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ABSTRACT

In this paper we present a model for simultaneous tempo and poly-
phonic pitch tracking. Our model, a form of Dynamical Bayesian
Network [1], embodies a transparent and computationally tractable
approach to this acoustic analysis problem. An advantage of our
approach is that it places emphasis on modeling the sound gener-
ation procedure. It provides a clear framework in which both high
level (cognitive) prior information on music structure can be cou-
pled with low level (acoustic physical) information in a principled
manner to perform the analysis. The model is readily extensible to
more complex sound generation processes.

1. INTRODUCTION

When humans listen to sound, they are able to associate acoustical
signals generated by different mechanisms with individual sym-
bolic events [2]. The study and computational modeling of this hu-
man ability forms the focus of computational auditory scene analy-
sis (CASA) and machine listening [3]. Traditionally, the focus was
in speech applications. Recently, analysis of musical scenes[4] is
drawing increasingly more attention, primarily because of the need
for content based retrieval in digital audio databases and increasing
interest in interactive music performance systems.

One of the hard problems in musical scene analysis is auto-
matic music transcription: to infer automatically a musical nota-
tion (such as the traditional western music notation) that lists the
pitch levels of notes and corresponding timestamps in a given per-
formance. However, in its most unconstrained form, i.e., when op-
erating on an arbitrary polyphonic acoustical input, possibly con-
taining an unknown number of different instruments, music tran-
scription remains yet as a difficult engineering problem. Our aim
in this paper is to consider a computational framework to move us
closer to a practical solution to this problem.

Music transcription has attracted quite an amount of research
effort in the past. See [4] for a detailed review of early work. In
speech processing, tracking the pitch of a single speaker is a fun-
damental problem and methods proposed in the literature fill vol-
umes [5]. A vast majority of pitch detection algorithms are based
on heuristics (e.g., picking high energy peaks of a spectrogram,
correlogram, auditory filter bank, etc.) and their formulation usu-
ally lacks an explicit objective function or a signal model. Hence,
it is often difficult to theoretically justify merits and shortcomings
of a proposed algorithm, compare it objectively to alternatives or
extend it to more complex scenarios.

Pitch tracking is inherently related to detection and estima-
tion of sinusoidals, a topic that has also been deeply investigated
in statistics, e.g. see [6]. However, ideas from statistics seem to
be applied less in the context of musical sound analysis and pitch
tracking. Some exceptions include the work in [7] that presents a

realtime monophonic pitch tracking application based on Laplace
approximation to the posterior parameter distribution of an AR(2)
model. A more sophisticated Kalman filter based pitch tracker is
proposed by [8] that tracks parameters of a harmonic plus noise
model (HNM) for monophonic speech.

Kashino [9] is, to our knowledge, the first author to apply
graphical models explicitly to the problem of polyphonic music
transcription. Sterian [10] described a system that viewed tran-
scription as a model driven segmentation of a time-frequency im-
age. Walmsley [11] treats transcription and source separation in
a full Bayesian framework. He employs a frame based general-
ized linear model (a sinusoidal model) and proposes inference by
reversible-jump Markov Chain Monte Carlo (MCMC) algorithm.
The main advantage of the model is that it makes no strong as-
sumptions about the signal generation mechanism, and views the
number of sources as well as the number of harmonics as unknown
model parameters. Davy and Godsill [12] address some of the
shortcomings of his model and allow changing amplitudes and de-
viations in frequencies of partials from integer ratios. The reported
results are good, however the method is computationally expen-
sive.

Most of the authors view automated music transcription as a
“audio to piano-roll” conversion and usually view “piano-roll to
score” as a separate problem. This view is partially justified, since
source separation and transcription from a polyphonic source is al-
ready a challenging task. On the other hand, automated generation
of a human readable score includes nontrivial tasks such as tempo
tracking, rhythm quantization, meter and key induction [13]. We
believe that a model that integrates these higher level symbolic
prior knowledge can guide and potentially improve the inferences,
as partially demonstrated by [14], both in terms of quality of the
solution and computation time.

