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ABSTRACT

Conditional Gaussian changepoint models are an interesting
subclass of jump-Markov dynamic linear systems, in which,
unlike the majority of such intractable hybrid models, exact
inference is achievable in polynomial time. However, many
applications of interest involve several simultaneously unfold-
ing processes with occasional regime switches and shared ob-
servations. In such scenarios, a factorial model, where each
process is modelled by a changepoint model is more natural.
In this paper, we derive a sequential Monte Carlo algorithm,
reminiscent to the Mixture Kalman filter (MKF) [1]. How-
ever, unlike MKF, the factorial structure of our model pro-
hibits the computation of the posterior filtering density (the
optimal proposal distribution). Even evaluating the likeli-
hood conditioned on a few switch configurations can be time
consuming. Therefore, we derive a propagation algorithm
(upward-downward) that exploits the factorial structure of the
model and facilitates computing Kalman filtering recursions
in information form without the need for inverting large ma-
trices. To motivate the utility of the model, we illustrate our
approach on a large model for polyphonic pitch tracking.

1. INTRODUCTION

Time series models with switching regimes are useful in var-
ious areas of applied sciences, such as control, econometrics,
signal processing and machine learning, see, e.g, [2]. In these
disciplines, many phenomena of interest can be naturally de-
scribed as a sequence of regimes, where, conditioned on the
latent regime label, observed data is thought of as a realization
from a (simple) model.

The simplest change point model can be defined by the
following hierarchical probabilistic model1

rk ∼ p(rk|rk−1)

θk = [rk = reg]θreg
k + [rk = new]θnew

k

yk ∼ p(yk|rk, θk)

where the indexk = 0, 1, . . . denotes the time,θk is a hidden
state vector andyk is the observation. The discrete switch
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1We use the notation[“text” ] to denote an indicator function that evaluates

to 1 (or 0) when the proposition “text” is true (or false).

variablerk is a regime change indicator for timek whererk ∈
{new, reg}.

The model is completed by defining the transition model
f and reinitialization modelπ:

θ
reg
k ∼ f(θk|θk−1)

θnew
k ∼ π(θk)

Whenrk = new, the process switches to a new regime and a
new stateθk vector is drawn from the reinitialization model
π; otherwise the state variable obeys its regular dynamics
given byf . Each hidden configurationr1:K for some fixedK
specifies a certain segmentation hypothesis: a possible model
structure to explain the data up to timeK. We are naturally
interested into the most likely segmentation

r∗1:K = argmax
r1:K

p(r1:K |y1:K)

where the posterior is given by

p(r1:K|y1:K) ∝ p(r1:K)

Z
dθ1:Kp(y1:K |θ1:K , r1:K)p(θ1:K |r1:K)

The difficulty of this optimisation problem stems from the
fact that a potentially intractable integral needs to be evaluated
for each of the exponentially many configurationsr1:K . Such
“hybrid” inference problems, also known as MMAP (Mar-
ginal Maximum a-posteriori [3]) are significantly harder than
computing expectations and marginals (which only involves
integration) or optimisation (which only involves maximisa-
tion) [4]. This is due to the fact that the “inner” integration
over a subset of the variables renders the remaining variables
fully coupled destroying the Markovian structure which in
turn renders the “outer” optimisation problem a hard joint
combinatorial optimisation problem2. Lacking any special
structure that can be exploited by local message passing algo-
rithms such as Dynamic programming, the only known exact
solution is exhaustive search; which is in a sequential setting
equivalent to carrying forward a conditional filtering potential
φ(θk|r1:k) for each of the exponentially many configurations
of r1:k.

Perhaps surprisingly, there are special nontrivial tractable
cases where the optimum can be computed in polynomial

2This is in fact the manifestation of the rather obvious fact that integration
and maximisation do not commute.



time/space [5, 6]: One such case is when the transition, reini-
tialization and observation models are conditionally Gaussian

f(θk|θk−1) = N (Akθk−1, Qk)

