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ABSTRACT

Model scoring in latent factor models is essential for a trepec-
trum of applications such as clustering, change point deteor
model order estimation. In a Bayesian setting, model deleds
achieved via computation of the marginal likelihood. Hoem\this
is a typically challenging task as it involves calculatiohaomul-
tidimensional integral over all the latent variables. listpaper,
we consider approximate computation of the conditionalgimat
likelihood in a multiplicative exponential noise model, iafnis the
generative model for latent factor models with the ItakBeito di-
vergence such as the Nonnegative Matrix Factorization (NMFE
show that standard approaches are not accurate and pregosew
methods in the sequential Monte Carlo (SMC) samplers fraoriew
We explore the performances of these estimators on two gl
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wherex is observed datd\W is a fixed dictionary matrix ant are

the latent factors. The calculation of the actual margiikalihood
p(x) is beyond the scope of this paper. Subsequently, we will re-
fer top(x|W) as the marginal likelihood and drop the ‘conditional’
qualifier. Whilst not elaborated here, the techniques desdrare
applicable to latent factor models using other divergei€aiback-
Leibler, Euclidean, etc.) and their extensions.

For the estimation of the marginal likelihood, we propose tw
novel methods based on sequential Monte Carlo (SMC) sasler
and compare these to standard methods, such as Laplaceiappro
mation, Chib’s method [8], importance sampling (IS) [6] aradi-
ational lower bounds. SMC samplers constitute a generaflard
ible framework for constructing integration methods thatludes
powerful techniques such as resample and move particleirfite
annealed importance sampling (AlS) [9] or population Ma@itglo

Index Terms— Sequential Monte Carlo Samplers, Itakura-Saito methods []_o] as Specia| cases. SMC Samp|ers use IS Sed‘Uﬂ]’“ia

divergence, Nonnegative Matrix Factorization

1. INTRODUCTION

Latent factor models which explain the generation of datauth
latent variables are widely used in machine learning and daél-
ysis. Topic models (e.g., Probabilistic Latent Semantideking
(pLSI) [1], Latent Dirichlet Allocation (LDA) [2]) and nonegative
matrix factorization [3] (NMF) models based on Kullback#bler
divergence have been applied to text analysis, machinervibioin-

an extended space, starting from simple target distribatimoving
towards more complicated densities admitting the origiaadet as

a marginal. This helps exploring separated modes of a tdeyet
sity, moreover they provide an estimate for the marginalliifood.

We describe AIS as an instance of SMC samplers. Moreover, we
propose two SMC methods based on sequential processingaf da
and/or slowly increasing the dimensionality of the probigmmber

of components). For comparison, we also adopt left-totrigm-
plers [5, 6], designed for marginal likelihood estimatiarLDA. We

test these methods first on a synthetical dataset, then qurabéem

formatics and finance. NMF is not limited to discrete courntiada of interpolative decomposition (ID) [11]. We show that thelgem
and can be used in various applications. For example, NMF uss difficult even in moderate dimensions and most of the stehd

ing Itakura Saito divergence provides a natural generativeel for
time-frequency coefficients of audio signals and was sustokbg
used in audio source separation [4].

One central but challenging computational problem in lefiescy
tor models is model selection (scoring). In a Bayesianrsgtthis
is achieved via calculation of thearginal likelihood or the model
evidence. This quantity provides a measure to assess tlgajen
ization power of a given model but involves the calculatidran
intractable integral over all or some of the latent fact@sveral es-
timators for the marginal likelihood in topic models wereposed
in [5, 6]. In this paper, we investigate conditional mardilikeli-
hood in the relatively less studied multiplicative expatiennoise
model, which is also the generative model for NMF using Itaku
Saito divergence [4]. Conditional marginal likelihood is iategral
of form

it = p(x|W) = / p(x[W, h)p(h) dh )
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methods fail to estimate the likelihood accurately. Heneeoan-
clude that computationally heavy samplers are indeed geede

2. MODEL

The multiplicative exponential noise model is given by

)

wheref is a feature index is an exponential distributed noise vari-
able,e; ~ exp(—ey), andvy is a nonnegative variable represented
asvy = ZkK wyrhi, i.€., a linear combination of nonnegative dic-
tionary atomswy, and their excitationshy. K is the number of
components. Estimating s, andhx, by maximizing the likelihood
of the modellog p(v|W,h) = Y, —log 0y — vy /0y, corresponds
to minimizing the Itakura-Saito dfivergence betwaeand Wh, as
was shown in [4].

