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Abstract

We consider a visual scene analysis scenario where ob-
jects (e.g. people, cars) pass through the viewing field of
a static camera and need to be detected and segmented
from the background. For this purpose, we introduce a hy-
brid dynamic Bayesian network and derive an Expectation
propagation (EP) algorithm for robust estimation of object
shapes and appearance statistics. We demonstrate the via-
bility of the approximation on an object detection task from
real videos, where objects’ smooth shapes are segmented
from the background. The model is readily extendible to
multi-object multi-camera scenarios and can be coupled in
a transparent and consistent way with a hierarchical model
for object identification under uncertainty.

1. Introduction

Foreground/background classification of pixels is a cru-
cial preprocessing step in many computer vision problems,
such as object tracking and identification where one wishes
to suppress background pixels to collect reliable statistics
about object features of interest. In many applications, the
key assumption is that the visual sensors and the back-
ground image are static and objects of interest are in motion
(e.g. people walking in a room full of furniture). Transient
deviations from “steady-state” pixels values are detected
and associated with foreground objects. Unfortunately, in
reality, a background scene is almost never entirely static
due to illumination changes, shadows, reflections, fog, wind
or camera jitter [11]. All these factors render simple heuris-
tics such as thresholding pixel differences useless.

From a statistical viewpoint, background estimation can
be viewed as a novelty detection problem, e.g. [3]. Either
implicitly or explicitly, probabilistic approaches attempt to
estimate a process for the background pixels and try to de-
tect “surprises”. However, mainly due to computational
considerations, many methods (e.g. [3, 10]) ignore spatial
dependencies among neighboring pixels and only take tem-
poral correlations into account. More recently, spatial cor-

relations among pixels are implicitly taken into account by
using a fixed basis transform [11] or are explicitly modeled
using Markov random fields [13, 9].

In this paper we describe a probabilistic model that takes
the spatial and temporal correlations into account in a flex-
ible way, without much additional computational cost. We
describe our model as a hybrid dynamic Bayesian network
(with latent discrete child and continuous parent nodes [7]).
The model is generative in nature, and reflects our a-priori
assumptions about the visual scene – such as smooth ob-
ject/shadow regions and a quasi-static background process.
Exact computation of required quantities is intractable and
we derive an approximate Expectation Propagation (EP) [8]
algorithm that works essentially in linear time in the num-
ber of pixels, regardless of the correlation structure among
them. An attractive feature of the model is that it allows for
learning important image regions or object shapes easily[6].
Moreover, background estimation can be readily coupled in
a transparent and consistent way to subsequent processing.

2. Model

We will denote each RGB pixel of a video stream as yk,t

where k = (i, j) with i and j corresponding to the vertical
and horizontal spatial indices and t denoting the time frame.
To simplify notation we will treat k as a linear index and let
k = 1 . . . K with K being the number of pixels per frame.
We will also use the boldface notation yt to denote all the
pixels at t’th frame.

Each pixel has a binary indicator rk,t ∈ {back =
−1, fore = 1}, that indicates whether yk,t is associated with
background or foreground object. For modeling shadows,
we introduce a similar and independent binary indicator,
ck,t with domain {no-shadow = −1, shadow = 1}. Note,
that this enumeration leaves a possibility that a foreground
object can be under a shadow as well. We will denote the
collection of indicators in the t’th frame as rt and ct and
refer to them as masks.

Visual scenes that we are interested in contain smooth
shadow and object regions. Therefore, the corresponding
masks, when viewed as a binary images, will exhibit long
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Figure 1. (Top), A few frames from an office scene. (Middle) A vertical slice through time, taken along the line shown on the frames.
(Bottom) Variations in RGB values of a single pixel (at row 200). Occlusions and shadows can be clearly seen as immediate changes in
intensity. Fluctuations in a single color channel illustrate the difficulty of detection when pixels are processed independently.

range correlations. A popular approach for modeling such
correlations is by a Markov Random Field (MRF), where
a positive coupling is assumed between adjacent pixels.
Whilst a powerful and compact model, inference and es-
pecially learning in MRF’s tend to be computationally ex-
pensive.

