Bayesian Methods for Music Signal Analysis

A. Taylan Cemgil

Signal Processing and Communications Lab.

Department of Engineering

ISMIR 2006, Victoria, Canada Tutorial October 8, 2006

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada

Goals of this Tutorial

- Provide a basic understanding of underlying principles of probabilistic modeling and Bayesian inference
- Orientation in the broad literature of Bayesian machine learning and statistical signal processing
- Focus on fundamental concepts rather than technical details,
- ... we avoid heavy use of algebra by a graphical notation

Goals of this Tutorial

- Model based approach
- ... rather than description of algorithms for solving specific problems
- Illustrate with examples how certain problems in music analysis can be approached using generic tools
- Motivate participants to investigate further
- ... provide alternative perspective to existing solutions
- ... and hopefully provide new inspiration

First Part, Basic Concepts

- Introduction
 - Bayes' Theorem,
 - Trivial toy example to clarify notation
- Graphical Models
 - Bayesian Networks
 - Undirected Graphical models, Markov Random Fields
 - Factor graphs
- Maximum Likelihood and Bayesian Learning
 - Exponential family*

Second Part, Models and Applications in Music Processing

- Hidden Markov Models,
 - Harmonisation of Choral Melodies
 - Inference in HMM
 - * Forward Backward Algorithm
 - * Viterbi
 - * Exact inference in general models by message passing
- Kalman Filter Models
 - Tempo Tracking
 - Kalman Filtering and Smoothing
 - Computer Accompaniment
- Switching State Space models

- MIDI transcription
- Particle Filtering
- Changepoint models
 - Pitch tracking
- Factorial Models and Model selection
 - Audio Source Separation
 - Polyphonic Pitch Tracking
 - Approximate Inference in Factorial Models
 - * Markov Chain Monte Carlo
 - * Variational Bayes
- Final Remarks and Bibliography

Bayes' Theorem [13, 15]

Thomas Bayes (1702-1761)

What you know about a parameter λ after the data \mathcal{D} arrive is what you knew before about λ and what the data \mathcal{D} told you.

$$p(\lambda|\mathcal{D}) = \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})}$$

Posterior =
$$\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$$

An application of Bayes' Theorem: "Source Separation"

Given two fair dice with outcomes λ and y,

$\mathcal{D} = \lambda + y$

What is λ when $\mathcal{D} = 9$?

An application of Bayes' Theorem: "Source Separation"

$$\mathcal{D} = \lambda + y = 9$$

$\mathcal{D} = \lambda + y$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	2	3	4	5	6	7
$\lambda = 2$	3	4	5	6	7	8
$\lambda = 3$	4	5	6	7	8	9
$\lambda = 4$	5	6	7	8	9	10
$\lambda = 5$	6	7	8	9	10	11
$\lambda = 6$	7	8	9	10	11	12

Bayes theorem "upgrades" $p(\lambda)$ into $p(\lambda|\mathcal{D})$.

But you have to provide an observation model: $p(\mathcal{D}|\lambda)$

"Beurocratical" derivation

Formally we write

$$\begin{array}{rclrcrcrcr} p(\lambda) &=& \mathcal{C}(\lambda; [\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 &]) \\ p(y) &=& \mathcal{C}(y; [\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 &]) \\ p(\mathcal{D}|\lambda, y) &=& \delta(\mathcal{D} - (\lambda + y)) \end{array}$$

$$p(\lambda, y | \mathcal{D}) = \frac{1}{p(\mathcal{D})} \times p(\mathcal{D} | \lambda, y) \times p(y) p(\lambda)$$

Posterior = $\frac{1}{\text{Evidence}} \times \text{Likelihood} \times \text{Prior}$

Kronecker delta function denoting a degenerate (deterministic) distribution $\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$

Prior

 $p(y)p(\lambda)$

$p(y) \times p(\lambda)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 2$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 3$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 4$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 5$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 6$	1/36	1/36	1/36	1/36	1/36	1/36

- A table with indicies λ and y
- Each cell denotes the probability $p(\lambda, y)$

Likelihood

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1
$\lambda = 4$	0	0	0	0	1	0
$\lambda = 5$	0	0	0	1	0	0
$\lambda = 6$	0	0	1	0	0	0

$$p(\mathcal{D}=9|\lambda, y)$$

- A table with indicies λ and y
- The likelihood is **not** a probability distribution, but a positive function.

