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ABSTRACT variabler;, is aregime change indicator for timewvherer;, €

Conditional Gaussian changepoint models are an integestif "€ regh. o -
subclass of jump-Markov dynamic linear systems, in which, ~The model is completed by defining the transition model
unlike the majority of such intractable hybrid models, éxac/ @nd reinitialization modet:

inference is achievable in polynomial time. However, many 0%~ f(6u]0r_1)

applications of interest involve several simultaneouslpld- n’zw

ing processes with occasional regime switches and shared ob 0" ~ 7

servations. In such scenarios, a factorial model, wherk eagyhen,, — new, the process switches to a new regime and a
process is modelled by a changepoint model is more naturgle,y state), vector is drawn from the reinitialization model

In this paper, we derive a sequential Monte Carlo algorithm,. otherwise the state variable obeys its regular dynamics
reminiscent to the Mixture Kalman filter (MKF) [1]. How- given by f. Each hidden configuratian. s for some fixedk

ever, unlike MKF, the factorial structure of our model pro- ghecifies a certain segmentation hypothesis: a possiblelmod
hibits the computation of the posterior filtering densitye(t iy cture to explain the data up to timké We are naturally

optimal proposal distribution). Even evaluating the likel jhierested into the most likely segmentation
hood conditioned on a few switch configurations can be time

consuming. Therefore, we derive a propagation algorithm ri.x = argmaxp(rik|yix)
(upward-downward) that exploits the factorial structurthe K

model and facilitates computing Kalman filtering recursion where the posterior is given by

in information form without the need for inverting large ma-

trices. To motivate the utility of the model, we illustratero  p(ri.x|y1:x) o p('f'l:K)/dal:Kp(ylzK|01:K7Tl:K)p(91:K|T1:K)

approach on a large model for polyphonic pitch tracking.
The difficulty of this optimisation problem stems from the

factthat a potentially intractable integral needs to béuatad
for each of the exponentially many configuratiofng,. Such

Time series models with switching regimes are useful in var-yPrid” inference problems, also known as MMAP (Mar-

ious areas of applied sciences, such as control, econasetri 9ina! Maximum a-posteriori [3]) are significantly hardeath
signal processing and machine learning, see, e.g, [2] elseth computing expectations and marginals (which only involves

disciplines, many phenomena of interest can be naturally déntegration) or optimisation (which only ir:\_/olvef maxirais
scribed as a sequence of regimes, where, conditioned on ¢fjgn) [4]. This is due to_the fact that the “inner ) |r_1tegrat_|0
latent regime label, observed data is thought of as a réiaiiza OVEr @ Subset of the variables renders the remaining vasabl
from a (simple) model. fully coupled destroying the_ M_arkpwan structure whlch in
The simplest change point model can be defined by th&/M renders the “outer” optimisation problem a hard joint
following hierarchical probabilistic model combinatorial optlmlsauon_ problein Lacking any spgmal
structure that can be exploited by local message passing alg
re o~ p(relre—1) rithms such as Dynamic programming, the only known exact
0 = [re= reqe;fg+ [r, = newgne" solu_tion is exhaus?ive search; which |s ina ;quentiarugptt
equivalent to carrying forward a conditional filtering potial
&(0x|r1.1) for each of the exponentially many configurations

where the indeX = 0, 1, ... denotes the tim&), is a hidden of 1.

state vector angy, is the observation. The discrete switch ~ Perhaps surprisingly, there are special nontrivial ttzleta
cases where the optimum can be computed in polynomial

1. INTRODUCTION

yr ~ pyrlre, Ok)

This research is funded by the EPSRC.
lwe use the notatiofitext”] to denote an indicator function that evaluates  2This is in fact the manifestation of the rather obvious fhet integration
to 1 (or 0) when the proposition “text” is true (or false). and maximisation do not commute.




time/space [5, 6]: One such case is when the transitioni; rein2.1. Sequential Inference

tialization and observation models are conditionally Géars . L .
aizat vad " y One theoretically justifiable inference method for the MMAP

fOR|0k—1) = N(Apbrp_1,Qr) problem is simulated annealing (SA). However, SA is an in-
m08) = N(Ow:me, Vi) h(_erently ba’gch njethod_ requiring simulation off_zl Mf_;lrkov @hai
N with a logarithmic cooling schedule [7]. For switching Kam
p(yelfr) = N(yw; Crbr, Rr) filter models, the analytical structure due to conditionali&

where Ay, Q, denote the transition matrix and noise covari-Sianity can be exploited to design an efficient Rao- Black-
ance Cy, R, denote observation matrix and noise covarianc&/ellized MCMC sampler, where itis sufficientto sample from
andmy, V, are reinitialization mean and noise covariance.the_ latent SW|tch_e$ and integrate out the continuous state
We assume these are known given i.e. we haved, = variablesy analytically [8]. _ -