In this paper, we will investigate an alternative approach
for introducing long range correlations on the binary masks.
Our approach is based on the simple observation that signs
of a collection of correlated Gaussian variables are also cor-
related. For an illustration of this idea, see Figure 2. We
define a linear dynamical system (a Kalman filter model)
on a collection of latent variables xk,t, from which we ob-
tain binary indicators rk,t by thresholding. Analogous mod-
els were proposed for unsupervised learning of static binary
patterns [6], visualization [12] and for classification [14].
To our knowledge, however, these ideas were not employed
in a dynamical visual scene analysis context.

2.1. Prior on masks

Linear dynamical systems are widely used state space
models for continuous time series. In this model, data is as-
sumed to be generated independently from a latent Markov
process that obeys a single linear regime

s0 ∼N (m,P ) st ∼N (Ast−1, Q) xt ∼N (W st, R).

Here, m and P are prior mean and covariance, Q and R are
diagonal covariance matrices and A and W are transition
and observation matrices that describe the linear mappings
between st, st−1 and xt. By integrating over s1:T , it is easy
to see that this model induces on x1:T a Gaussian distri-
bution with a constrained (but in general full) covariance

matrix. A tractable extension to this model is useful for
modeling piecewise linear regimes with occasional regime
switches [2]:

ot ∼ p(o)

st ∼ [ot = off]N (st−1, Q) + [ot = on]N (m,P ).

Here, ot is a binary variable that indicates a regime switch
and [text] denotes an indicator, that evaluates to 1 (or 0)
whenever the proposition “text” is true (or false). When
ot = on, we switch to a new regime by “reinitializing” the
state vector from the prior.

To convert this model for real valued data into one for
binary data, we use a clipping mechanism analogous as de-
scribed in [6]. Under this model, quantization of the corre-
sponding hidden variables yields binary masks r and c:

ot =

{

on rk,t−1 = back ∀k = 1 . . .Mor t = 1
off otherwise

sr
t ∼ [ot = off]N (Arsr

t−1, Q
r) + [ot = on]N (mr, P r)

xr
t ∼ N (W rsr

t , R
r)

rk,t = sgn(xr
k,t).

Appropriately chosen W r and Ar yield typical xk,t that are
smooth functions of k and t, hence their signs also alter-
nate slowly. We use this property to model smooth object
masks. When an object leaves the scene in the previous
time frame, i.e. when all indicators switch to rk,t−1 = back
for k = 1 . . .M , we trigger the onset indicator by setting
ot = onset. For shadow masks, we use a simpler model
without regime switching:

sc
0 ∼ N (mc, P c) sc

t ∼N (Acsc
t−1, Q

c)

xc
t ∼ N (W csc

t , R
c) ck,t=sgn(xc

k,t).
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Figure 2. Random draws from the prior for different correlation
values. Top row, x1:K , bottom row, r1:K , arranged as a 16 × 16
grid. In this example, the covariance matrix is parametrized as
K = {κk,k′} where κk,k′ = exp(− 1

θ2 ‖k − k′‖2) with ‖ · ‖
denotes the Euclidean norm. Left column and right column corre-
spond to samples with θ = 2 and θ = 0.5, respectively. If the cor-
relation coefficient is chosen to be large for adjacent indices k and
k′, the corresponding random variables xk and xk′ will have a-
priori close values. Hence, typical x1:K will be smooth functions
(of k) and consequently their sign will also alternate smoothly.
The main idea of this paper is to induce a spatio-temporal correla-
tion structure via an embedded linear dynamical system.

2.2. Generative model for pixel values

The pixels of the background image are assumed to be
quasi-static. However, due to camera jitter and long term
deviation in the illumination conditions, the pixel values are
not exactly constant (See Fig.1). The background pixel val-
ues, denoted as bk,t, are assumed to be generated from the
following linear dynamical system:

sb
0 ∼N (mb, P b) sb

t ∼N (Absb
t−1, Q

b) bt ∼N (W bsb
t , R

b).

The rationale behind this model is simple: Suppose thatW b

is equal to a “snapshot” of the background image at time 0
and Ab = 1. In this case sb

t is a scalar. We can interpret it
as a global intensity variable that undergoes a random walk
with transition noise variance Qb. In general, we can rep-
resent background with multiple basis vectors arranged as
columns of W b. The expansion coefficients sb will corre-
spond to a low dimensional representation. The variables
(A,Q,W,R)b can be learned offline to reflect the expected
variation in the background image. Similar models for ap-
pearance have been considered in [4].