$\textbf{Likelihood} \times \textbf{Prior}$

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Evidence

$$p(\mathcal{D} = 9) = \sum_{\lambda, y} p(\mathcal{D} = 9 | \lambda, y) p(\lambda) p(y)$$

= 0 + 0 + \dots + 1/36 + 1/36 + 1/36 + 1/36 + 0 + \dots + 0
= 1/9

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Posterior

$$p(\lambda, y | \mathcal{D} = 9) = \frac{1}{p(\mathcal{D})} p(\mathcal{D} = 9 | \lambda, y) p(\lambda) p(y)$$

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/4
$\lambda = 4$	0	0	0	0	1/4	0
$\lambda = 5$	0	0	0	1/4	0	0
$\lambda = 6$	0	0	1/4	0	0	0

1/4 = (1/36)/(1/9)

Marginal Posterior

$$p(\lambda|\mathcal{D}) = \sum_{y} \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\lambda, y) p(\lambda) p(y)$$

	$p(\lambda \mathcal{D} = 9)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/4	0	0	0	0	0	1/4
$\lambda = 4$	1/4	0	0	0	0	1/4	0
$\lambda = 5$	1/4	0	0	0	1/4	0	0
$\lambda = 6$	1/4	0	0	1/4	0	0	0

The "proportional to" notation

$$p(\lambda|\mathcal{D}) \propto \sum_{y} p(\mathcal{D}|\lambda, y) p(\lambda) p(y)$$

	$p(\lambda \mathcal{D} = 9)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/36	0	0	0	0	0	1/36
$\lambda = 4$	1/36	0	0	0	0	1/36	0
$\lambda = 5$	1/36	0	0	0	1/36	0	0
$\lambda = 6$	1/36	0	0	1/36	0	0	0

Exercise

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

- 1. Find the following quantities
 - Marginals: $p(x_1)$, $p(x_2)$
 - Conditionals: $p(x_1|x_2)$, $p(x_2|x_1)$
 - Posterior: $p(x_1, x_2 = 2)$, $p(x_1|x_2 = 2)$
 - Evidence: $p(x_2 = 2)$
 - $p(\{\})$
 - Max: $p(x_1^*) = \max_{x_1} p(x_1 | x_2 = 1)$
 - Mode: $x_1^* = \arg \max_{x_1} p(x_1 | x_2 = 1)$
 - Max-marginal: $\max_{x_1} p(x_1, x_2)$
- 2. Are x_1 and x_2 independent ? (i.e., Is $p(x_1, x_2) = p(x_1)p(x_2)$?)

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Marginals:

• Conditionals:

$p(x_1 x_2)$	$x_2 = 1$	$x_2 = 2$		$p(x_2 x_1)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.75	0.5	_	$x_1 = 1$	0.5	0.5
$x_1 = 2$	0.25	0.5	-	$x_1 = 2$	0.25	0.75

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Posterior:

• Evidence:

$$p(x_2 = 2) = \sum_{x_1} p(x_1, x_2 = 2) = 0.6$$

• Normalisation constant:

$$p(\{\}) = \sum_{x_1} \sum_{x_2} p(x_1, x_2) = 1$$

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Max: (get the value)

$$\max_{x_1} p(x_1 | x_2 = 1) = 0.75$$

• Mode: (get the index)

$$\operatorname*{argmax}_{x_1} p(x_1 | x_2 = 1) = 1$$

• Max-marginal: (get the "skyline") $\max_{x_1} p(x_1, x_2)$

Another application of Bayes' Theorem: "Model Selection"

Given an unknown number of fair dice with outcomes $\lambda_1, \lambda_2, \ldots, \lambda_n$,

$$\mathcal{D} = \sum_{i=1}^{n} \lambda_i$$

How many dice are there when $\mathcal{D} = 9$?

Assume that any number n is equally likely

Another application of Bayes' Theorem: "Model Selection"

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

$$p(n|\mathcal{D}=9) = \frac{p(\mathcal{D}=9|n)p(n)}{p(\mathcal{D})} \propto p(\mathcal{D}=9|n)$$

$$p(\mathcal{D}|n=1) = \sum_{\lambda_1} p(\mathcal{D}|\lambda_1) p(\lambda_1)$$

$$p(\mathcal{D}|n=2) = \sum_{\lambda_1} \sum_{\lambda_2} p(\mathcal{D}|\lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2)$$
...
$$p(\mathcal{D}|n=n') = \sum_{\lambda_1, \dots, \lambda_{n'}} p(\mathcal{D}|\lambda_1, \dots, \lambda_{n'}) \prod_{i=1}^{n'} p(\lambda_i)$$

 $p(\mathcal{D}|n) = \sum_{\lambda} p(\mathcal{D}|\boldsymbol{\lambda}, n) p(\boldsymbol{\lambda}|n)$

Another application of Bayes' Theorem: "Model Selection"

- Complex models are more flexible but they spread their probability mass
- Bayesian inference inherently prefers "simpler models" Occam's razor
- Computational burden: We need to sum over all parameters λ

Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

$$\langle f(x) \rangle = \int_{\mathcal{X}} dx p(x) f(x) \qquad \langle f(x) \rangle = \sum_{x \in \mathcal{X}} p(x) f(x)$$

• modes of functions under probability distributions: Optimization

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} p(x) f(x)$$

• any "mix" of the above: e.g.,

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} p(x) = \operatorname*{argmax}_{x \in \mathcal{X}} \int_{\mathcal{Z}} dz p(z) p(x|z)$$

Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

- What to solve : Model Construction
 - Both an Art and Science
 - Highly domain specific
- How to solve : Inference Algorithm
 - Mechanical (In theory! not in practice)
 - Generic