With notationv; = |z|?, an equivalent generative model (up
to a constant) is the following

K
xf ~ Nu(zy; 0, Zk:l wikhi),

vy =dsey,

@)



whereu is 0.5 for real, 1 for complex Gaussian distributions. Irsthi
work, we are interested in the marginal likelihood of thetidizary,

p(x|W). For this, we introduce an inverse Gamma prior distribu-even be evaluated pointwise.

tion for the excitation variables, ~ ZG(hx;ax, bi), and seek to
integrate them otit The model can be equivalently expressed as

K

xf= Zcflm crr ~ Nulesr; 0, wrhy),
k=1

hk ~ Ig(hk;ak,bk),

wherecy;, are the latent variables which will be calledmponents

Unfortunately, the marginal importance distributignis difficult to
obtain. Some transition kernels (e.g., Metropolis-Hasjncannot
In addition, using Monte-&Cap-
proximation for this integral will be too costlyJ(N?)). However,
this can be overcome by defining alternative weights on eén
space

_ ma(h) Ly (hs, hy)
wa(hi2) = m 7

where L; is an arbitrary backward Markov kernel.

9)

This trick cor-

throughout the teft These components not only increase the inter-eésponds to defining the target and importance distribst@mex-

pretability of the model, but also make some inference (&dbs
sampling) and optimization procedures easier. Our tasget com-
pute the marginal likelihood as defined in (1).

The full conditional distribution of an excitation variabhy, is
an inverse Gamma distribution with the following parameter

p(hi|CY, W) = ZG(hy; an, Br)
ar =ar +uF, B =by "ruzf |C§filg|2/wf’€7

4)
©)

where superscrig) denotes current sample in Gibbs sampling and

Fis the number of features.

The latent variables; have a full conditional distribution of
K-dimensional Gaussian with the following mean vectors amd ¢
variance matrices

p(Cf |X7 h(l)v W) = N‘J(Cf; Hfs Ef) (6)
X . N
By :ﬁ_';df %y = diag(dy) — dsdj /oy @)
WhereAfk = wfkh(i), f)f = Zk )\fk anddf = [)\fl oo )\fK]T.

3. SEQUENTIAL MONTE CARLO SAMPLERS

tended space

n—1

ﬁn(hl n) = n H Lk hk+17 hk) (10)
k=1
gn(hin) = @1 () H k(hg—1,hg). (11)

Becausei, (hi.») hasp,(h,) as its marginal, it is possible to esti-
mate this distribution and its normalizing constaht with IS.

The SMC algorithm proceeds as followd; samples are drawn
from g1 (h1). With these samplehY) it is straightforward to evalu-
atewgi) because both, andw; can be evaluated pointwise. At time
n, using the weighted particless” vk n{” _ }fromn—1, firstthe
particles are extended withi,, (h,—1, h,,), then the weights of each
particle is updated using

Qn(hn)Lnfl(hru hnfl)
Gn—1(hn—1)Kn(hn_1,hn))

As with standard SMC methods, the variance of the unnoredliz
weights is liable to increase with time due to degeneracysaRe
pling can be applied as a remedy whenever effective sampée si
(ESS) is below a certain threshold. When resampling is uted,
sum of current weights is stored as an estimateZgpyZ,, where

wn(hl:n) - wnfl(hl:nfl) (12)

SMC samplers [7] are a framework of methods which consider thn’ is the last time index that resampling was performed and each

problem in an extended state space to introduce importastéd-

tions that match better with the target distribution. Thiset distri-
bution has the original target distribution as its margarad the goal
remains to evaluate expectations under this marginal apgfonate
its normalizing constant. Annealed importance samplingj49] is

an important special case of SMC, although introducedezadnd
will be explained in Section 3.1. We will describe two SMC hmds
specifically designed for the multiplicative exponentialse model
in Section 3.2.

In SMC, we define a sequence of artificial target distribugjon
pn = mn/Zn, Moving from a simple distributiop, towards the
actual distribution of interegts = p(h|x). A potentially effec-
tive method for constructing good proposals is by drawingsas
from a simple importance distributian and moving them using a
MCMC transition kernelsK,,, such as Metropolis-Hastings. The

particle is assigned equal weights/ {Vs).
If K, is chosen to be an MCMC kernel with invariant distribu-
tion p,,, this backward kernel can be approximated as

pn(hn—l)Kn(hn—h hn)
pn(hn) '

with the assumptiom,, ~ p,—1. This is the reversal Markov kernel
associated with, .

Ln—l(hnyhn—l) = (13)

3.1. Annealed Importance Sampling

In AIS [9], a sequence of distributiops, (h) = p(h)*~#»p(x, h|W)#»
is chosen, witl) < 3; < --- < Bs = 1. The unnormalized density
at timen, m, (h) is equal top(x|h, W)#" p(h).