π(θk) = N (θk; mk, Vk)

p(yk|θk) = N (yk; Ckθk, Rk)

whereAk, Qk denote the transition matrix and noise covari-
ance,Ck, Rk denote observation matrix and noise covariance
and mk, Vk are reinitialization mean and noise covariance.
We assume these are known givenrk, i.e. we haveAk =
A(rk), e.t.c. Intuitively, the model is tractable because the in-
tegral can be computed analyticallyandwhen a changepoint
occurs, all the past memory in the state variableθ is “for-
gotten”. In this case, it can be shown that one can introduce
a deterministic pruning schema that reduces the number of
exponentially many filtering potentialsφ(θk|r1:k) to a poly-
nomial order and meanwhile guarantees that we will never
eliminate the prefix of the MMAP configurationr∗1:k (e.g. see
[6]). This exact pruning method hinges on the factorisation
of the posterior for the assignment of variablesrk = new that
breaks the direct link betweenθk andθk−1.

However, for many real-world applications, that involve
independent and several simultaneously occurring events,a
single changepoint model may not be sufficient. For example,
in video surveillance independent objects can enter and exit
the scene and we may be interested in infering their trajectory
or visual features, given only video data. Another application
is in sound analysis and music transcription where indepen-
dent sound sources occur simultaneously and these need to
be separated and segmented jointly [6]. For such scenarios,it
is convenient to model each object/source by an independent
changepoint model. We call such modelsfactorial change-
point models.

2. FACTORIAL CHANGEPOINT MODEL

The factorial changepoint model consists ofν = 1 . . .W

changepoint models with a “common” observation. More
precisely,

rk,ν ∼ p(rk,ν |rk−1,ν)

θk,ν = [rk,ν = reg]θreg
k,ν + [rk,ν = new]θnew

k,ν

and the observation is given (in the conditionally Gaussian
case)

yk ∼ p(yk|rk, θθθk) = N (yk;

W
∑

i=ν

Ck,νθk,ν , R)

whererk ≡ rk,1:W andθθθk ≡ θk,1:W . Unfortunately, calcula-
tion of MMAP in this model is no longer tractable, since the
model degenerates (for the conditional Gaussian case) intoa
switching Kalman filter (Mixture Kalman filter, Jump Markov
Linear Dynamical System) with a rather large latent state space.

2.1. Sequential Inference

One theoretically justifiable inference method for the MMAP
problem is simulated annealing (SA). However, SA is an in-
herently batch method requiring simulation of a Markov Chain
with a logarithmic cooling schedule [7]. For switching Kalman
filter models, the analytical structure due to conditional Gaus-
sianity can be exploited to design an efficient Rao- Black-
wellized MCMC sampler, where it is sufficient to sample from
the latent switchesr and integrate out the continuous state
variablesθ analytically [8].

The sequential counterpart of this algorithm is Rao- Black-
wellized particle filter (RBPF) [1, 9], that for the conditional
Gaussian case is known as the mixture Kalman filter. While
RBPF is not directly relevant for computing the MMAP but
rather approximating the posterior by a weighted set of sam-
ples, we have found empirically that for a given computa-
tional cost the solution quality can be significantly betterthan
a naive SA implementation (e.g. see [10]). Moreover, many
real-time applications require sequential inference only.

A generic Rao- Blackwellized particle filter approximates
the conditional filtering potential by a collection of Gaussian
kernels

p(θθθk, r1:k) ≈
N

∑

i=1

φ(i)(θθθk; r
(i)
1:k)

where each kernel is of formZ(i)
k N (θθθk; µ

(i)
k , Σ

(i)
k ) with mean

µ
(i)
k , covarianceΣ(i)

k andZ
(i)
k =

∫

dθθθkφi.

1. Generate new samplesr
(i)
t from q(rt|yt, r

(i)
t−1).

2. Calculate weightsw(i)
t and the normalised weights̃w(i)

t .

3. (Optional resampling:) Randomly selectN samplesr(j)
new

from r
(i)
t . Each sampler(i)

t is selected with probability
equal to its normalised weight. The new samples are
used furtherr(i)

t ← r
(j)
new with weightsw(i)

t = 1.

However, the factorial structure of the model prohibits the
computation of the optimal proposal distribution (the filtering
distribution) for the(i)’th particle q = p(rk|y1:k, r

(i)
k−1) for

even a single time slice since the joint state space of the indi-
catorsrk,1:W scales exponentially withW . Indeed, whenW
is large, we need to solve at each time slice a variable selec-
tion problem [11].