Applications of Probability Models

- Classification
- Optimal Decision, given a loss function
- Finding interesting (hidden) structure
 - Clustering, Segmentation
 - Dimensionality Reduction
 - Outlier Detection
- Finding a compact representation = Data Compression
- Prediction

Probability Models

-

Inference Algorithms

Bayesian Numerical Methods

Graphical Models

- formal languages for specification of probability models and associated inference algorithms
- historically, introduced in probabilistic expert systems (Pearl 1988) as a visual guide for representing expert knowledge
- today, a standard tool in machine learning, statistics and signal processing

Graphical Models

- provide graph based algorithms for derivations and computation
- pedagogical insight/motivation for model/algorithm construction
 - Statistics:

"Kalman filter models and hidden Markov models (HMM) are equivalent upto parametrisation"

– Signal processing:

"Fast Fourier transform is an instance of sum-product algorithm on a factor graph"

– Computer Science:

"Backtracking in Prolog is equivalent to inference in Bayesian networks with deterministic tables"

 Automated tools for code generation start to emerge, making the design/implement/test cycle shorter

Important types of Graphical Models

- Useful for Model Construction
 - Directed Acyclic Graphs (DAG), Bayesian Networks
 - Undirected Graphs, Markov Networks, Random Fields
 - Influence diagrams

- Useful for Inference
 - Factor Graphs
 - Junction/Clique graphs
 - Region graphs
 - **—** ..

Directed Graphical models (DAG)

Directed Graphical models

- Each random variable is associated with a node in the graph,
- We draw an arrow from $A \rightarrow B$ if $p(B| \ldots, A, \ldots)$ ($A \in parent(B)$),
- The edges tell us *qualitatively* about the factorization of the joint probability
- For N random variables x_1, \ldots, x_N , the distribution admits

$$p(x_1, \ldots, x_N) = \prod_{i=1}^N p(x_i | \mathsf{parent}(x_i))$$

 Describes in a compact way an algorithm to "generate" the data – "Generative models"

DAG Example: Two dice

$p(\mathcal{D}, \lambda, y) = p(\mathcal{D}|\lambda, y)p(\lambda)p(y)$

DAG with observations

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$
Examples		
Model	Structure	factorization
Full		$p(x_1)p(x_2 x_1)p(x_3 x_1,x_2)p(x_4 x_1,x_2,x_3)$
Markov(2)	$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_4$	$p(x_1)p(x_2 x_1)p(x_3 x_1,x_2)p(x_4 x_2,x_3)$
Markov(1)	$(x_1) \longrightarrow (x_2) \longrightarrow (x_3) \longrightarrow (x_4)$	$p(x_1)p(x_2 x_1)p(x_3 x_2)p(x_4 x_3)$
	$x_1 \longrightarrow x_2$ $x_3 \qquad x_4$	$p(x_1)p(x_2 x_1)p(x_3 x_1)p(x_4)$
Factorized	(x_1) (x_2) (x_3) (x_4)	$p(x_1)p(x_2)p(x_3)p(x_4)$

Removing edges eliminates a term from the conditional probability factors.

Undirected Graphical Models

Undirected Graphical Models

• Define a distribution by local compatibility functions $\phi(x_{\alpha})$

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{\alpha} \phi(x_{\alpha})$$

where α runs over $\mathbf{cliques}$: fully connected subsets

• Examples

Factor graphs

Factor graphs [14]

- A bipartite graph. A powerful graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior.
 - Variable nodes: White Nodes. Define collections of random variables
 - Edges: denote membership. A variable node is connected to a factor node if a member variable is an argument of the local function.

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y) = \phi_1(\lambda, y)\phi_2(\lambda)\phi_3(y)$$

Exercise

• For the following Graphical models, write down the factors of the joint distribution and plot an equivalent factor graph and an undirected graph.

Answer (Markov(1))

Answer (IFA – Factorial)

Answer (IFA – Factorial)

• We can also cluster nodes together

Inference and Learning

• Data set

$$\mathcal{D} = \{x_1, \dots x_N\}$$

• Model with parameter λ

 $p(\mathcal{D}|\lambda)$

• Maximum Likelihood (ML)

$$\lambda^{\mathsf{ML}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda)$$

• Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{ML}})$$

Regularisation

 $p(\lambda)$

• Prior

• Maximum a-posteriori (MAP) : Regularised Maximum Likelihood

$$\lambda^{\mathsf{MAP}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda) p(\lambda)$$

• Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{MAP}})$$

Bayesian Learning

- We treat parameters on the same footing as all other variables
- We integrate over unknown parameters rather than using point estimates (remember the many-dice example)
 - Avoids overfitting
 - Natural setup for online adaptation
 - Model selection
 - (arguably) many problems in music processing are model selection problems

Bayesian Learning

• Predictive distribution

$$p(x_{N+1}|\mathcal{D}) = \int d\lambda \ p(x_{N+1}|\lambda)p(\lambda|\mathcal{D})$$

$$(x_1) \quad (x_2) \quad \dots \quad (x_N) \quad (x_{N+1})$$

• Bayesian learning is just inference ...