Choosinggi (h:) as the priorp(h), the weights at time 1 be-

aim is to make the proposal close to the target and apply imporcomes

tance sampling sequentially. For example, at time 2 the itapoe
weights would be given by

oy ma(hy) 2 (hs) _ 8
wz (hz) g2(h2) [ qi(h1)K>(hi, hs)dhy @
17G(z|o, B) = w v=0
(3)=%,  (ogz) = ¥(a) +logh

2|n the text,C denotes a matrix with elements;, andcy is its fth row.

Using an MCMC kernel with invariant distributiop,, (h) and its
reverse given in (13), the weights at timeés given by
ﬂ'n(hn—l)
7Tnfl(hnfl)
:wnfl(hlznfl)p(x|hnfl7W)Bn_ﬂnil .

wi(hy) = (14)

Wn (M) =wn—1(h1:n-1) (15)

(16)
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Fig. 2. Likelihood estimates on synthetical data f&r = 2 and
Fig. 1. Dictionary sequences constructed by SMC1 and SMC2 fromK = 3. The number of iterations used in VB, VB2 (as well as
a dictionary of siz& x 3. Initial and final (original) dictionaries are the VB2 inside IS and MM inside Laplace’s method) is 1000, the
on top-left and bottom-right, respectively. Iterationsgness row- number of samples in Chl, Ch2 (Chib-style estimator intcedu
wise. in [12]), IS, LRW and LRB is 5000. In AlS, SMC1 and SMC2 the

number of iterations is 5000, while the number of sample & 1

10 random initializations are used for each method. Thel $iok is
3.2. SMC with Dictionary Masking the exact marginal likelihood.

In this section, we propose two SMC samplers for estimatirgg t
marginal likelihood in multiplicative exponential noiseodel. The
main idea lies in the fact that this problem is trivial f&f = 1,
easy forK = 2 or K = 3 and gets increasingly complicated as
K increases. This enables us to design. .., ps with increasing
complexity. In the first method (we will call it SMC1 from nown}
we collapse all columns oW into its first column and set the rest

one by one. When adding a new observation, we choose thestlose
observation to the last one and copy the dictionary row astaut
with the last observation as the dictionary row of the neweolrtion

and slowly modify it so that it is equal its original value imetend
(see Fig. 1b). At timen, the weights are evaluated using

of the columns to zero. We define the masked dictionary at iime p(x, W, hy,_1)
Wn(hip) =wn_1(h1n_ n . 19
W/llas ( 1 ) 1( 1 1) ( |Wn lyhnfl) ( )
w;’fl = Z Wik, Vf; w’l’fk =0, Vf,Vk>1 Most of the time, the constants in the likelihood term carezath
' k other, but at the time a new observation is introduced, thdirzality
S0,p1(h1) = p(hi|x, W}). Over the nextS/(K — 1) iterations, of x;, is one more than that of,, _;, so the weight contains the term

we slowly increase the values in the second column of the esask —ulogm/u.
dictionaryW,, by moving3,w 2 from the first column to the sec-
ond. Here,3,, goes from zero to one. This is repeated for each of 4. EXPERIMENTAL RESULTS
the other columns in turn. At the last step, the masked diatip
becomes the same as the origifdlls = W. The progression of 4.1. Synthetical Data
W/, in time is illustrated in Fig. 1a.

We start the algorithm by drawing samples fraqm(h;) =
p1(h1) = p(hi|x, W1). SinceW/ has only one nonzero column,
this distribution is analytically available as

In order to compare SMC sampler based estimators to standard
methods, we generate data from the generative model, faugar
K with FF = 10, ax = 1 andby = 1. Wy,ye is drawn from the
Gamma distributionw s, ~ G(wyk; 1,1). WhenK = 1, the only

K excitation variableh,, can be integrated out, i.e., the exact marginal
p(h|x, W’l) = p(h1]x, W1 H (17) likelihood is analytically available. In the general cadefining
Fe2 normalized excitation variablels, = hy/H with H = Zk hi,

. o , . applying a change of variables betwéden..h x andh...hx— 1, H
wherep(h,.) are the prior distributions ar]m(h12|x, Wl) caneasily  anq integrating oufl analytically, one can arrive at an expression
be derived agG(h1; ai + ul, by +ud ; [wf|"/wy 51). Thefirst i k1 degrees of freedom. Fdt = 1, the marginal likelihood
weights being constanty; (hi) = m1(h1)/p(h1), the weights at s readily available withh; = 1. Using this reduction, one can

timen are given by easily approximate the log likelihood whéti = 2 or K = 3 by a
W h Riemann sum withh in the rangg0, 1] as a ground truth.
wn (1) :wn_l(hlm_l)M (18) In Fig. 2, log likelihood estimates foKk = 2 and K = 3
P(XIW/, 1, hn1) are displayed. It is evident from the figure that simple apjpro