In a statistical sense, music transcription, (as many other per-
ceptual tasks such as visual object recognition or robot localiza-
tion) can be viewed as a latent state estimation problem: given the
audio signal, we wish to infer the underlying score (i.e. collec-
tion of onset times, note durations, pitch classes, etc. ). We as-
sume that we have one microphone which we sample with a con-
stant sampling frequencyFs. We will denote the audio samples
{y1, y2, . . . . . . , yT } by y1:T . Our approach considers the desired
quantities as ‘hidden’ (unobserved), whilst acoustic recording val-
uesy1:T are ‘visible’ (observed). Let us denote the unobserved
quantities byH1:T where eachHt is a vector. As a general infer-
ence problem, the posterior distribution is given by

p(H1:T |y1:T ) ∝ p(y1:T |H1:T )p(H1:T ) (1)

The likelihood termp(y1:T |H1:T ) in (1) requires us to specify a
generative process that gives rise to the observed audio samples.
The prior termp(H1:T ) reflects our knowledge about the hidden
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t 1 2 3 4 5 . . . 465 466 467 . . .
θ -1 -0.99 -0.99 -0.97 -0.96 . . . -1.23 -1.23 -1.22 . . .
v 0 0.002 0.004 0.006 0.008 . . . 0.998 1.001 1.003 . . .
k 0 0 1 2 2 . . . 2 2 3 . . .
h 0 0 0 1 1 . . . 1 1 1.5 . . .
κ 0 1 1 0 0 . . . 0 1 0 . . .

Figure 1: (Top) Simple polyphonic score and the sequence of note
events it represents. Thek’th note has three attributes: the score
position ck, durationlk and the pitch indexnk. (Bottom) The
graphical model for the timer process and a possible realization.κ
values are shown as[κ = onset]. Other variables are described in
the text.

variables. Our hidden variables will contain, in addition to the
score, other variables (e.g. tempo) required to complete the sound
generation procedure.

2. MODEL

Musical signals have a very rich temporal structure, both on phys-
ical (signal) and cognitive (symbolic) level. From a statistical
modeling point of view, such a hierarchical structure induces very
long range correlations, that are difficult to capture with conven-
tional signal models. Moreover, in many music applications, such
as transcription or score following, we are usually interested in a
symbolic representation (such as a score) and not so much in the
“details” of the actual waveform. To abstract away from the sig-
nal details, we define a set of intermediate variables (a sequence of
indicators and pitches), somewhat analogous to a “piano roll” rep-
resentation. This piano roll representation will form an “interface”
between a symbolic representation and the actual signal process.
We will first introduce aScoreand aTimermodel to induce a prior
on piano rolls. Conditioned on the piano roll, we will define a
Signalmodel; a sinusoidal model that we will formulate as a con-
ditionally Gaussian process (a Kalman filter model). Roughly, the
score model describes how a piece is composed, a timer model de-
scribes how it is performed, and a signal model describes how the
actual waveform is synthesized.

2.1. Timer and Score Models

Our timer model, when viewed as a probabilistic generative model,
is analogous to a MIDI sequencer, a program that schedules note
events and generates control signals that drive a sound generating

device. We imagine that each performance is a realization from
a score. In Figure 1, we show a simple polyphonic score and the
corresponding note sequence. The score itself is generated by a
score model and is “performed” by an “expressive” sequencer. An
expressive sequencer, like a human performer, can fluctuate the
tempo or introduce timing deviations (plays scheduled notes a little
bit earlier or later). The generated control signals, when viewed as
functions of actual time, constitute an intermediate representation
analogous to a piano roll.

We implement the timer mechanism as follows: At each time
step, a continuous variable,v, the score position pointer, is in-
creased monotonically with a rate proportional to the tempo. Each
time the pointerv reaches the next note in the score, an interrupt
is generated and an indicator variable,κ, is set to the ’onset’ state.
We represent the tempo in log-period byθt. For example, a tempo
of 120 beats per minute corresponds toθ = log2 60/120 = −1.
At each new sample, we allow the tempo to change by a small
amountεθ ∼ N (0, Σθ).

θt = θt−1 + εθ

vt = vt−1 + 2−θt/Fs

Whenθ becomes large, the score pointerv is incremented less so
the tempo gets effectively slower.