The foreground objects may have a variety of colors and
textures depending upon the observed scene (e.g. highway,
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Figure 3. (Left) Graphical Model of a single time frame. The rect-
angles are plates that denoteK repetitions of nodes inside. Square
and oval nodes correspond to discrete and continuous variables,
respectively. Variables f , b, y are vectors denoting the RGB com-
ponents. Dotted arcs depict the regime switch mechanism that is
triggered when an object leaves the scene. (Right) Loopy Factor
graph of a single slice used in EP iterations. Forward messages
to the next time slice (not shown) are passed only once. Filled
rectangles (A,B,C,D,E, F,G) represent factors.

office). Hence, the prior distribution should be selected on
a case by case basis, according to the features which one
believes are important. We let fk,t ∼ p(f |µt) where µt

is a parameter vector. When an object leaves the scene, as
indicated by ot, the parameter vector is reinitialized

µnew ∼ p(µ) µt = [ot = off]µt−1 + [ot = on]µnew,

where p(µ) is a suitable prior distribution. One choice is to
describe object’s appearance with a linear Gaussian model
(e.g. factor analysis model [4]) and let µt = W f

t , where
W f are basis vectors representing the object’s appearance.
Due to the limited scope of this paper, we assume that the
foreground pixels fk,t are drawn independently from an uni-
form distribution.

Pixel values and the masks render the observed image as

ρk,t = [ck,t = no-shadow] + [ck,t = shadow]ρ

yk,t = ρk,t ([rk,t = fore] fk,t + [rk,t = back]bk,t) .
(1)

Here, 0 < ρ < 1 is a fixed parameter modeling the amount
of illumination drop due to shadows. The graphical model
is shown in Figure 3. A typical draw from the model is
depicted in Figure 4
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Figure 4. A random draw from the model. Note the spatial and
temporal correlations in the generated masks.

3. Inference

We are interested in various marginals of the smoothed
density p(µ1:T , r1:T , s

r
1:T |y1:T ) or the filtering density

p(µt, rt, s
r
t |y1:t) (for online operation). In either case, the

latent binary variables c, r render the model an intractable
hybrid graphical model[7] where desired marginals can be
computed only approximately.

To select a suitable inference method, consider the model
structure: given the masks r, c, we could integrate over the
background pixel process analytically (since it is a KFM).
In principle, we could sample from the masks, however,
unless the continuous latent parents sc and sr are low di-
mensional, the prior probabilities of masks can not be com-
puted easily. One needs to sample from sc and sr and
this renders Rao-Blackwellized particle filtering or Gibbs
sampling computationally expensive [1]. Alternatively, one
could approximate the prior by a mean-field approxima-
tion. However, due to the hard clipping mechanism, mean
field with factorized Gaussians as the approximating family
would break down (since Kullback-Leibler divergence be-
tween any Gaussian and a clipped Gaussian becomes ∞)
and we need to relax clipping with a sigmoidal soft thresh-
old or use a more exotic approximating family.

3.1. Expectation Propagation

Here, we investigate an alternative deterministic approx-
imation method, based on Expectation propagation [8]. EP
is an iterative message-passing algorithm and generalizes
Loopy Belief Propagation (LBP) [15], in that it is directly
applicable to arbitrary hybrid graphical models, including

the model we have introduced. One can view EP as a lo-
cal message passing algorithm on a factor graph [5] where
messages are passed between factors –potentials represent-
ing local dependencies, and beliefs – approximate marginal
potentials. Unlike multinomial or Gaussian models, where
all marginals stay within a closed family, in hybrid models,
beliefs computed from mixed messages may have compli-
cated forms (e.g. mixtures, clipped Gaussians). In such
cases, EP replaces a belief with a potential from an approx-
imating exponential family, usually in KL sense, i.e. by
matching moments. The quality of the approximation de-
pends, how well these “summary statistics” represent the
exact beliefs.

The algorithm can be summarized as the following fixed-
point iteration between messages mF→ξ and beliefs q(ξ):

mF→ξ(ξ)
new :=

Zqnew(ξ)

q(ξ)
mF→ξ(ξ) (2)

qnew(ξ) = argminqKL(q̃|q) (3)

q̃(ξ) :=
1

Z

∑

F\ξ

ψ(F )
∏

ξ′∈F

q(ξ′)

mF→ξ′(ξ′)
(4)

Here ξ is an index that runs over variables, F is an index
set that runs over factors, ψ(F ) is a local factor potential,
F \ ξ denotes variables adjacent to F except for ξ, and Z is
a normalization constant [8].

