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ABSTRACT

Model scoring in latent factor models is essential for a broad spec-
trum of applications such as clustering, change point detection or
model order estimation. In a Bayesian setting, model selection is
achieved via computation of the marginal likelihood. However, this
is a typically challenging task as it involves calculation of a mul-
tidimensional integral over all the latent variables. In this paper,
we consider approximate computation of the conditional marginal
likelihood in a multiplicative exponential noise model, which is the
generative model for latent factor models with the Itakura-Saito di-
vergence such as the Nonnegative Matrix Factorization (NMF). We
show that standard approaches are not accurate and propose two new
methods in the sequential Monte Carlo (SMC) samplers framework.
We explore the performances of these estimators on two problems.

Index Terms— sequential Monte Carlo samplers, Itakura-Saito
divergence, Nonnegative Matrix Factorization

1. INTRODUCTION

Latent factor models which explain the generation of data through
latent variables are widely used in machine learning and data anal-
ysis. Topic models (e.g., Probabilistic Latent Semantic Indexing
(pLSI) [1], Latent Dirichlet Allocation (LDA) [2]) and nonnegative
matrix factorization [3] (NMF) models based on Kullback-Leibler
divergence have been applied to text analysis, machine vision, bioin-
formatics and finance. NMF is not limited to discrete count data
and can be used in various applications. For example, NMF us-
ing Itakura Saito divergence provides a natural generativemodel for
time-frequency coefficients of audio signals and was successfully
used in audio source separation [4].

One central but challenging computational problem in latent fac-
tor models is model selection (scoring). In a Bayesian setting, this
is achieved via calculation of themarginal likelihood, or the model
evidence. This quantity provides a measure to assess the general-
ization power of a given model but involves the calculation of an
intractable integral over all or some of the latent factors.Several es-
timators for the marginal likelihood in topic models were proposed
in [5, 6]. In this paper, we investigate conditional marginal likeli-
hood in the relatively less studied multiplicative exponential noise
model, which is also the generative model for NMF using Itakura-
Saito divergence [4]. Conditional marginal likelihood is an integral
of form

CML ≡ p(x|W) =

∫
p(x|W,h)p(h) dh (1)
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wherex is observed data,W is a fixed dictionary matrix andh are
the latent factors. The calculation of the actual marginal likelihood
p(x) is beyond the scope of this paper. Subsequently, we will re-
fer top(x|W) as the marginal likelihood and drop the ‘conditional’
qualifier. Whilst not elaborated here, the techniques described are
applicable to latent factor models using other divergences(Kullback-
Leibler, Euclidean, etc.) and their extensions.

For the estimation of the marginal likelihood, we propose two
novel methods based on sequential Monte Carlo (SMC) samplers [7]
and compare these to standard methods, such as Laplace approxi-
mation, Chib’s method [8], importance sampling (IS) [6] andvari-
ational lower bounds. SMC samplers constitute a general andflex-
ible framework for constructing integration methods that includes
powerful techniques such as resample and move particle filtering,
annealed importance sampling (AIS) [9] or population MonteCarlo
methods [10] as special cases. SMC samplers use IS sequentially on
an extended space, starting from simple target distributions, moving
towards more complicated densities admitting the originaltarget as
a marginal. This helps exploring separated modes of a targetden-
sity, moreover they provide an estimate for the marginal likelihood.
We describe AIS as an instance of SMC samplers. Moreover, we
propose two SMC methods based on sequential processing of data
and/or slowly increasing the dimensionality of the problem(number
of components). For comparison, we also adopt left-to-right sam-
plers [5, 6], designed for marginal likelihood estimation in LDA. We
test these methods first on a synthetical dataset, then on theproblem
of interpolative decomposition (ID) [11]. We show that the problem
is difficult even in moderate dimensions and most of the standard
methods fail to estimate the likelihood accurately. Hence we con-
clude that computationally heavy samplers are indeed needed.