To represent the score, we define a counter variablekt that
counts the number of notes we have generated so far. We also
defineht, theonset threshold, that specifies the score position of
thenextnotecnew

kt = kt−1 + [κt−1 = onset]

cnew ∼ f(c|ht−1, kt)

ht = ht−1[κt−1 6= onset] + cnew[κt−1 = onset]

Abovef(c|ht−1, kt) is a distribution on score positions of notes,
that reflects the statistics of scores that we expect to generate. If
the score would be given, thencnew = ckt+1 andf would be a de-
terministic (degenerate) distribution. Here,[Q] is an indicator that
evaluates to1 (0) when the Boolean propositionQ is true (false).
We generate an interrupt ifvt ≥ ht ,i.e., when the score pointer
has reached the onset threshold; this decision is made “softer” by
using a sigmoidσ(x) ≡ 1/(1 + exp(−ax)) where we define the
probability of an onset as

p(κt = onset|vt, ht) = σ(vt − ht)

The sigmoid parametera adjusts the timing accuracy: a smallera
allows for more deviation from the value specified by the threshold
ht. The graphical submodel of the timer process and a numerical
example are shown in in Figure 1. At any timet, we assume that
our idealized polyphonic instrument can produce at mostM in-
dependent voices or notes, i.e. hasM sound generators (e.g. a
guitar withM strings or a piano withM keys). When an onset is
generated by the timer process, the index of a sound generator is
drawnmnew ∼ f(m|kt). If the score would be known and each
generator would be assigned to a unique note (e.g. as in a piano)
thenf(m|kt) would be a deterministic distribution. We denote the
label of the selected sound generator bymt. We reservemt = 0
for the case when no onset is to be generated at timet. Thus :

mt = 0 · [κt−1 6= onset] + mnew[κt−1 = onset]

With each sound generatorj = 1 . . . M , we associate a se-
quence of threshold variablesgj,t that denote the score position of
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Figure 2: Graphical Model of the signal process. Timer model
variables and their links are omitted for clarity. Parametersωt, ρt,
transient noise processzt and periodic processst are also not ex-
plicitly shown, but are summarized asx. The rectangle box de-
notes “plates”,M replications of the nodes inside.

the next note offset

dnew ∼ f(d|kt) nnew ∼ f(n|kt)

gnew = vi + dnew

j = 1 . . . M

gj,t = gj,t[j 6= mt] + gnew[j = mt]

nj,t = nj,t[j 6= mt] + nnew[j = mt]

The distributionf(d|kt) specifies how the current note is artic-
ulated, possibly depending upon its lengthlkt as notated in the
score. Similarly,f(n|kt) specifies the pitch of current note. Each
indicatorrj,t is binary, with values “sound” or “mute”. Givengj,t

andvt, the state of the indicatorrj,t is deterministic:

rj,t = sound[vt ≤ gj,t] + mute[vt > gj,t]

The collection of variablesr1:M,1:T and n1:M,1:T represent the
piano roll.

2.2. Signal Model

Musical instruments tend to create oscillations with modes that
are roughly related by integer ratios, albeit with strong damping
effects and transient attack characteristics [15]. It is convenient to
model such signals as the sum of a periodic component and a tran-
sient component [16, 17]. The sinusoidal model is often a good
approximation that provides a compact representation for the pe-
riodic component. The transient component can be modeled as a
correlated Gaussian noise process [8, 12]. Our signal model is also
in the same spirit, but we will define it in state space form, because
this provides a natural way to couple the signal model with the on-
set generation process. Consider a Gaussian process where typical
realizationsy1:T are damped “noisy” sinusoidals with (possibly
variable) angular frequencyω:

st = ρtB(ωt)st−1 + εs

yt = Cst

HereB(ω) =
�

cos(ω) − sin(ω)
sin(ω) cos(ω)

�
is a Givens rotation matrix that

rotates a two dimensional vector byω degrees counterclockwise.
C is a projection matrix defined asC = [1, 0]. The phase and
amplitude characteristics ofyt are determined by the initial con-
ditions s0. The damping factor0 ≤ ρ ≤ 1 specifies the ratest

contracts to0. The transition noise termεs summarizes contri-
butions of unknown factors, e.g., error terms due to nonlinearities
that we are not modelling.

In reality, musical instruments (with a definite pitch) have sev-
eral modes of oscillation that are roughly located at integer multi-
ples of the fundamental frequencyω. Hence, we can model such
signals by a bank of simple oscillators giving a block diagonal
transition matrix

At(ωt, ρt) = diag(ρ1,tB(ωt), ρ2,tB(2ωt), . . . ρH,tB(Hωt))

whereH denotes the number ofharmonics, assumed to be known.
The statest of this system is a concatenation of individual oscil-
lator states. To reduce the number of free parameters, we further
assume thatρh,t = ρh

t , motivated by the fact that damping factors
of harmonics in a vibrating string scale approximately geometri-
cally with respect to that of the fundamental frequency, i.e. higher
harmonics decaying faster.