Implementation We implemented each time-slice of our
model with a simple factor graph as shown in Fig.3. This
structure corresponds to a fully factorized approximation to
the joint posterior. We use Gaussians and multinomials as
natural approximating families for the continuous and dis-
crete variables. The message update equations are derived
as particular cases of the general scheme in Eq.4. The fac-
tor potentials Ak,t, Bk,t, Fk,t, Gk,t are Gaussian, therefore
qnew = q̃ is a Gaussian that can be computed analogously
as in the well-known linear Gaussian models (see [5]). Be-
low, we solve Eqs. 3–4 for the non-linear factors Dk,t and
Ek,t (the equations for Ck,t are identical to that of Dk,t).

For simplicity, we omit the time/pixel indicies {k, t}.
Consider factor D and the adjacent variables {x, r}. The
clipping mechanism translates to the simple local potential
ψ(x, r) = [rx > 0]. Let q(r)

mF→r(r) = Zr[w(−1), w(1)] be a

multinomial potential, w(−1) + w(1) = 1 and q(x)
mF→x(x) =

ZxN (x|µ, v) be Gaussian. To update belief q(r) we substi-
tute to Eq. 4 with r ∈ {−1, 1} and integrate x

q̃(r) =
1

Z
w(r)

∫

x

[xr > 0]N (x;µ, v) =
1

Z
w(r)λ(r),

where Z = ZrZx

∑

r w(r)λ(r) and the normalization
constant of a clipped Gaussian is λ(r) = (1 + r)/2 −
(r/2) erfc(µ/

√
2v). This update corresponds to a “prior”



on indicator r ∈ {−1, 1}. The distribution q̃ is already
multinomial, so we can directly substitute qnew(r) = q̃(r).

Now, we consider the same factor D and update belief
q(x). Substituting to Eq. 4 with r ∈ {−1, 1} gives

q̃(x) =
1

Z

∑

r

[xr > 0]w(r)N (x|µ, v).

Note that q̃ is unimodal. Minimization of Eq. 3 corre-
sponds to setting the moments of the new belief qnew(x) =
N (x|µx, vx) equal to the moments q̃(x)

µx =
∑

r

w(r) 〈x|r〉 vx =
∑

r

w(r)
〈

x2|r
〉

− µ2
x,

where the moments of a normalized clipped Gaussian den-
sity [rx > 0]N (x|µ, v)/λ(r) are given by

〈x|r〉 = µ+ rη/λ(r)
〈

x2|r
〉

= µ2 + v + rµη/λ(r),

and η = exp(−µ2/2v)
√

v/2π.
Next, consider factor Eν and the adjacent variables

{r, c, fν , bν}, where ν ∈ {R,G,B} denotes the color
channel, and fν and bν are scalars denoting channel val-
ues for the current pixel. The equations for all channels
are identical, so we omit the index ν. Let the current
belief/message ratios be q(r)

mF→r(r) = Zr[wr(1), wr(−1)],
q(c)

mF→c(c)
= Zc[wc(1), wc(−1)] for the binary variables r

and c. Let q(f)
mF→f (f) = ZfN (f |µf , vf) and q(b)

mF→b(b)
=

ZbN (b|µb, vb) denote Gaussian potentials, and δ() the
Dirac-delta function. The factor function follows from Eq. 1

ψ(E) =
[

( r
c ) =

(

1

−1

)]

δ(y − b) + [( r
c ) = ( 1

1
)] δ(ρy − b)

+
[

( r
c ) =

(

−1

−1

)]

δ(y − f) + [( r
c ) = ( −1

1
)] δ(ρy − f),

where y is a scalar denoting the observed pixel value in
the current color channel, and [( a1

a2
) =

(

b1
b2

)

] = 1(or = 0)
when a1 = b1 and a2 = b2 (otherwise).

We start with updating belief q(r) by substituting to
Eq. 4 and integrating variables f , b, c

q̃(r) =
1

Z
wr(r)

∑

c

wc(c)N (y|ρ(c)µξ(r), vξ(r))

with ρ(1) = ρ, ρ(−1) = 1, and ξ is an indicator function:
ξ(1) = b, ξ(−1) = f . Similar results hold for q̃(c). For
discrete indicators, q̃ is multinomial, thus qnew = q̃.