2. MODEL

The multiplicative exponential noise model is given by

vf = v̂f ǫf , (2)

wheref is a feature index,ǫf is an exponential distributed noise vari-
able,ǫf ∼ exp(−ǫf ), andv̂f is a nonnegative variable represented
asv̂f =

∑K
k wfkhk, i.e., a linear combination of nonnegative dic-

tionary atoms,wfk, and their excitations,hk. K is the number of
components. Estimatingwfk andhk by maximizing the likelihood
of the model,log p(v|W,h) =

∑
f − log v̂f −vf/v̂f , corresponds

to minimizing the Itakura-Saito divergence betweenv andWh, as
was shown in [4].

With notationvf ≡ |xf |
2, an equivalent generative model (up

to a constant) is the following

xf ∼ Nu(xf ; 0,
∑K

k=1
wfkhk) , (3)



whereu is 0.5 for real, 1 for complex Gaussian distributions. In this
work, we are interested in the marginal likelihood of the dictionary,
p(x|W). For this, we introduce an inverse Gamma prior distribu-
tion for the excitation variables,hk ∼ IG(hk; ak, bk), and seek to
integrate them out1. The model can be equivalently expressed as

xf =
K∑

k=1

cfk, cfk ∼ Nu(cfk; 0, wfkhk), hk ∼ IG(hk; ak, bk) ,

wherecfk are the latent variables which will be calledcomponents
throughout the text2. These components not only increase the inter-
pretability of the model, but also make some inference (e.g., Gibbs
sampling) and optimization procedures easier. Our target is to com-
pute the marginal likelihood as defined in (1).

The full conditional distribution of an excitation variable hk is
an inverse Gamma distribution with the following parameters

p(hk|C
(i),W) = IG(hk;αk, βk) (4)

αk = ak + uF, βk = bk + u
∑

f
|c(i)fk|

2/wfk , (5)

where superscript(i) denotes current sample in Gibbs sampling and
F is the number of features.

The latent variablescf have a full conditional distribution of
K-dimensional Gaussian with the following mean vectors and co-
variance matrices

p(cf |x,h
(i),W) = Nu(cf ;µf ,Σf ) (6)

µf =
xf

v̂f
df Σf = diag(df )− dfd

T
f /v̂f (7)

whereλfk = wfkh
(i)
k , v̂f =

∑
k λfk anddf = [λf1 · · ·λfK ]T .

3. SEQUENTIAL MONTE CARLO SAMPLERS

SMC samplers [7] are a framework of methods which consider the
problem in an extended state space to introduce importance distribu-
tions that match better with the target distribution. This target distri-
bution has the original target distribution as its marginaland the goal
remains to evaluate expectations under this marginal and/or estimate
its normalizing constant. Annealed importance sampling (AIS) [9] is
an important special case of SMC, although introduced earlier, and
will be explained in Section 3.1. We will describe two SMC methods
specifically designed for the multiplicative exponential noise model
in Section 3.2.

In SMC, we define a sequence of artificial target distributions,
pn = πn/Zn, moving from a simple distributionp1 towards the
actual distribution of interestpS = p(h|x). A potentially effec-
tive method for constructing good proposals is by drawing samples
from a simple importance distributionq1 and moving them using a
MCMC transition kernelsKn, such as Metropolis-Hastings. The
aim is to make the proposal close to the target and apply impor-
tance sampling sequentially. For example, at time 2 the importance
weights would be given by

w2(h2) =
π2(h2)

q2(h2)
=

π2(h2)∫
q1(h1)K2(h1,h2)dh1

. (8)

1IG(x|α, β) = x−α−1 exp(−β/x)βα

Γ(α)
, x > 0

〈

1
x

〉

= α
β
, 〈log x〉 = Ψ(α) + logβ

2In the text,C denotes a matrix with elementscfk andcf is itsf th row.