We model the transient componentzt as white noise with ex-
ponentially decaying variance

qt = αqt−1

zt = q
1/2
t εz,t[rt = sound] + ε0

whereεz,t ∼ N (0, 1), ε0 ∼ N (0, R) and0 ≤ α < 1. We assume
here that all the transient component parameters (initial variance
q0, variance decay parameterα and the varianceR of the “steady
state” noiseε0 is known. The parameter update equations for each
sound generatorj = 1 . . . M

ωnew ∼ f(ω|nj,t) snew ∼ f(s)

onsetj = (rj,t−1 = mute∧ rj,t = sound)

log ωj,t = (log ωj,t−1 + εω)[¬ onsetj ] + log ωnew[onsetj ]

ρj,t = ρsoundj [rj,t = sound] + ρmute[rj,t = mute]

qj,t = αqj,t−1[¬onsetj ] + q0[onsetj ]

whereρsoundandρmuteare decay coefficients such that1 ≥ ρsound>
ρmute > 0. We use a deterministic mappingf(ω|nj,t) to generate
the rotation angle given the pitch label. To allow for mistuned
notes one can also use a narrow Gaussian. We assume a Gaussian
initial state distributionf(s) = N (0, S). The total energy in-
jected into the string at an onset (mute→ sound transition inrj) is
proportional todet S and the covariance structure ofS describes
how this total energy is distributed among the harmonics. Thus,
f(s) captures the timbre characteristics of the sound. Given the
parameters, each sound generatorj = 1 . . . M produces the next
sample

sj,t = At(ωj,t, ρj,t)st−1[¬ onset] + snew[onset] + εs,j,t

zj,t = q
1/2
j,t εz,j,t[rj,t = sound] + ε0

yj,t = Csj,t + zj,t

In the above,C is a1×2H projection matrixC = [1, 0, 1, 0, . . . , 1, 0]
with zero entries on the even components. This effectively sums
contributions of each harmonic. Finally, the observed audio signal
is the superposition of the outputs of all sound generators where
yt =

P
j yj,t.
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3. RESULTS AND DISCUSSION

The dynamical model introduced here is a dynamic Bayesian net-
work [1] in which exact computation of posterior features is in-
tractable. We are currently investigating efficient approximation
methods, mainly focusing on Rao Blackwellized sequential im-
portance sampling and iterative improvement [13]. Such a hybrid
approach enables us to exploit analytical structure and determinis-
tic relations. For example, the signal model, givenω and the indi-
catorsr, is a factorial Kalman filter model, where integrations can
be computed analytically. Space here does not allow us to detail
a full inference procedure for our model, which will be described
elsewhere (in preparation).

In Fig. 3 we show some preliminary results for tempo and
pitch tracking, using sequential Monte Carlo. We have rendered
a signalyt from the score Fig. 3(a) with an accelerating tempo.
A small segment of this sequence is shown in the upper part of
Fig. 3(b). In this example, to demonstrate tempo tracking and
pitch tracking where we assume that we knowκ1:T . The lower
part show that we can reconstruct the original signals essentially
perfectly. Knowing the onsets and observation sequence alone,
we can infer accurately the hidden pitch labels Fig. 3(c) and the
tempo. These preliminary results are encouraging, but do not yet
constitute a full and efficient procedure for inferring all hidden
quantities. However, these initial results demonstrate that accu-
rate pitch and tempo tracking is possible using our framework, al-
though computational obstacles still need to be overcome to achieve
real-time performance. By integrating tempo tracking with signal
analysis one can potentially design fast approximation techniques
for detection of onsets, i.e. change points. For example, if a perfor-
mance has almost constant tempo, a correct estimate of the tempo
gives a lot of information about locations of future onsets.

The work presented here is a model driven approach where
transcription is viewed as a Bayesian inference problem, similar to
previous work of [11, 12, 14]. On the other hand, in our knowl-
edge, our work is the first demonstration of a compact and realistic
generative model for musical signals that combines a dynamical
segment model and a signal model. Our model, with minor modi-
fications, can be potentially useful in applications other than tran-
scription. For example, we can construct a score follower, essen-
tially by just clamping the score variables and inferring the score
position pointer. Similarly, a multipitch tracker can be formulated
as a procedure to inferp(ω1:M,1:t|y1:t).
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