A(ry,), e.t.c. Intuitively, the model is tractable because the in-  The sequential counterpart of this algorithm is Rao- Black-
tegral can be computed analyticaipdwhen a changepoint weIhze_d parucle_ filter (RBPF) [1, 9], that for the cqndmal _
occurs, all the past memory in the state variaplis “for- ~ Gaussian case is known as the mixture Kalman filter. While
gotten”. In this case, it can be shown that one can introducBBPF is not directly relevant for computing the MMAP but
a deterministic pruning schema that reduces the number &fther approximating the posterior by a weighted set of sam-
exponentially many filtering potentiat&(6|r1.;) to a poly- ples, we have four_1d empmcally that _for_a} given computa-
nomial order and meanwhile guarantees that we will nevelional cost the solution quality can be significantly bettem
eliminate the prefix of the MMAP configuratiotj,,, (e.g. see & naive SA implementation (e.g. see [10]). Moreover, many
[6]). This exact pruning method hinges on the factorisatiorf€al-time applications require sequential inference .only

of the posterior for the assignment of variablgs= new that A generic Rao- Blackwellized particle filter approximates

breaks the direct link betweeh andé;_ ;. the conditional filtering potential by a collection of Gaiass
However, for many real-world applications, that involve kernels

independent and several simultaneously occurring evants, N @

single changepoint model may not be sufficient. For example, POk, t1x) ~ Y 6D (ki)

in video surveillance independent objects can enter artd exi i=1

the scene and we may be interested in infering their trajgcto . (4) L) i)y
or visual features, given only video data. Another appidrat W(fzere each kernel is of ford, " V' (6; 1", ;") with mean

is in sound analysis and music transcription where indeper#k)' covariancesy andz,” = [ dby.¢:.
dent sound sources occur simultaneously and these need 101  seanerate new sampleg)
be separated and segmented jointly [6]. For such scendrios,

is convenient to model each object/source by an independent 2. Calculate weights.” and the normalised weights .
changepoint model. We call such mod#storial change-

from q(r¢|y;, rgﬂ) ).

point models 3. (Optior_\al resampling:) Randomly selééisample&g;)w
fromr!”. Each sample'” is selected with probability
2. FACTORIAL CHANGEPOINT MODEL equal to its normalised Weight. The new samples are

used further!” — r'f), with weightsw!” = 1.
The factorial changepoint model consistsof= 1... W
changepoint models with a “common” observation. More
precisely,

However, the factorial structure of the model prohibits the
computation of the optimal proposal distribution (the filig
distribution) for the(i)'th particle ¢ = p(r|y1.,r\"” ) for
Tew ~ DPThku|Th—1.) even a single time slice since the joint state space of the ind
9 — e —redd & 1 — newlgrew pat0r5rk71;W scales exponentlallyw_lthV. Indeed,vv_herW

o i g kv iy WOk is large, we need to solve at each time slice a variable selec-
and the observation is given (in the conditionally Gaussiaition problem [11].
case)

w 3. APPROXIMATING THE FILTERING
ye ~ PkltkOk) = N(yki > Crwbiw, R) DISTRIBUTION

= Suppose at time slide—1, we have a particlg® (8, _; ; rﬁc—ﬂ'
wherery, = 71w andfi = 6,1.w. Unfortunately, calcula-  and we wish to evaluate one step ahead filtering density
tion of MMAP in this model is no longer tractable, since the
model degenerates (for the conditional Gaussian casepinto p(rklym,r%,l) o( p(rk|r,(le)/dakdok—w(yklok)
switching Kalman filter (Mixture Kalman filter, Jump Markov ' .
Linear Dynamical System) with a rather large latent staéesp p(0|0k—1, rk)¢(”



to compute the proposal distribution. In general, we have télence, the conditional likelihood of a configuration is
evaluate this integral for each of tB¥" configurations of:},.
Hc_)wever, i_n practice, changepoints are rare and it will be re Pru|r—w, y1:e) /91671% Or—1.01:W OBy (1)
atively unlikely that two or more factors will have change-
O e e etgnere— = (L. W) ().
R, defined ask, = {ry : 320" [rr; = new < 1}. We g '
will denote the zero changepoint configuration%8, hence e Compute and storg, forv = W ...1 wherer = r
R1 is the 1-neighbourhood af®? (in terms of Hamming dis-
tance). In principle, we could evaluate the filtering densit o forv=1...W
pointwise for each of th&/’ + 1 configurations iR, sepa-
rately. However, this is still time consuming and potemyial
numerically unstable wheh’, the number of changepoint — Computep(r, = “new”|r-,, = “reg”, yi1.x) using
models, is large. The numerical instability becomes mooe pr op?in Eq.1
nounced when we need to execute the Kalman recursions in
information form; i.e. when particles are represented lejrth
canonical parameters (i.e. inverse covariance matrix etc.