Now consider updating q(b). Substituting to Eq. 4 and
integrating r, c, f gives q̃(b) in the form of a mixture of two
delta functions and a Gaussian density

q̃(b) = α1δ(b− ρy) + α2δ(b− y) + α3N (b|µb, vb),

where

α1 =
wr(1)wc(1)

Z
γ(y/ρ), α2 =

wr(1)wc(−1)

Z
γ(y)

α3 =
wr(−1)

Z

∑

c

γ(y/ρ(c)), γ(y) = N (y|µf , vf).

The new Gaussian belief qnew(b) = N (b|µ, v) follows from
moment matching between qnew(b) and q̃(b)

µ = 〈b〉q̃ = α1ρy + α2y + α3µb

v =
〈

b2
〉

q̃
− 〈b〉q̃ = α1(ρy)

2 + α2y
2 + α3(vb + µ2

b) − µ.

Analogous derivation holds for updating the belief q(f).

Schedule We have used the following order of message
and belief updates for a fixed time-slice t

loop until EP convergence
for k = 1 . . . K
Ak,t → xc

k,t, Bk,t → xr
k,t, Ck,t → ck,t, Dk,t → rk,t

Fk,t → fk,t, Gk,t → bk,t

Ek,t → ck,t, Ek,t → rk,t,Ek,t → fk,t, Ek,t → bk,t

Ak,t → sc
t , Bk,t → sr

t , Fk,t → µt, Gk,t → sb
t

Here, F → ξ denotes simultaneous update of the message
mF→ξ and belief q(ξ) according to the Eqs. 3–4. We refer
to the inner loop as a single EP iteration. After convergence
we move on to the next time-slice.

4. Experiments

In the following experiments we study the convergence
rate of the EP-based inference in our model, and compare
our model with two other popular techniques for recovering
smooth masks: Markov Random Fields and mathematical
morphology.

EP approximation Due to the iterative nature of EP, the
convergence rate is a key factor for online implementation
of our model. In this experiment we demonstrate the con-
vergence and accuracy of EP approximation to the prior
p(r) (the source of intractability). Inference in this sub-
model is equivalent to calculating the integral of the Gaus-
sian distribution

∫

dsrp(xr|sr)p(sr) in one of the 2K or-
thants specified by the mask configuration (see Fig.5, left).
In one dimension, this integral can be evaluated easily as
shown in the previous section; however in higher dimen-
sions we need to reside to approximations. Fortunately, we
can ensure by construction that the Gaussian is positive def-
inite, hence the clipped Gaussian will be unimodal and we
expect a factorized EP approximation to converge. In the
middle panel of Fig.5 we show results of an experiment
where we have computed the likelihood of all configura-
tions of r for K = 8, ranked them and compared to impor-
tance sampling. We observe in this and similar experiments
that EP converges in 2-3 iterations and is indeed very accu-
rate. Following this observation, in the subsequent tests we
run two EP iterations per frame.
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Figure 5. (Left) K = 2, a Gaussian clipped at r = [−1, 1] and EP approximation to its true moments. (Middle) K = 8. Comparison of
EP with importance sampling. We use a truncated Fourier basis W r

k = [1, sin(ωk), cos(ωk)] with ω = 2π/K with Rr = 0.12I,mr =
0. Note that many configurations have the same probability since mr = 0. For importance sampling we have drawn 107 samples
independently from s

r and integrated over x
r to compute p(r). (Right) K = 8 pixels arranged in a column; three basis vectors W r

k ; an
example mask obtained from coefficients s

r = [−0.4,−0.2,−1.2]>.

Comparison with MRF To illustrate the performance on
real data, we use the video sequence shown in Fig. 1. In
this experiment we split video frames into individual verti-
cal scanlines, which are processed independently. For each
scanline (a column of 240 pixels) we define mask prior, sim-
ilarly as in the right panel of Fig 5. In this way, we demon-
strate the smooth changes of inferred masks over time.

We have trained the parameters of the background pro-
cess (A,Q,W,R,m,P )b using an EM algorithm from
frames of the empty scene. Mask parameters are set to
Ar = γI , Qr = (1 − γ)I with the fudge factor γ = 0.95.
W r is taken as a truncated Fourier basis, the same as in
the previous experiment. Other parameters are (mr, P r) =
([1.5, 0.5, 0.5]>, 0.2I). Parameters for shadow masks are
identical. In principle these can also be learned from pre-
segmented data.

