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ABSTRACT
We propose a prior structure for single-channel audio source sepa-
ration using Non-Negative Matrix Factorisation. For the tonal and
percussive signals, the model assigns different prior distributions
to the corresponding parts of the template and excitation matri-
ces. This partitioning enables not only more realistic modelling,
but also a deterministic way to group the components into sources.
This also prevents the possibility of not detecting/assigning a com-
ponent and remove the need for a dataset and training. Our method
only needs the number of components of each source to be set, but
this does not play a crucial role in the performance. Very promis-
ing results can be obtained using the model with too few design
decisions and moderate time complexity.

Index Terms— Non-negative Matrix Factorisation, Single-
Channel Source Separation, Gamma Markov Chains, Gibbs Sam-
pler, Metropolis-Hastings

1. INTRODUCTION

Non-negative matrix factorisation (NMF), proposed for decompo-
sition of non-negative data [1], is a popular method for multivariate
data analysis. The goal is to approximate a W ×K non-negative
matrix, X, as the product of two non-negative matrices, T and V,
of sizes W × I and I×K, respectively. This is done via minimis-
ing the dissimilarity between X and TV

(T∗,V∗) = arg min
T,V

D(X‖TV)

where the dissimilarity can be defined as the Kullback-Leibler di-
vergence

D(A‖B) = −
W∑

ν=1

K∑
τ=1

(
Aν,τ log

Aν,τ

Bν,τ
+ Aν,τ −Bν,τ

)
(1)

KL divergence is always non-negative and is equal to zero when
X = TV. The minimisation problem is effectively solved using
variational bound optimisation in [1].

In audio processing, spectrogram decomposition via NMF is
successfully applied to transcription [2] and single-channel audio
source separation [3, 4]. Non-negative factorisation of the magni-
tude spectrogram of an audio signal provides a compact represen-
tation where the rows of T correspond to the frequency bins and
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the columns show dominant spectral structures of the spectrogram.
These columns can be thought of as a codebook of spectra or ba-
sis vectors. The matrix V contains the excitations of these basis
vectors along the time frames.

NMF that minimises the KL divergence in Equation 1 assumes
the elements of T and V a priori independent. However, this does
not reflect the physical properties of musical signals. Incorporat-
ing prior information, such as the harmonicity of tonal signals and
their continuity in time or the short-duration behaviour of tran-
sients, into the model is important to obtain more realistic tem-
plates and better quality estimates. In [4], in addition to the KL
divergence between X and TV, the objective function also con-
tains terms such that temporal continuity and sparseness of the ex-
citation vectors are satisfied. In [5], the NMF model is defined in
the Bayesian framework and the temporal continuity is incorpo-
rated through Gamma Markov chains (GMC) [6]. Such priors are
shown to be more successful than the previous NMF methods [5].

In single-channel source separation with NMF, a general ap-
proach is to train the spectral templates from a dataset of audio
classes [7, 8]. In this supervised approach, all of the learnt tem-
plates comprise a fixed T matrix and the excitation matrix, V, is
estimated. The training set can also be used to estimate the param-
eters of prior distributions of templates [5, 9], rather than learning
and fixing the templates. Another issue with this approach is the
assignment of the estimated components to the sources. This can
be accomplished by clustering the components and assigning each
cluster to a source. Assignment can be done by considering the
similarity to the examples in the training corpus.

In this paper, we propose a Bayesian NMF model to separate
tonal and percussive signals from a single-channel audio signal.
The template and excitation matrices, T and V, are divided into
two partitions and assigned different prior distributions such that
they encode a tonal and a percussive signal. The components ob-
tained from the tonal partitions of the T and V matrices comprise
the tonal signal, while the remaining ones constitute the percussive
signal. The original contribution in this article is that all parame-
ters and hyperparameters of the model are estimated during infer-
ence, so there is no need for an additional training step in order to
learn the template vectors or their parameters. In this respect, the
approach is fully unsupervised.