Some Applications: Audio Restoration

- During download or transmission, some samples of audio are lost
- Estimate missing samples given clean ones

Examples: Audio Restoration

Restoration (Cemgil and Godsill 2005 [4])

- Piano
 - Signal with missing samples (37%)
 - Reconstruction, 7.68 dB improvement
 - Original
- Trumpet
 - Signal with missing samples (37%)
 - Reconstruction, 7.10 dB improvement
 - Original

Basic Distributions : Exponential Family

- Following distributions are used often as elementary building blocks:
 - Gaussian
 - Gamma, Inverse Gamma, (Exponential, Chi-square, Wishart)
 - Dirichlet
 - Discrete (Categorical), Bernoulli, multinomial
- All of those distributions can be written as

$$p(x|\theta) = \exp\{\theta^{\top}\psi(x) - A(\theta)\}\$$

$$A(\theta) = \log \int_{\mathcal{X}^n} dx \, \exp(\theta^\top \psi(x)) \, \text{log-partition function}$$

$$\theta \qquad \text{canonical parameters}$$

$$\psi(x) \qquad \text{sufficient statistics}$$

Example, Univariate Gaussian

The Gaussian distribution with mean m and covariance S has the form

$$\mathcal{N}(x;m,S) = (2\pi S)^{-1/2} \exp\{-\frac{1}{2}(x-m)^2/S\}$$

= $\exp\{-\frac{1}{2}(x^2+m^2-2xm)/S - \frac{1}{2}\log(2\pi S)\}$
= $\exp\{\frac{m}{S}x - \frac{1}{2S}x^2 - \left(\frac{1}{2}\log(2\pi S) + \frac{1}{2S}m^2\right)\}$
= $\exp\{\underbrace{\left(\frac{m/S}{-\frac{1}{2}/S}\right)^{\top}}_{\theta}\underbrace{\left(\frac{x}{x^2}\right)}_{\psi(x)} - A(\theta)\}$

Hence by matching coefficients we have

$$\exp\left\{-\frac{1}{2}Kx^2 + hx + g\right\} \Leftrightarrow S = K^{-1} \quad m = K^{-1}h$$

Example, Gaussian

Example, Inverse Gamma

The inverse Gamma distribution with shape *a* and scale *b*

$$\mathcal{IG}(r;a,b) = \frac{1}{\Gamma(a)} \frac{r^{-(a+1)}}{b^a} \exp(-\frac{1}{br})$$

= $\exp\left(-(a+1)\log r - \frac{1}{br} - \log\Gamma(a) - a\log b\right)$
= $\exp\left(\left(\begin{pmatrix} -(a+1)\\ -1/b \end{pmatrix}^\top \begin{pmatrix} \log r\\ 1/r \end{pmatrix} - \log\Gamma(a) - a\log b\right)\right)$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = -\alpha - 1 \qquad b = -1/\beta$$

Example, Inverse Gamma

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance R of a zero mean Gaussian.

$$p(x|R) = \mathcal{N}(x;0,R)$$
$$p(R) = \mathcal{IG}(R;a,b)$$

$$p(R|x) \propto p(R)p(x|R)$$

$$\propto \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right)\exp\left(-(x^2/2)\frac{1}{R} - \frac{1}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c} -(a+1+\frac{1}{2})\\ -(1/b+x^2/2)\end{array}\right)^{\top}\left(\begin{array}{c} \log R\\ 1/R\end{array}\right)\right)$$

$$\propto \mathcal{IG}(R; a + \frac{1}{2}, \frac{2}{x^2 + 2/b})$$

Like the prior, this is an inverse-Gamma distribution.

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x_1, \ldots, x_N .

$$p(R|x) \propto p(R) \prod_{i=1}^{N} p(x_i|R)$$

$$\propto \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right) \exp\left(-\left(\frac{1}{2}\sum_{i}x_i^2\right)\frac{1}{R} - \frac{N}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c}-(a+1+\frac{N}{2})\\-(1/b+\frac{1}{2}\sum_{i}x_i^2)\end{array}\right)^{\top}\left(\begin{array}{c}\log R\\1/R\end{array}\right)\right) \propto \mathcal{IG}(R; a + \frac{N}{2}, \frac{2}{\sum_{i}x_i^2 + 2/b})$$

Sufficient statistics are **additive**

Inverse Gamma, $\sum_i x_i^2 = 100$ N = 100 $\Sigma_{i} x_{i}^{2} = 100$ N = 100 2.5 1.5 0.5

Inverse Gamma, $\sum_i x_i^2 = 1000$ N = 1000 $\Sigma_i x_i^2 = 1000$ N = 1000

Example: AR(1) model

 $x_k = Ax_{k-1} + \epsilon_k \qquad \qquad k = 1 \dots K$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \beta/\nu)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; A x_{k-1}, R) \qquad x_0 = \hat{x}_0$$

Gaussian : $\mathcal{N}(x; \mu, V) \equiv |2\pi V|^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^2/V)$ Inverse-Gamma distribution: $\mathcal{IG}(x; a, b) \equiv \Gamma(a)^{-1}b^{-a}x^{-(a+1)}\exp(-1/(bx))$ $x \ge 0$ Observed variables are shown with double circles