Unfortunately, the marginal importance distributionq2 is difficult to
obtain. Some transition kernels (e.g., Metropolis-Hastings) cannot
even be evaluated pointwise. In addition, using Monte-Carlo ap-
proximation for this integral will be too costly (O(N2

s )). However,
this can be overcome by defining alternative weights on extended
space

w2(h1:2) =
π2(h2)L1(h2,h1)

q1(h1)K2(h1,h2)
, (9)

whereL1 is an arbitrary backward Markov kernel. This trick cor-
responds to defining the target and importance distributions on ex-
tended space

p̃n(h1:n) = pn(hn)

n−1∏
k=1

Lk(hk+1,hk) , (10)

qn(h1:n) = q1(h1)
n∏

k=2

Kk(hk−1,hk) . (11)

Becausẽpn(h1:n) haspn(hn) as its marginal, it is possible to esti-
mate this distribution and its normalizing constantZn with IS.

The SMC algorithm proceeds as follows:Ns samples are drawn
from q1(h1). With these samplesh(i)

1 it is straightforward to evalu-
atew(i)

1 because bothq1 andπ1 can be evaluated pointwise. At time
n, using the weighted particles{w(i)

n−1,h
(i)
1:n−1} fromn−1, first the

particles are extended withKn(hn−1,hn), then the weights of each
particle is updated using

wn(h1:n) = wn−1(h1:n−1)
qn(hn)Ln−1(hn,hn−1)

qn−1(hn−1)Kn(hn−1,hn))
. (12)

As with standard SMC methods, the variance of the unnormalized
weights is liable to increase with time due to degeneracy. Resam-
pling can be applied as a remedy whenever effective sample size
(ESS) is below a certain threshold. When resampling is used,the
sum of current weights is stored as an estimate forZn/Zn′ where
n′ is the last time index that resampling was performed and each
particle is assigned equal weights (1/Ns).

If Kn is chosen to be an MCMC kernel with invariant distribu-
tion pn, this backward kernel can be approximated as

Ln−1(hn,hn−1) =
pn(hn−1)Kn(hn−1,hn)

pn(hn)
. (13)

with the assumptionpn ≈ pn−1. This is the reversal Markov kernel
associated withKn.

3.1. Annealed Importance Sampling

In AIS [9], a sequence of distributionspn(h) = p(h)1−βnp(x,h|W)βn

is chosen, with0 ≤ β1 < · · · < βS = 1. The unnormalized density
at timen, πn(h) is equal top(x|h,W)βnp(h).

Choosingq1(h1) as the priorp(h), the weights at time 1 be-
comes

w1(h1) =
π1(h1)

p(h1)
= p(x|h1,W)β1 . (14)

Using an MCMC kernel with invariant distributionpn(h) and its
reverse given in (13), the weights at timen is given by

wn(h1:n) =wn−1(h1:n−1)
πn(hn−1)

πn−1(hn−1)
(15)

=wn−1(h1:n−1)p(x|hn−1,W)βn−β
n−1 . (16)



a) SMC1 b) SMC2

Fig. 1. Dictionary sequences constructed by SMC1 and SMC2 from
a dictionary of size2× 3. Initial and final (original) dictionaries are
on top-left and bottom-right, respectively. Iterations progress row-
wise.

3.2. SMC with Dictionary Masking

In this section, we propose two SMC samplers for estimating the
marginal likelihood in multiplicative exponential noise model. The
main idea lies in the fact that this problem is trivial forK = 1,
easy forK = 2 or K = 3 and gets increasingly complicated as
K increases. This enables us to designp1, . . . , pS with increasing
complexity. In the first method (we will call it SMC1 from now on),
we collapse all columns ofW into its first column and set the rest
of the columns to zero. We define the masked dictionary at time1,
W