The remaining part of this paper is organised as follows: In
Section 2, we explain our model and the details of the inference
procedure. We will demonstrate the performance of our model on
some single-channel audio source separation simulations in Sec-
tion 3. A discussion on the model and possible future work will be
presented in Section 4.
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2. THE MODEL

The statistical interpretation of NMF can be derived by seeking a
maximum likelihood solution to following model

sν,i,τ ∼ PO(sν,i,τ ; tν,ivi,τ ) (2)

xν,τ =

I∑
i

sν,i,τ (3)

where Si = {sν,i,τ} are latent sources and PO(·) denotes the
Poisson distribution. In the presence of these latent variables, the
solution can be obtained using the EM algorithm. This approach
leads to the same update rules as the original NMF minimising the
information divergence between X and TV [10].

In order to obtain template and excitation matrices satisfying
some properties, we can define prior distributions on T and V,
such as

T ∼ p(T|Θt)

V ∼ p(V|Θv)

where Θt and Θv are the (hyper)parameters of these distributions.
Then, T and V can be estimated by the maximum a posteriori
solution or Bayesian inference.

The topology of our model is designed to separate the underly-
ing tonal and percussive sources from an audio signal. This is ac-
complished through assigning different prior structures to different
parts of the template and excitation matrices, T and V. Spectral
templates of tonal signals have high values for the fundamental
frequency and the harmonics of the notes that are being played.
The other values are close to zero. These templates are excited for
the duration that the notes are audible. However, a percussive hit
excites a band of frequencies at the same time. These excitations
are generally for short time intervals, except for the bass drum hits.

Our model makes use of GMC priors for columns of T or rows
of V to enable continuity along those vectors and independent
Gamma priors to have sparse values with occasional peaks. So, the
tonal vectors of T are modelled with independent Gamma distribu-
tions for sparsity, whereas the vectors for percussions are modelled
with GMCs. In contrast, excitation vectors for tonal components
are modelled with GMCs to enforce continuity in time. Excita-
tion vectors of percussive sources have independent Gamma priors
which are suitable for short-time excitations. T and V matrices
for one tonal and one percussive components is presented in Fig-
ure 1. The choice of Gamma and Gamma Markov chains as priors
is mainly for the sake of simplicity. Gamma distribution is the
conjugate prior for the Poisson observation model and this enables
us to use faster and more convenient inference methods such as
the Gibbs sampler or variational Bayes. In addition, we can incor-
porate the above mentioned requirements of tonal and percussive
sources into the model using these prior distributions.

The density of a Gamma distributed random variable, x ∈ <+,
with shape and scale parameters, a and b is given by

G(x; a, b) = exp((a− 1) log x− x/b− log Γ(a)− a log b).

The mean of this distribution is ab and the variance is ab2. With
small ab and a larger b, the distribution will be sparse, i.e. mainly
close to zero but with a heavy tail.

A Gamma Markov chain [6] is a prior structure for a chain of
positive variables, where the correlation between consecutive vari-
ables is positive. In addition, each variable is conditionally conju-
gate, i.e. their prior and full conditional distributions are Gamma.

bct1,1

bct2,1

bctW,1

...

bct1,2

bct2,2

bctW,2

...

T

bc bc bcv1,1 v1,2 v1,K

bc bc bcv2,1 v2,2 v2,K

. . .

. . .

V

Figure 1: T and V matrices for one tonal and one percussive com-
ponents.

In the Poisson observation model, this conjugacy is preserved. A
GMC of v1:K can be defined as

v1 ∼ G(v1; av, b/av)

zi|vi ∼ IG(zi; az, azvi), i = 1..K − 1

vi+1|zi ∼ G(vi+1; av, zi/av), i = 1..K − 1

where av , az , b are the hyperparameters of the chain and z1:K−1

are auxiliary variables introduced to have positive correlation and
conjugacy properties simultaneously. av and az are the coupling
hyperparameters and they determine the degree of correlation be-
tween variables. Prior and full conditional distributions of z1:K−1

are inverse Gamma and consecutive z variables have positive cor-
relation between them. This interpretation of GMCs is slightly dif-
ferent and more general from [6], but they are actually the same.