AR(1) Model. Bayesian Posterior Inference

$$p(A, R|x_0, x_1, \dots, x_K) \propto p(x_1, \dots, x_K|x_0, A, R)p(A, R)$$

Posterior \propto Likelihood × Prior

Using the Markovian (conditional independence) structure we have

$$p(A, R|x_0, x_1, \dots, x_K) \propto \left(\prod_{k=1}^K p(x_k|x_{k-1}, A, R)\right) p(A)p(R)$$

Numerical Example

Suppose K = 1,

By Bayes' Theorem and the structure of AR(1) model

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

= $\mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$

Numerical Example

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0x_1\frac{A}{R} - \frac{1}{2}\frac{x_0^2A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

$$\exp\left(-\frac{1}{2}\frac{A^2}{P}\right)\exp\left(-(\nu+1)\log R - \frac{\nu}{\beta}\frac{1}{R}\right)$$

This posterior has a nonstandard form

$$\exp\left(\alpha_1 \frac{1}{R} + \alpha_2 \frac{A}{R} + \alpha_3 \frac{A^2}{R} + \alpha_4 \log R + \alpha_5 A^2\right)$$

Numerical Example, the prior p(A, R)

Equiprobability contour of p(A)p(R)

Numerical Example, the posterior p(A, R|x)

Note the bimodal posterior with $x_0 = 1, x_1 = -6$

- $A \approx -6 \Leftrightarrow$ low noise variance R.
- $A \approx 0 \Leftrightarrow$ high noise variance R.

Remarks

- The point estimates such as ML or MAP are not always representative about the solution
- (Unfortunately), exact posterior inference is only possible for few special cases
- Even very simple models can lead easily to complicated posterior distributions
- Ambiguous data usually leads to a multimodal posterior, each mode corresponding to one possible explanation

Remarks

- A-priori independent variables often become dependent aposteriori ("Explaining away")
- The difficulty of an inference problem depends, among others, upon the particular "parameter regime" and observed data sequence

Dynamical (Time Series) Models and Example Applications
Time series models and Inference, Terminology

In music signal processing and machine learning many phenomena are modelled by dynamical models

- x is the latent state (tempo, pitch, section, score position, ...)
- y are observations (audio samples, MIDI, spectral features, ...)
- In a full Bayesian setting, x includes unknown model parameters

Time series models and applications

- Hidden Markov Models
 - Score following, Transcription
 - Segmentation, Classification
 - Key finding
- (Time varying) AR, ARMA, MA models
 - Adaptive filtering
- Linear Dynamical Systems, Kalman Filter models
 - Computer Accompaniment
 - Tempo and Pitch tracking

Types of time series models

- Switching state space models
 - Rhythm Quantization
 - Onset detection
 - Polyphonic pitch tracking, transcription
- Dynamic Bayesian networks
 - Computer Accompaniment
- Nonlinear Stochastic Dynamical Systems

Online Inference, Terminology

- Filtering: $p(x_k|y_{1:k})$
 - Distribution of current state given all past information
 - Realtime/Online/Sequential Processing

- Potentially confusing misnomer:
 - More general than "digital filtering" (convolution) in DSP but algorithmically related for some models (KFM)

Online Inference, Terminology

- Prediction $p(y_{k:K}, x_{k:K}|y_{1:k-1})$
 - evaluation of possible future outcomes; like filtering without observations

• Accompaniment, Tracking, Restoration

Offline Inference, Terminology

• Smoothing $p(x_{0:K}|y_{1:K})$,

Most likely trajectory – Viterbi path $\arg \max_{x_{0:K}} p(x_{0:K}|y_{1:K})$ better estimate of past states, essential for learning

• Interpolation $p(y_k, x_k | y_{1:k-1}, y_{k+1:K})$ fill in lost observations given past and future

Hidden Markov Model [17]

• Mixture model evolving in time

- Observations y_k are continuous or discrete
- Latent variables x_k are discrete
 - Represents the fading memory of the process
- Exact inference possible if x_k has a "small" number of states

Harmonisation of Chorals

(Sugawara, Nishimoto and Sagayama 2003, Allan and Williams 2006 [1])

- k denotes the score position as measured in quarter notes
- Latent variables x_k denote **chords**
 - Using a representation relative to soprano voice
- The transition model $p(x_k|x_{k-1})$ encodes likely **chord progressions**
- Observations y_k are individual **voices** (bass/tenor/alto/soprano)
- Observation model $p(y_k|x_k)$ encodes inversions, voicings and ornamentation
- For a nice demo see http://www.tardis.ed.ac.uk/~moray/harmony/

Harmonisation, Inference Problem

Given a model and given a soprano melody, harmonise in the style of Bach

- Find most likely harmonisation $C_{1:K}^* = \arg \max_{C_{1:K}} p(C_{1:K}|S_{1:K})$ by Viterbi
- Sample from $B_k \sim p(B_k|C_k^*), T_k \sim p(T_k|C_k^*), A_k \sim p(A_k|C_k^*),$