. . . mation methods, such as Laplace’s method (LA), Chib’s mitho
In SMC methods WhICh' use MCMC kernels, it is cruua! to choose(Chll Ch2), variational lower bounds (VB1, VB2) and impaa
pn-1 s close as possible ja,. So, when starting to fill a new sampling (IS), cannot estimate the likelihood accurateBn the
column, it may be advantageous to select the column whiclss h ping X

i o . other hand, SMC methods (including AlS) and left-to-rigtatrplers
g;elurr\ner)](to?{?nva}l;est angle with the sum of the original colunifist( (LRW [5], LRB [6])® perform well. In a more difficult scenario,
1)

. we compare the estimators in a classification experiment.citie
Qursecond method (S.MCZ) starts W'th.one columWhg the struct two dictionariesW; and W» with K = 15 such that they
previous one, but only using one observation, Then, iteratively

it adds another columa la SMC1 and another observation (I'OW). 3For this model, these samplers are not stand-alone, theyireeq
If there is no more columns or rows, it goes in the other dioect p(z1|W) from any of the other methods.




Table 1. Classification errors (the number of errors out of 20 sam
ples) with X' = 15. All standard methods considered give higher
error rates, thus were removed from the table.

LRW
9.6 1.5

LRB
7.8+19

AIS
8.8+1.5

SMC1
8.4+3.0

SMC2
76+1.1

only differ in one column. We generate two datasets fromete®
dictionaries with\N; = N> = 10 data samples. Then, we try to
classify these 20 samples by comparing their marginalilikelds,
p(x.|W1) andp(x,|W2). The classification errors obtained with
five repetitions (different datasets) are given in Table tcakding
to these results LRB and SMC2 performs the best wies large.

4.2. Nonnegative Interpolative Decomposition (ID)

We illustrate the accuracy of our marginal likelihood esties in

a model selection scenario. The interpolative decompmositiD)
(e.g., see [11] for an excellent introduction) is a techaifpr decom-
posing a data matriX asX(:,-r) = X(:,r)H wherer denotes
the selected columns & and—r denotes unselected columns. Itis

natural to encode as a binary vector where the corresponding ele-

ment is one (zero) when the corresponding column is seléotsd
selected).

Inspired by the ID, we define the following generative model a
a nonnegative interpolative decomposition (NID) model

wre ~ G(wyrr; 1,1), f=1.F, k=1.K

hin ~ZG(hgn; ar,br), k=1..K,n=1.N - K
T ~ BE(rn;0.5), n=1.N

X(:,—r) ~ p(-|WH).

In other words, the selected (but unknown) columns givectlirehe
‘W matrix. By calculating the marginal likelihood for each igo-
ration ofr, we can estimate the order of the nonnegative ID decom
position. We seek the optimal indicator vectowhich maximizes
p(X (s, 1), X(:, 7)) = p(X(:, 1))p(X(:, 1) |X(:,T)).

For smallN we can evaluate the marginal likelihood forl —
1 (excluding all zero) configurations af We observe that when

we generate data from the true model we are able to recover the

true decomposition, e.g., with = 10, K = 3, N = 5, a5, = 1
and by, 1. We performed 10 independent trials with the most

promising methods from the previous section LRB and SMC2 and

compared their performances to IS, which was the most acura
among the fast estimators. The number of errors in bifsafdres:

out of these 10 runs (thus, total number of bits compared st
zero for LRB and SMC2 and three for IS. These results tell aswie
need sampler-based estimators for high accuracy, butehisats

us in the size of the problem, because of their high compmutati
complexity. Still, we have to keep in mind that the infereneethod
used here is a brute force technique which requires veryrhigiber

of likelihood computations.

5. CONCLUSION AND DISCUSSION

We proposed two new SMC samplers for estimating the comditio
marginal likelihood of the multiplicative exponential sei model,
which is widely used in applications such as music transioripand

source separation. In the experiments, we showed thatasthiag-
proaches estimate the marginal likelihood poorly and miadeczate
methods are indeed needed for more accurate estimates.sékveb
that the SMC samplers (AIS, SMC1 and SMC2) and left-to-right
samplers, designed originally for LDA and adopted here fbfAN
perform significantly better. SMC2 and LRBive consistently ac-
curate results but are computationally the most demandirg.ol he
results for SMC samplers suggests that carefully choosiagem-
pering schedule is key in accurate inference. CurrentiyfHtt ren-
ders the use of these methods difficult in large scale dateepsing
applications and parallelization seems to be the diredtofurther
investigation.
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