The idea is to exploit the factorial structure of the transi-The advantage of this organisation is that the proposal can
tion model; our derivation is exactly analogousto the jiotet  be evaluated for every configuratiap < Ry directly. To
tree algorithm specialised to the factorial hidden Markmdel see the other advantage, consider the Kalman prediction in
(FHMM) of [12]. However, unlike the FHMM, the interme- information form
diate calculations are tractable because space requitemen

— Computex, (r, = “reg”) anda)*(r, = “new”)

“

e Computep(r, = “reg”
W using Eq.1

rop = “reg”,y1.x) With v =

scale quadratically in contrast to exponentially. We ceal-ev KV = A-FTSF
uate the conditional likelihood of all configuratien € R, . -1 A 1
in one “upward-downward” pass as explained below. whereA = blkdiag{K;, *,Q, "} and
The transition equation has the following factorial form:
w Fo= (Kl -AlQ)
POk, tr|0k—1,Th1) = Hp(9k,u|9k—1,u,Tk,u)p(rk,ulm—w) s = KlULATQA,
v=1
Hence the optimal proposal density is proportional to Here’, K\~ " is the block in the precision matrii of o,

that corresponds t6;,_; , wherea,_; = exp(—%oTKo +

d0:d0)_ 0 D () p(Ok 0 |Ok—1.0,70) | ¢ (Oh _
/ ki1 (yx[O) <1:[p (r)pOs s )> o 0s-1) h'é + g). Kg; s the partition corresponding to the re-
[v—1]

where we drop the time indek when refering tor;, and me_lining variables a_mXIQ_ correspond cross terms. Since
use the notatiop® (r,,) = p(m,VIT,(le ). Conditioned on S is “small” and F' is “_thln”, we can procee_d by low-rank
a particular configuration v, this integral can be computed downdates. Hence, with careful programmingand 3 can

in various orders. We call the upward (analogous to forwardP€ computed rather efficiently.

pass when we integrate out variables in the ofger 1, 60,1 2

,.... Alternatively, since the expression is entirely symmet-3.1. Example

ric, we also define a downward pass (analogous to backwarcR) motivate our approach, we illustrate the algorithm on a

Wh?:re V:ﬁ mtegratdegut n thedordmw, ekawffl’ the int dmodel for polyphonic music. This model is a slightly differ-
or the upward-cdownwarc pass, we define ereln eTMedent version of a model described in [6]. In this model, each
ate potentials (where we implicitly condition er= r'?) for

changepoint process models the sound generation mechanism
v=1...W ; . .

of a pitch with fundamental (angular) frequengy. The dis-
e Upward messagev, = p(y1:k—1,0k,1.0,0k—1,0+1:w)  crete indicatorsy, , denote onset events. The state vedétor

a = ¢D(0_1) represents the state of an harmonic oscillator. The fundame
0 = -t tal frequency of the oscillation is determined by the traosi
/dek_l,l,p@ (ru)p(Ok,00k—1,0, 70 )1 matrix (for the regular regime, = “reg”) has a block diago-
nal structure as

Qy

o Downward messages, = p(y|0k.1.0, Ok —1.011.w) A, = blkdiag{pmB(w,)T pp B(Huwy) 1Y

bw = pYrlOk1w)

[v—1]
3Othercan0nical parameters are giverie{%’] = < hy

Pr-1 = /d@k,l,p(i) (TV)p(ek,Vwk—lwer)ﬁV gV =1 — (1/2) 108 |27 Qy | ’

) — FTs=1nlr " Wangglvl =



frequency

Fig. 1. (Top) The graphical model of the factorial change-

point model, the rectangle denotes a plaié,copies of the

4. DISCUSSION

In this paper, we have described a time efficient method to
evaluate the filtering density for a factorial changepoiatiel.

The advantage of the method is that the likelihood of a config-
uration and its 1-neighbours can be computed efficiently and
numerically stable — only matrices of size equal to the band-
width of the transition matrix need to be inverted. The disad
vantage in contrast to the direct approach is increasedggor
requirement: the downward (or upward) messages need to be
stored.

Clearly, the upward-downward propagation can be used to
compute the likelihood of all configurations with Hamming
distance one to an arbitrary configuration, not only the zero
changepoint configuration§®. This could be used to design
an off-line Rao-Blackwellized Metropolis algorithm.

One other alternative approach, that we have not addressed
here is to compute a variational approximation to the exact
filtering density by variational methods such as mean field or
expectation propagation [13]. The former of these appresich
requires the propagation equations to be in informatiomfor
hence upward-downward algorithm is useful here, too.

nodes inside, (Bottom) A typical sample generated from the 5. REFERENCES

model —from top to bottom— piano-roll (indicators, where
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whereB is a rotation matrikandp;, are damping factors such
that0 < pp, < 1forh =1...H. The observation matrix has
a block structure wittC' = [Cy ...C, ...Cyw] where each
blockC, is N x 2H. In turn, each of the block§', consist
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