We also consider a similar model, where the prior cor-
relations on masks are enforced with an MRF that couples
neighboring pixels. Fig. 8 (Top) shows the object masks re-
covered by the filtering density p(rt|y1:t) in our model, and
Fig. 8 (Bottom) in the MRF case. The differences between
the two approaches become more clear in Fig. 9, where we
inspect the filtering density on the “change-point” variable
p(ot|y1:t). This variable can be interpreted as an object-
presence indicator. Objects can be automatically detected
whenever p(ot|y1:t) changes to a value grater than a suit-
able threshold τ . The advantage of our model is evident in
Fig. 6, where we show the averaged false-alarm rates as a
function of τ , using two videos recorded in an office-like
environment (each of approx. 1500 frames).

Comparison with morphological smoothing Our model
can be also used for smoothing of masks that were com-
puted by an independent segmentation method. Typi-
cally, such post-precessing involves successive application
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Figure 6. False-alarm rates for object detection as a function of
detection threshold.

of mathematical morphology operations: erosion and dila-
tion. Under our model, to infer underlying objects’ shapes
from a noisy mask r̂t, we first find (with EP) the expected
low-dimensional shape coefficients 〈sr

t |r̂t〉 = µs. The
smooth shape (mask) rt is reconstructed by clipping the lin-
ear projection of the coefficients µs; rt = sgn(W r

µs).
In this experiment we split video frames into rectangular

patches of (Ny × Nx) pixels and process each patch sepa-
rately. The model parameters for each patch are identical.
The basis vectors are linear functions of pixel coordinates;
W r

i,j = [1, ki + kj , ki − kj ], were ki (respectively, kj)
are Ny (Nx) uniformly spaced points from [−1,+1] (see
Fig. 7). The other mask parameters are set to Ar = γI ,
Qr = (1 − γ)I , γ = 0.99, (mr, P r) = ([0, 0, 0]>, I).
Fig. 10 we presents selected frames from the video se-
quence, where we compare original masks to the shapes
recovered by our model and those recovered by mathe-
matical morphology. The complete video is available at
http://staff.science.uva.nl/∼wzajdel/demos/cvpr05.mpg.
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i,j = ki + kj

(Bottom Left) W r = ki − kj , were ki (respectively, kj) are Ny

(Nx) uniformly spaced points from [−1,+1]. (Bottom Right) An
example of a mask for Ny = 6, Nx = 8 generated from these
vectors, with coefficient sr = [0.52, 0.21,−0.92]>.

5. Discussion and Conclusion

We have described a model for robust object detection,
where background estimation need not be viewed as an in-
dependent preprocessing step. Automatic identity estima-
tion based on the objects’ features requires additional ma-
chinery; which can be readily coupled in a transparent way
to the presented model. This allows us properly characterize
any uncertainty in the foreground detection, which arguably
is important for robust object identification.

An attractive feature of the model is that any image sub-
region with an arbitrary shape (e.g. full frames, scanlines or
randomly scattered patches) may be processed, since given
s variables, the spatial ordering of pixels is irrelevant. Ad-
ditionally, the dimensionality of s variables can be tuned to
trade off correlations and computation time (which scales
as O(|S|2TK), where |S| = maxξ∈{r,c,b} dim s

ξ
t ).

The model, as it now stands, assumes that at most one
object is observed at a given time frame. This assump-
tion holds for small image regions, but for larger images
the model has to be extended, e.g. by considering multi-
ple layers [4], each with a single object and a correspond-
ing subgraph. Whilst the local message passing mechanism
offers a computationally tractable solution, it remains to be
seen, whether such an extension to the framework described
here can be implemented in practice.
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Figure 8. Filtered estimates of object masks p(rt|y1:t). (Top) Clipped Gaussian prior (our model). (Bottom) Markov Random Filed prior,
with coupling strength 0.7. Compare with Fig. 1
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Figure 9. Filtering distribution on the “change-point” variable p(o t|y1:t). (Top) Our model. (Bottom) MRF prior.

raw mask smoothed by morphology smoothed by our model

Figure 10. (Left) Segmentation of independent pixels with [10]. (Middle) Object shape recovered by morphology (1 erosion, 2 dilations, 1
erosion). (Right) Object shape recovered by our model, when applied independently to rectangular patches (Ny = 6, Nx = 8) within the
frame.