Harmonisation of Chorale K85 by J. S. Bach

1

Exact Inference in HMM, Forward/Backward Algorithm

• Forward Pass

 $p(y_{1:K}) = \sum_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K})$ $= \underbrace{\sum_{x_{K}} p(y_{T}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2}) \underbrace{p(y_{2}|x_{2}) \sum_{x_{1}} \frac{\alpha_{2}|1}{p(x_{2}|x_{1})} \underbrace{p(y_{1}|x_{1}) \underbrace{p(x_{1})}_{\alpha_{1}}}_{\alpha_{2}}}_{\alpha_{2}}$

Backward Pass

$$p(y_{1:K}) = \sum_{x_1} p(x_1) p(y_1|x_1) \dots \underbrace{\sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\sum_{x_K} p(x_K|x_{K-1}) p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\frac{1}{\beta_K}}_{\beta_{K-1}}$$

Exact Inference in HMM, Viterbi Algorithm

- Merely replace sum by max, equivalent to dynamic programming
- Forward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{\substack{x_{1:K}}} p(y_{1:K}|x_{1:K}) p(x_{1:K})$$

$$= \underbrace{\max_{\substack{x_K}} p(y_T|x_K) \max_{\substack{x_{K-1} \\ \alpha_K}} p(x_K|x_{K-1}) \dots \max_{\substack{x_2}} p(x_3|x_2) \underbrace{p(y_2|x_2) \underbrace{\max_{x_1} p(x_2|x_1)}_{\alpha_2} \underbrace{p(y_1|x_1) \underbrace{p(x_1)}_{\alpha_1}}_{\alpha_1}}_{\alpha_2}$$

• Backward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\max_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\max_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\mathbf{1}}_{\beta_K}$$

Exact Inference on general factor graphs

- When the factor graph is a tree, one can define a local message propagation
 - If factor graph is not a tree, one can always do this by clustering nodes together
- Sum-product
 - Generalises Forward/Backward
 - Rule:

"The message sent from a node v on an edge e is the product of the local function at v (or the unit function if is a variable node) with all messages received at v on edges other than e, summarized for the variable associated with e."

- Max-product
 - Generalises Viterbi

Look at the seminal tutorial paper by Kschischang, Frey and Loeliger [14] on factor graphs.

Exact Inference on general factor graphs

local function to variable:

$$\mu_{f \to x}(x) = \sum_{n \in \{x\}} \left(f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

Kalman Filter Models, Linear Dynamical Systems

- The latent variables s_k and observations y_k are continuous
- The transition and observations models are linear
 - Example: a perfect metronome
 - A deterministic dynamical system with two state variables

$$\mathbf{s}_k = \begin{pmatrix} \mathsf{phase} \\ \mathsf{period} \end{pmatrix}_k = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} = \mathbf{A}\mathbf{s}_{k-1}$$

$$y_k = \text{phase}_k = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_k = \mathbf{C}\mathbf{s}_k$$

Tempo Tracking

(Cemgil et.al. 2000 [8], Hainsworth and MacLeod 2003)

We allow random (unknown) accelerations and expressive timing deviations

$$\mathbf{s}_{k} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_{k}$$
$$= \mathbf{A}\mathbf{s}_{k-1} + \epsilon_{k}$$

$$y_k = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_k + \nu_k$$
$$= \mathbf{C}\mathbf{s}_k + \nu_k$$

Tempo Tracking

• In generative model notation

$$\mathbf{s}_k \sim \mathcal{N}(\mathbf{s}_k; \mathbf{As}_{k-1}, Q)$$

 $y_k \sim \mathcal{N}(y_k; \mathbf{Cs}_k, R)$

 Tempo tracking = estimating the latent state of the metronome = Kalman filtering

Kalman Filtering and Smoothing (two filter formulation)

• Forward Pass

$$p(y_{1:K}) = \underbrace{\int_{x_K} p(y_T | x_K) \int_{x_{K-1}} p(x_K | x_{K-1}) \dots \int_{x_2} p(x_3 | x_2) \underbrace{p(y_2 | x_2)}_{\alpha_2} \underbrace{\int_{x_1} p(x_2 | x_1)}_{\alpha_2} \underbrace{p(y_1 | x_1) \underbrace{p(x_1)}_{\alpha_1}}_{\alpha_1} \underbrace{p(y_1 | x_1) \underbrace{p(x_1)}_{\alpha_1}}_{\alpha_1} \underbrace{p(y_1 | x_1) \underbrace{p(x_1)}_{\alpha_1}}_{\alpha_1} \underbrace{p(y_1 | x_2) \underbrace{p(y_2 | x_2)}_{\alpha_2}}_{\alpha_2} \underbrace{p(y_2 | x_2)}_{\alpha_2} \underbrace{p(y_2$$

• Backward Pass

$$p(y_{1:K}) = \int_{x_1} p(x_1)p(y_1|x_1)\dots \underbrace{\int_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\int_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{1}_{\beta_K}$$

• Replace summation by integration

 $p(s_1)$

$p(y_1|s_1)p(s_1)$

$p(s_2|y_1) \propto \int ds_1 p(s_2|s_1) p(y_1|s_1) p(s_1)$

$p(y_2|s_2)p(s_2|y_1)$

$p(s_5|y_{1:5})$

Computer Accompaniment

(Music Plus One, Raphael 2000 [18], Dannenberg and Raphael 2006)