′

1, as

w′

1,f1 =
∑

k
wfk, ∀f ; w′

1,fk = 0, ∀f,∀k > 1

So,p1(h1) = p(h1|x,W
′

1). Over the nextS/(K − 1) iterations,
we slowly increase the values in the second column of the masked
dictionaryW′

n, by movingβnwf2 from the first column to the sec-
ond. Here,βn goes from zero to one. This is repeated for each of
the other columns in turn. At the last step, the masked dictionary
becomes the same as the original,W

′

S = W. The progression of
W

′

n in time is illustrated in Fig. 1a.
We start the algorithm by drawing samples fromq1(h1) =

p1(h1) = p(h1|x,W
′

1). SinceW′

1 has only one nonzero column,
this distribution is analytically available as

p(h|x,W′

1) = p(h1|x,W
′

1)
K∏

k=2

p(hk) , (17)

wherep(hk) are the prior distributions andp(h1|x,W
′

1) can easily
be derived asIG(h1; ak + uF, bk + u

∑
f |xf |

2/w′

1,f1). The first
weights being constant,w1(h1) = π1(h1)/p(h1), the weights at
timen are given by

wn(h1:n) =wn−1(h1:n−1)
p(x|W′

n,hn−1)

p(x|W′

n−1,hn−1)
. (18)

In SMC methods which use MCMC kernels, it is crucial to choose
pn−1 as close as possible topn. So, when starting to fill a new
column, it may be advantageous to select the column which is has
the next smallest angle with the sum of the original columns (first
column ofW′

1).
Our second method (SMC2) starts with one column ofW as the

previous one, but only using one observation,x1. Then, iteratively
it adds another columǹa la SMC1 and another observation (row).
If there is no more columns or rows, it goes in the other direction
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Fig. 2. Likelihood estimates on synthetical data forK = 2 and
K = 3. The number of iterations used in VB, VB2 (as well as
the VB2 inside IS and MM inside Laplace’s method) is 1000, the
number of samples in Ch1, Ch2 (Chib-style estimator introduced
in [12]), IS, LRW and LRB is 5000. In AIS, SMC1 and SMC2 the
number of iterations is 5000, while the number of samples is 100.
10 random initializations are used for each method. The solid line is
the exact marginal likelihood.

one by one. When adding a new observation, we choose the closest
observation to the last one and copy the dictionary row associated
with the last observation as the dictionary row of the new observation
and slowly modify it so that it is equal its original value in the end
(see Fig. 1b). At timen, the weights are evaluated using

wn(h1:n) =wn−1(h1:n−1)
p(x′

n|W
′

n,hn−1)

p(x′

n−1|W
′

n−1,hn−1)
. (19)

Most of the time, the constants in the likelihood term canceleach
other, but at the time a new observation is introduced, the cardinality
of x′

n is one more than that ofx′

n−1, so the weight contains the term
−u log π/u.

4. EXPERIMENTAL RESULTS

4.1. Synthetical Data

In order to compare SMC sampler based estimators to standard
methods, we generate data from the generative model, for various
K with F = 10, ak = 1 andbk = 1. Wtrue is drawn from the
Gamma distribution,wfk ∼ G(wfk; 1, 1). WhenK = 1, the only
excitation variable,h1, can be integrated out, i.e., the exact marginal
likelihood is analytically available. In the general case,defining
normalized excitation variables̃hk = hk/H with H =

∑K
k hk,

applying a change of variables betweenh1...hK andh̃1...h̃K−1 ,H
and integrating outH analytically, one can arrive at an expression
with K−1 degrees of freedom. ForK = 1, the marginal likelihood
is readily available with̃h1 = 1. Using this reduction, one can
easily approximate the log likelihood whenK = 2 or K = 3 by a
Riemann sum withh in the range[0, 1] as a ground truth.