3. APPROXIMATING THE FILTERING
DISTRIBUTION

Suppose at time slicek−1, we have a particleφ(i)(θθθk−1; r
(i)
1:k−1),

and we wish to evaluate one step ahead filtering density

p(rk|y1:k, r
(i)
1:k−1) ∝ p(rk|r

(i)
k−1)

∫

dθθθkdθθθk−1p(yk|θθθk)

p(θθθk|θθθk−1, rk)φ(i)



to compute the proposal distribution. In general, we have to
evaluate this integral for each of the2W configurations ofrk.
However, in practice, changepoints are rare and it will be rel-
atively unlikely that two or more factors will have change-
points exactly at the same timeslice. Hence, we can “bias”
our sampling towards zero or one changepoint configurations
R̂1 defined asR̂1 ≡ {rk :

∑W

i=1[rk,i = new] ≤ 1}. We
will denote the zero changepoint configuration asrreg; hence
R̂1 is the 1-neighbourhood ofrreg (in terms of Hamming dis-
tance). In principle, we could evaluate the filtering density
pointwise for each of theW + 1 configurations inR̂1 sepa-
rately. However, this is still time consuming and potentially
numerically unstable whenW , the number of changepoint
models, is large. The numerical instability becomes more pro-
nounced when we need to execute the Kalman recursions in
information form; i.e. when particles are represented by their
canonical parameters (i.e. inverse covariance matrix etc.).

The idea is to exploit the factorial structure of the transi-
tion model; our derivation is exactly analogous to the junction-
tree algorithm specialised to the factorial hidden Markov model
(FHMM) of [12]. However, unlike the FHMM, the interme-
diate calculations are tractable because space requirements
scale quadratically in contrast to exponentially. We can eval-
uate the conditional likelihood of all configurationrk ∈ R̂1

in one “upward-downward” pass as explained below.
The transition equation has the following factorial form:

p(θθθk, rk|θθθk−1, rk−1) =
W
∏

ν=1

p(θk,ν |θk−1,ν , rk,ν)p(rk,ν |rk−1,ν)

Hence the optimal proposal density is proportional toZ
dθθθkdθθθk−1p(yk|θθθk)

 Y
ν

p
(i)(rν)p(θk,ν|θk−1,ν , rν)

!
φ

(i)(θθθk−1)

where we drop the time indexk when refering tork and
use the notationp(i)(rν) = p(rk,ν |r

(i)
k−1,ν). Conditioned on

a particular configurationr1:W , this integral can be computed
in various orders. We call the upward (analogous to forward)
pass when we integrate out variables in the orderθk−1,1, θk−1,2

, . . . . Alternatively, since the expression is entirely symmet-
ric, we also define a downward pass (analogous to backward)
where we integrate out in the orderθk,W , θk,W−1, . . . .

For the upward-downward pass, we define the intermedi-
ate potentials (where we implicitly condition orr = rreg) for
ν = 1 . . .W

• Upward messageαν ≡ p(y1:k−1, θk,1:ν , θk−1,ν+1:W )

α0 ≡ φ(i)(θθθk−1)

αν =

∫

dθk−1,νp(i)(rν)p(θk,ν |θk−1,ν , rν)αν−1

• Downward messageβν ≡ p(yk|θk,1:ν , θk−1,ν+1:W )

βW ≡ p(yk|θk,1:W )

βν−1 =

∫

dθk,νp(i)(rν)p(θk,ν |θk−1,ν , rν)βν

Hence, the conditional likelihood of a configuration is

p(rν |r¬ν , y1:k) ∝

∫

θk,1:ν , θk−1,ν+1:W ανβν (1)

where¬ν ≡ {1, . . . , W} − {ν}.
The algorithm is as follows:

• Compute and storeβν for ν = W . . . 1 wherer = rreg

• for ν = 1 . . .W

– Computeαν(rν = “reg”) andαnew
ν (rν = “new”)

– Computep(rν = “new”|r¬ν = “reg”, y1:k) using
αnew

ν in Eq.1

• Computep(rν = “reg”|r¬ν = “reg”, y1:k) with ν =
W using Eq.1

The advantage of this organisation is that the proposal can
be evaluated for every configurationrk ∈ R̂1 directly. To
see the other advantage, consider the Kalman prediction in
information form