Denoting the number of tonal components with Iton and per-
cussive components with Iperc = I−Iton, the overall NMF model
can be written as

tν,i ∼ G(tν,i; a
i
t, b

i
t/ai

t), i = 1..Iton, ν = 1..W

t1:W,i ∼ GMC(t1:K,i; a
i
tv, ai

tz, bi
t), i = Iton + 1..I

vi,1:K ∼ GMC(vi,1:K ; ai
vv, ai

vz, bi
v), i = 1..Iton

vi,τ ∼ G(vi,τ ; ai
v, bi

v/ai
v), i = Iton + 1..I, τ = 1..K

The observation model is again given as in Equations 2 and 3.
Because of the conditional conjugacy, the full conditional dis-

tribution of each variable in the model is a standard distribution:
Gamma for tν,i and vi,τ , multinomial for the latent sources sν,i,τ

and inverse Gamma for the auxiliary variables of the GMCs. This
makes it feasible to use the Gibbs sampler or variational Bayes to
infer about the variables.

The optimisation of the hyperparameters of the model can be
performed using an EM algorithm which makes use of the pos-
terior distribution estimated during the inference: samples drawn
by the Gibbs sampler or the sufficient statistics estimated by vari-
ational Bayes. In this paper, we assume a uniform distribution for
the hyperparameters and estimate them by sampling from their full
conditional distributions using the Metropolis algorithm.

2.1. An Extension To The Model

As mentioned before, bass drums have a hybrid behaviour: they
excite a band of frequencies as the other percussive sources but the
duration is longer. This causes the bass drum and tonal instrument
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components to get mixed. As a remedy, we added another parti-
tion of size Ibass to the T and V matrices. A template vector in
this partition has high values until a change point λi and very low
values afterwards.

t1:W,i ∼
λi∏

ν=1

G(tν,i; a
i
B , bi

B/ai
B)

W∏

ν=λi+1

G(tν,i; a
i
b, b

i
b/ai

b)

vi,1:K ∼ GMC(vi,1:K ; ai
vv, ai

vz, bi
v), i = Iton + Iperc + 1..I

where ai
B and bi

B are selected such that the mean of distribution
is high and variance low, in contrast, ai

b and bi
b ensure that the

distribution is highly sparse. Here, tν,i and vi,τ variables again
have Gamma full conditional distributions. λi is discrete and its
full conditional distribution can be evaluated at each W values it
can get. So, this extended model can again be inferred using the
Gibbs sampler. The pseudocode of the overall method is given in
Appendix A.

3. SIMULATION EXPERIMENTS

In our experiments, we used recordings of 6-10 seconds duration,
sampled at 16kHz. Magnitude spectrograms are obtained using
STFT, with non-overlapping windows of length 1024. Conse-
quently, we work on spectrograms with 513 frequency bins and
roughly 120-140 time frames. Phases of the original signal are
stored and added to each estimated source before reconstruction.

The unsupervised NMF method infers the posterior distribu-
tions of the T, V and Si, i = 1 : I matrices using the Gibbs sam-
pler. The hyperparameters of the model are also estimated during
the inference, using the Metropolis algorithm with Gaussian pro-
posal distributions. The only input to the model, apart from X, are
the number of components for each source: Iton, Iperc and Ibass.
The model is based on Poisson observations and needs integer-
valued X matrices. Magnitude spectrograms of audio signals have
a large number of elements between zero and one. In order to de-
crease the effect of round-off error, we multiply the X matrix with
a constant C and round. Estimated components are divided to C
accordingly.

We made use of both manually mixed percussive and tonal
signals and original recordings where we do not have the individ-
ual sources. First type of examples enables us to assess the per-
formance using objective criteria such as signal to distortion ratio
(SDR), signal to interference ratio (SIR) or signal to artefacts ra-
tio (SAR) [11]. For the latter type, we judged on the performance
perceptually. In Figure 2, we present the spectrograms of the sep-
arated sources from a mixed signal of flute and drums. On the top
row, spectrograms of the original sources are given. Below them
are the corresponding estimation obtained by our extended NMF
model. In this experiment we used ten components for the tonal
source (Iton = 10), six components for the percussive sources
(Ibass = Iperc = 3).