In Fig. 2, log likelihood estimates forK = 2 and K = 3
are displayed. It is evident from the figure that simple approxi-
mation methods, such as Laplace’s method (LA), Chib’s method
(Ch1, Ch2), variational lower bounds (VB1, VB2) and importance
sampling (IS), cannot estimate the likelihood accurately.On the
other hand, SMC methods (including AIS) and left-to-right samplers
(LRW [5], LRB [6])3 perform well. In a more difficult scenario,
we compare the estimators in a classification experiment. Wecon-
struct two dictionaries,W1 andW2 with K = 15 such that they

3For this model, these samplers are not stand-alone, they require
p(x1|W) from any of the other methods.



Table 1. Classification errors (the number of errors out of 20 sam-
ples) withK = 15. All standard methods considered give higher
error rates, thus were removed from the table.

LRW LRB AIS SMC1 SMC2
9.6± 1.5 7.8 ± 1.9 8.8± 1.5 8.4± 3.0 7.6± 1.1

only differ in one column. We generate two datasets from these two
dictionaries withN1 = N2 = 10 data samples. Then, we try to
classify these 20 samples by comparing their marginal likelihoods,
p(xn|W1) andp(xn|W2). The classification errors obtained with
five repetitions (different datasets) are given in Table 1. According
to these results LRB and SMC2 performs the best whenK is large.

4.2. Nonnegative Interpolative Decomposition (ID)

We illustrate the accuracy of our marginal likelihood estimates in
a model selection scenario. The interpolative decomposition (ID)
(e.g., see [11] for an excellent introduction) is a technique for decom-
posing a data matrixX asX(:,¬r) = X(:, r)H wherer denotes
the selected columns ofX and¬r denotes unselected columns. It is
natural to encoder as a binary vector where the corresponding ele-
ment is one (zero) when the corresponding column is selected(not
selected).

Inspired by the ID, we define the following generative model as
a nonnegative interpolative decomposition (NID) model

wfk ∼ G(wfk; 1, 1), f = 1..F, k = 1..K

hkn ∼ IG(hkn; ak, bk), k = 1..K, n = 1..N −K

rn ∼ BE(rn; 0.5), n = 1..N

X(:, r) = W, X(:,¬r) ∼ p(·|WH) .

In other words, the selected (but unknown) columns give directly the
W matrix. By calculating the marginal likelihood for each configu-
ration ofr, we can estimate the order of the nonnegative ID decom-
position. We seek the optimal indicator vectorr̂ which maximizes
p(X(:, r),X(:,¬r)) = p(X(:, r))p(X(:,¬r)|X(:, r)).

For smallN we can evaluate the marginal likelihood for all2N−
1 (excluding all zero) configurations ofr. We observe that when
we generate data from the true model we are able to recover the
true decomposition, e.g., withF = 10, K = 3, N = 5, ak = 1
and bk = 1. We performed 10 independent trials with the most
promising methods from the previous section LRB and SMC2 and
compared their performances to IS, which was the most accurate
among the fast estimators. The number of errors in bits ofr̂ andrest
out of these 10 runs (thus, total number of bits compared is 50) are
zero for LRB and SMC2 and three for IS. These results tell us that we
need sampler-based estimators for high accuracy, but this restricts
us in the size of the problem, because of their high computational
complexity. Still, we have to keep in mind that the inferencemethod
used here is a brute force technique which requires very highnumber
of likelihood computations.

5. CONCLUSION AND DISCUSSION

We proposed two new SMC samplers for estimating the conditional
marginal likelihood of the multiplicative exponential noise model,
which is widely used in applications such as music transcription and

source separation. In the experiments, we showed that standard ap-
proaches estimate the marginal likelihood poorly and more elaborate
methods are indeed needed for more accurate estimates. We observe
that the SMC samplers (AIS, SMC1 and SMC2) and left-to-right
samplers, designed originally for LDA and adopted here for NMF,
perform significantly better. SMC2 and LRB4 give consistently ac-
curate results but are computationally the most demanding ones. The
results for SMC samplers suggests that carefully choosing the tem-
pering schedule is key in accurate inference. Currently, this fact ren-
ders the use of these methods difficult in large scale data processing
applications and parallelization seems to be the directionfor further
investigation.
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