K [ν] = Λ− F⊤S−1F

whereΛ = blkdiag{K
[ν−1]
22 , Q−1

ν } and

F =
(

K
[ν−1]
12 −A⊤

ν Q−1
ν

)

S = K
[ν−1]
11 + A⊤

ν Q−1
ν Aν

Here3, K
[ν−1]
11 is the block in the precision matrixK of αν−1

that corresponds toθk−1,ν whereαν−1 = exp(− 1
2θθθ

⊤
Kθθθ +

h⊤θθθ + g). K
[ν−1]
22 is the partition corresponding to the re-

maining variables andK [ν−1]
12 correspond cross terms. Since

S is “small” andF is “thin”, we can proceed by low-rank
downdates. Hence, with careful programming,α andβ can
be computed rather efficiently.

3.1. Example

To motivate our approach, we illustrate the algorithm on a
model for polyphonic music. This model is a slightly differ-
ent version of a model described in [6]. In this model, each
changepoint process models the sound generation mechanism
of a pitch with fundamental (angular) frequencyων . The dis-
crete indicatorsrk,ν denote onset events. The state vectorθ

represents the state of an harmonic oscillator. The fundamen-
tal frequency of the oscillation is determined by the transition
matrix (for the regular regimerν = “reg”) has a block diago-
nal structure as

Aν ≡ blkdiag{ρ1B(ων)⊤, . . . , ρHB(Hων)⊤}N

3
Other canonical parameters are given ash[ν] =

 
h
[ν−1]
2

0

!
− F⊤S−1h

[ν−1]
1 andg[ν] =

g[ν−1] − (1/2) log |2πQν |
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Fig. 1. (Top) The graphical model of the factorial change-
point model, the rectangle denotes a plate,W copies of the
nodes inside, (Bottom) A typical sample generated from the
model –from top to bottom– piano-roll (indicatorsrk,ν where
black=”new” (onset)), the acoustic signalxk and its spectro-
gram. The task is to findr∗1:K giveny1:K .

whereB is a rotation matrix4 andρh are damping factors such
that0 < ρh < 1 for h = 1 . . .H . The observation matrix has
a block structure withC = [C1 . . . Cν . . . CW ] where each
block Cν is N × 2H . In turn, each of the blocksCν consist
of smaller blocks of size1×2 where the block att+1’th row
andh’th double column is given byρt

h[cos(hωνt) sin(hωνt)].
The observation noise is isotropic with diagonal covariance
R.

The changepoint mechanism controls the transition noise
varianceQk. When there is no regime switch,Qk = Q(rk,ν =
“reg”) is small, meaning that the model undergoes its regular
damped periodic dynamics. When an onset occurs, the tran-
sition noise is has large variance,Qk = Q(rk,ν = “new”),
and the transition matrix is set toAk = 0. This has the effect
of forgetting the past and reinitialising the state vectorθk,ν .
Intuitively, this is a simplification of a physical model where
a vibrating string (as represented byθθθ) is plucked by injecting
some unknown amount of energy.

Due to space limitations, simulation results for this model
along with a longer technical note about the details of the
algorithm will be made available on our web-sitehttp://

www-sigproc.eng.cam.ac.uk/ ˜ atc27/nsspw .

4
B(ω) ≡

�
cos(ω) − sin(ω)
sin(ω) cos(ω)

�

4. DISCUSSION

In this paper, we have described a time efficient method to
evaluate the filtering density for a factorial changepoint model.
The advantage of the method is that the likelihood of a config-
uration and its 1-neighbours can be computed efficiently and
numerically stable – only matrices of size equal to the band-
width of the transition matrix need to be inverted. The disad-
vantage in contrast to the direct approach is increased storage
requirement: the downward (or upward) messages need to be
stored.

Clearly, the upward-downward propagation can be used to
compute the likelihood of all configurations with Hamming
distance one to an arbitrary configuration, not only the zero
changepoint configurationsrreg. This could be used to design
an off-line Rao-Blackwellized Metropolis algorithm.

One other alternative approach, that we have not addressed
here is to compute a variational approximation to the exact
filtering density by variational methods such as mean field or
expectation propagation [13]. The former of these approaches
requires the propagation equations to be in information form,
hence upward-downward algorithm is useful here, too.
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