be reduced during inference. The like-
lihood of a pixel colour matching the appearance of the k
bone is given by

p (yi|ϕ1:K , bi, ri = k) =
{

N (yi; bi,Σb) if ri = 0
N (yi;ϕk,Σϕ) if ri = j

More advanced appearance models, exploiting patterns
within clothing could be incorporated within this frame-
work to improve tracking at the expense of computation.

3 Estimation Framework

Given an image sequence Y1:T the goal is to estimate
the behaviour (position and pose sequence) of the subject.
The Bayesian framework is utilised to allow the uncertainty
in parameters to be propagated through the model. The be-
haviour is specified by the parameters Bt = {pt, κt,mt}.
The behaviour is observed in the image via an observation
model described by the parameters Ot = {w1:K , ϕ1:K}.
The coupling of the two parameter sets is shown in Figure 3.
The posterior probability is given by

p (B1:T , O1:T |Y1:T ) ∝ p (Y1:T |B1:T , O1:T ) p (B1:T , O1:T )
(2)

The behavioural model evolves with time as shown by
the graphical model in Figure 4(a). These parameters
then become inputs to the observation model. The rela-
tionships between observation parameters is shown in Fig-
ure 4(b). Through the relationships described in the ob-
servation model we are able to determine the likelihood of

Bt Bt+1

Ot Ot+1

Yt Yt+1

Figure 3. Coupling of behavioural and obser-
vation model parameters. The behavioural
parameters evolve with time and the obser-
vation parameters are derived directly from
these values.

the behaviour parameters given the image sequence. The
observation model contains parameters for the appearance
(ϕk) and width (wk) that are assumed to remain constant
throughout the sequence.

All model parameters are randomly initialised. To im-
prove the rate of convergence more intelligent initialisations
could be made from measuring the difference between the
current frame and background. Similar approaches are used
in existing techniques [13]. The input image where the
skeleton is thought to be can be sampled to initialise the
appearance model.

4 Inference

Given the model defined in the previous sections to infer
the most likely model parameters we need to compute the
MAP estimate

{B∗
1:T , O∗

1:T } = arg max
B1:T ,O1:T

P (B1:T , O1:T |Y1:T ) (3)

On real data, we are only interested in the behavioural
parameters so our MAP estimate is redefined as

B∗
1:T = arg max

B1:T

p (B1:T |Y1:T )

= arg max
B1:T

∫
dO1:T p (B1:T , O1:T |Y1:T ) . (4)

Therefore if both the behaviour and observation parameters
are of interested the MAP estimate is defined by (3), other-
wise if only the behaviour is of interest the MAP estimate
becomes (4).

A Metropolis-Hastings Markov Chain Monte Carlo algo-
rithm has been implemented to obtain the MAP estimates.
A new sample generated from the Markov Chain is accepted
by the acceptance criteria defined by the Metropolis Hast-
ings algorithm. Let the entire parameter space be denoted
by θ = {B1:T , O1:T }. The acceptance criteria is defined as

α
(
θ(n) → θ′

)
= min

(
1,

P (θ′) Q
(
θ′ → θ(n)

)
P
(
θ(n)

)
Q
(
θ(n) → θ′

))
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Figure 4. (a) shows a dynamic model of parameters describing behavioural properties of the subject.
(b) shows the graphical model relating the behavioural parameters to the data observed in the image
sequence. As the behaviour varies with time there is an implicit time subscript on each observation
parameter.

where Q denotes the transition probability and P denotes
the likelihood of the parameters. If the new sample θ′

is accepted it forms the next sample in the Markov chain
θ(n+1) = θ′. To ensure the space is explored efficiently
the acceptance of new proposals is controlled by annealing.
To obtain the MAP estimate the parameters that achieve the
maximum likelihood are stored.

5 Results

To demonstrate the correctness of the model we have
generated a series of 10 frames of data obtained by by sam-
pling the model. Figure 5 show the input image, inferred
skeleton pose and the observation parameters respectively.
The log likelihood at each sampling step is shown in Fig-
ure 6. There is a jump in the likelihood value at itera-
tion 10, 000 as the variance in the appearance model is de-
creased. For the first half of the estimation process the posi-
tion and skeleton pose is given a higher priority through the
elevated appearance variance.

The front view of the image sequence ‘threepastshop2’
available in the Caviar data [5] is used to perform initial
analysis on real data. The advantage of using this data set
is the pre-labeled ground truth values. The algorithm was
initialised with the background model, skeleton appearance
model and the initial skeleton location. From the 5 frame
image sequence we estimate the initial pose and the evo-
lution of the skeleton position and pose. The evolution of
poses is obtained from our learnt SLDS. Note that the mo-
tion used to train the SLDS is independent to the motion
contained in the images. A restricted set of parameters is
considered to reduce computation time. The results of the
inference are shown in Figure 7. The image sequence con-
tains a foreground railing introducing an error in our infer-
ence model. This unmodelled effect appears to have a neg-
ligible impact on tracking performance.

(a) Input Image (b) Inferred Skeleton (c) Inferred Appear-
ance

(d) Input Image (e) Inferred Skeleton (f) Inferred Appear-
ance

Figure 5. Figures (a), (b) and (c) are obtained
from frame 5 of the synthetic data set and Fig-
ures (d), (e) and (f) are from frame 10. (a) and
(d) are the input frames. The inferred skele-
ton position and pose are shown in (b) and (e).
A sample of all inferred model parameters is
shown in (c) and (f).
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Figure 6. Log likelihood of MCMC samples for
estimating parameters of simulated data.

(a) (b) (c) (d)

Figure 7. Figures (a) and (c) show input
frames 1 and 5. Figures (b) and (d) show the
inferred skeleton pose and position at frames
1 and 5 respectively. It is observed that the
position of the back leg in (d) has lost track
while the remaining body joint positions are
accurate. It is anticipated that if subsequent
frames are added to the inference algorithm
this error would be corrected.

The execution time of the Metropolis-Hastings algorithm
to infer the behavioural parameters of the 5 real data frames
is 40 minutes for 15, 000 iterations. The bottleneck for com-
putation is the estimation of the observation parameters. To
reduce computational load, structural relationships between
behavioural parameters to the observed images (see Fig-
ure 4(b)) can be exploited. The required integration over the
observation parameters Ot can be achieved approximately
with fast deterministic methods (such as variational tech-
niques [12]), thus reducing the structure of the model ef-
fectively to a hidden Markov model where the behavioural
parameters correspond to the latent states (see Figure 3).

6 Conclusions and Future Work

In this paper we have presented a novel graphical model
to infer human behaviour from a sequence of images. Be-
haviours are encapsulated by a switching linear dynamic

system. The observation model has an implicit method for
describing occlusion. The model has been demonstrated on
synthetic and real data. To extent this model we intend to
investigate more efficient inference schemes and expand the
range of behaviours that the system interprets.
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