We compared the performances of our two models with other
unsupervised models in Tables 1 and 2. GMC and GMRF are two
models that couple the variances of time-frequency coefficients us-
ing Gamma Markov chains and random fields [6, 12]. They only
make use of horizontal dependencies for tonal sources and vertical
for the percussives. Apart from this, they do not need any kind of
training or clustering to assign components to sources. The results
show that our extended model (UNMF-e) performs better separa-
tion than the other models. GMRF results are also successful and
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(a) Tonal Signal
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(b) Percussive Signal
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(c) Tonal Estimate
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(d) Percussive Estimate

Figure 2: Sources estimated from a mixture of flute and drums
recording.

has the highest SAR values in one of the experiments. According
to the objective performance criteria, our simpler model (UNMF)
performs very poorly. However, by listening to the reconstructed
signals, we see that the problem mainly lies in assigning the bass
drum to the wrong source.

ŝton ŝtran

SDR SIR SAR SDR SIR SAR
GMC -4.23 -2.42 4.82 1.34 13.13 1.85
GMRF -0.85 3.5 2.74 7.67 10.61 11.11
UNMF -5.02 -4.40 9.44 -1.58 13.67 -1.26
UNMF-e -0.32 5.84 1.88 7.46 13.53 8.89

Table 1: Single channel source separation results on a mixture of
guitar and drums.1

Original and reconstructed signals presented in this section
can be listened to at http://www.cmpe.boun.edu.tr/

˜dikmen/waspaa09/.

4. DISCUSSION AND CONCLUSIONS

In this work, we proposed a model to separate percussive and
tonal sources from single-channel audio signals via partitioning
the spectrogram using NMF. The model makes use of some basic

1A mixture of 6-second excerpts from “Matte Kudasai” by King Crim-
son and “Territory” by Sepultura sampled at 16kHz.

2A mixture of 8-second excerpts from “Vandringar I Vilsenhet” by
Änglagård and “Moby Dick” by Led Zeppelin sampled at 16kHz.
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ŝton ŝtran

SDR SIR SAR SDR SIR SAR
GMC -7.74 -6.19 4.62 -1.14 16.62 -0.97
GMRF -4.27 -1.61 3.0 5.59 19.82 5.8
UNMF -13.82 -13.48 11.11 -7.26 -2.69 -0.84
UNMF-e 6.03 15.50 6.67 15.72 24.15 16.41

Table 2: Single channel source separation results on a mixture of
flute and drums.2

properties of the spectral behaviour of musical instruments. The
separation process is totally unsupervised, i.e. there is no need to
learn the template vectors from training data or manual assignment
of each component to sources. The only parameters that should be
set are the number of components each source will have. However,
this is not a critical decision. Setting a higher number of compo-
nents to a source than that is actually needed does not change the
performance very much.

The inference of the parameters of the model is carried out
using the Gibbs sampler. Good results can be obtained even using
100 MCMC steps. Since the hyperparameters are estimated using
Metropolis algorithm, it is better to use more steps if the rejection
rate is high. Our method does not include model selection, e.g. for
the number of components. Estimation of marginal likelihood can
be costly with the Gibbs sampler. Variational Bayes can be used
for faster inference. In that case, model selection can be carried
out using the variational lower bound of the marginal likelihood.

Our model is based on very basic properties of audio signals.
Its separation performance will decrease in the presence of more
complicated signals such as those generated by vibraphones, xy-
lophones, etc. These signals contain both harmonic and transient
structures. A possible strategy to tackle such problems can be in-
troducing ad hoc template and excitation vectors for them along
with indicator variables determining the existence of such a source.
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A. THE PSEUDOCODE OF OUR METHOD

Below we give the pseudocode of our method. Θ denotes the vec-
tor of all hyperparameters of the model, TZ and VZ represents
the auxiliary variables of the GMCs in the template and excitation
models. Ston and Stran are the estimated magnitude spectrograms
of the tonal and percussive sources.

Algorithm 1 UNMF-e (X, Iton, Ibass, Iperc, Nsamples)

I = Iton + Ibass + Iperc

Set Nburn in
Initialise T, TZ , V, VZ and hyperparameters, Θ
for n = 1:Nsamples do

Draw Sn, Tn, Tn
Z , Vn and Vn

Z from full conditionals
for each hyperparameter Θ do

Propose Θ′, calculate acceptance probability aΘ

Accept Θ′ with probability aΘ

end for
end for
for i = 1:I do

Ŝi =
∑Nsamples

i=Nburn in+1 Sn
i /(Nsamples −Nburn in)

end for
Ston =

∑Iton
i=1 Ŝi

Stran =
∑I

i=Iton+1 Ŝi