• c_k are score positions of notes of the soloist and $l_k = c_k - c_{k-1}$

$$\begin{aligned} \mathbf{s}_{k} &= \begin{pmatrix} 1 & l_{k} \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_{k} = \mathbf{A}_{k} \mathbf{s}_{k-1} + \epsilon_{k} & y_{k} = C \mathbf{s}_{k} + \nu_{k} \\ \epsilon_{k} &\sim \mathcal{N}(\epsilon; 0, Q_{k}) \\ \nu_{k} &\sim \mathcal{N}(\nu; m_{k}, R_{k}) & \text{(note } k \text{ dependent mean and variance!)} \end{aligned}$$

Music Plus One

• Note that this is ruthless simplification, see Chris' papers...

Switching State Space models

- We introduce latent switch variables to switch between different transition and observation models
- Powerful framework for modelling nonstationary processes and nonlinear dynamical systems

Inference in Switching State Space models

- Unlike HMM's or KFM's, summing over c_k does not simplify the filtering density.
- Number of Gaussian kernels to represent exact filtering density $p(c_k, s_k | y_{1:k})$ increases exponentially

• Bad news: exact inference problem is shown to be NP hard

Rhythm Quantization Problem

Example: A Performed Onset Sequence

Very accurate but too complex

Simple but a very poor description of the rhythm

Desired quantization balances accuracy and simplicity

MIDI transcription

Score		$0.5 = \bullet$	$1 = \bullet$	$0.5 = \checkmark$	
Tempo		1	1.1	1.2	
Exact	0	0.5	1.6	2.2	
Onsets	0	0.53	1.62	2.11	

Table 1: A ritardando (slowing down).

Score		?	?	?	
Tempo		?	?	?	
Exact	?	?	?	?	
Onsets	0	0.53	1.62	2.11	

Given the model and observations, probabilistic inference "fills in" the remaining cells.

MIDI transcription

(Raphael 2001, Cemgil and Kappen 2001)

 $p(\text{Score, Tempo}|\text{Onsets}) \propto p(\text{Onsets}|\text{Tempo}, \text{Score}) \times p(\text{Tempo}, \text{Score})$ $Score^* = \arg_{\text{Score}} \int_{\text{Tempo}} p(\text{Score, Tempo}|\text{Onsets})$ $Score^* = \arg_{\text{Score}} \max p(\text{Score, Tempo}|\text{Onsets})$

Example

Sequential Monte Carlo (Particle Filtering)

• Main idea: Select a branch to expand with a probability propotional to the evidence

Particle Filtering for tempo tracking and quantisation

Repeating pattern with fluctuating tempo

Sequential Monte Carlo

- This variant is known as Mixture Kalman Filter or Rao-Blackwellized Particle filter (Chen and Liu 2001 [9], Cemgil 2002 [6], Hainsworth and MacLeod 2003)
- (For this model) algorithmically similar to Breadth first search/Multi Hypothesis Tracking/Genetic algorithms
- Generic tool for inference with a rich background theory (Doucet, et. al. 2001, Del Moral, "Feynman-Kac Formulae", 2005)
- Many applications in various fields
 - Robotics, Navigation, Econometrics,...

Changepoint models

Example: Single Key, Onsets

• Each changepoint denotes the onset of a new audio event
Dynamic Harmonic Model (Cemgil et. al. 2005, 2006) [3, 7]

damping factor $0 < \rho_k < 1$, framelength N and damped sinusoidal basis matrix C of size $N \times 2H$

Monophonic model [7]

- We introduce a pitch label indicator m
- At each time k, the process can be in one of the {"mute", "sound"} $\times M$ states.

Monophonic Pitch Tracking

Monophonic Pitch Tracking = Online estimation (filtering) of $p(r_k, m_k | y_{1:k})$.

• If pitch is constant exact inference is possible

Tracking Pitch Variations

• Allow *m* to change with *k*. We take a fine grid Piano-roll, e.g. $Q = 2^{1/128}$

• Intractable, need to run a particle filter

Real Data Results

Top: F major scale played on an electric bass. Bottom: Estimated MAP configuration $(r, m)_{1:T}$.

Real Data Results

A finer analysis with $Q = 2^{1/48}$ reveals that the 5'th and 7'th degree of the scale are intonated slightly low.

Polyphony: Factorial Dynamic Harmonic Model [3]

$$\begin{split} r_{0,\nu} &\sim \mathcal{C}(r_{0,\nu}; \pi_{0,\nu}) \\ \theta_{0,\nu} &\sim \mathcal{N}(\theta_{0,\nu}; \mu_{\nu}, P_{\nu}) \\ r_{k,\nu} | r_{k-1,\nu} &\sim \mathcal{C}(r_{k,\nu}; \pi_{\nu}(r_{t-1,\nu})) \\ \theta_{k,\nu} | \theta_{k-1,\nu} &\sim \mathcal{N}(\theta_{k,\nu}; A_{\nu}(r_{k})\theta_{k-1,\nu}, Q_{\nu}(r_{k})) \\ y_{k} | \theta_{k,1:W} &\sim \mathcal{N}(y_{k}; C_{k}\theta_{k,1:W}, R) \end{split}$$
 Changepoint indicator Observation

Factorial Models

Source Separation

Bayesian Model selection

Audio Source Separation

Estimate *n* hidden signals s_t from *m* observed signals x_t .

Audio Source Separation

Audio Source Separation

• Hierarchical Prior Model (Fevotte and Godsill 2005 [10], Cemgil et. al. 2006 [5])

Reconstructions

Audio Source Separation, Inference

• Exact inference is not possible

Approximate Inference

- Markov Chain Monte Carlo, Gibbs sampler
- Variational Bayes

It turns out that these algorithms can be viewed as alternative message passing schemata on a factor graph

• Lets focus on a simpler graph to illustrate these algorithms

Gibbs Sampling, t = 250

 A remarkable fact is that we can estimate any desired expectation by ergodic averages

$$\langle f(\mathbf{s}) \rangle_{\mathcal{P}} \approx \frac{1}{t - t_0} \sum_{n=t_0}^{t} f(\mathbf{s}^{(n)})$$

- Consecutive samples s^(t) are dependent but we can "pretend" as if they are independent!
- The sequence of samples are obtained from a Markov chain, hence the name MCMC

Variational Bayes (VB), mean field

We will approximate the posterior \mathcal{P} with a simpler distribution \mathcal{Q} .

$$\mathcal{P} = \frac{1}{Z_x} p(x = \hat{x} | s_1, s_2) p(s_1) p(s_2)$$

$$\mathcal{Q} = q(s_1) q(s_2)$$

Here, we choose

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

A "measure of fit" between distributions is the KL divergence

Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P} = p(x)$ and $\mathcal{Q} = q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

• Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

• But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

OSSS example, cont.

Let the approximating distribution be factorized as

 $\mathcal{Q} = q(s_1)q(s_2)$

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

The m_i and S_j are the variational parameters to be optimized to minimize

$$KL(\mathcal{Q}||\mathcal{P}) = \left\langle \log \mathcal{Q} \right\rangle_{\mathcal{Q}} - \left\langle \log \frac{1}{Z_x} \phi(s_1, s_2) \right\rangle_{=\mathcal{P}} \right\rangle_{\mathcal{Q}}$$
(1)

The form of the mean field solution

$$0 \leq \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)} + \log Z_x - \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)}$$

$$\log Z_x \geq \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)} - \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)}$$

$$\equiv -F(p;q) + H(q)$$
(2)

Here, F is the *energy* and H is the *entropy*. We need to maximize the right hand side.

 $Evidence \ge -Energy + Entropy$

Note r.h.s. is a **lower bound** [16]. The mean field equations **monotonically** increase this bound. Good for assessing convergence and debugging computer code.

The form of the solution

- No direct analytical solution
- We obtain fixed point equations in closed form

$$q(s_1) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$q(s_2) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_1)})$$

Note the nice symmetry

Variational Message Passing on a Factor Graph

- Factor nodes: Factor potentials (local functions) defining the posterior *P*.
- Variable nodes: Now, think of them as "factors" of the approximating distribution *Q*. (Caution non standard interpretation!)

Fixed Point Iteration

$$\log q(s_1) \leftarrow \log p(s_1) + \langle \log p(x = \hat{x} | s_1, s_2) \rangle_{q(s_2)}$$

$$\log q(s_2) \quad \leftarrow \quad \log p(s_2) + \langle \log p(x = \hat{x} | s_1, s_2) \rangle_{q(s_1)}$$

Direct Link to Expectation-Maximisation (EM) [12]

Suppose we choose one of the distributions degenerate, i.e.

$$\tilde{q}(s_2) = \delta(s_2 - \tilde{m})$$

where \tilde{m} corresponds to the "location parameter" of $\tilde{q}(s_2)$. We need to find the closest degenerate distribution to the actual mean field solution $q(s_2)$, hence we take one more KL and minimize

$$\tilde{m} = \operatorname*{argmin}_{\xi} KL(\delta(s_2 - \xi) || q(s_2))$$

It can be shown that this leads exactly to the EM fixed point iterations.

Iterated Conditional Modes (ICM) [2, 11]

If we choose both distributions degenerate, i.e.

$$\widetilde{q}(s_1) = \delta(s_1 - \widetilde{m}_1)$$

 $\widetilde{q}(s_2) = \delta(s_2 - \widetilde{m}_2)$

It can be shown that this leads exactly to the ICM fixed point iterations. This algorithm is equivalent to coordinate ascent in the original posterior surface $\phi(s_1, s_2)$.

$$\widetilde{m}_1 = \operatorname*{argmax}_{s_1} \phi(s_1, s_2 = \widetilde{m}_2)$$

 $\widetilde{m}_2 = \operatorname*{argmax}_{s_2} \phi(s_1 = \widetilde{m}_1, s_2)$

ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences in terms of fixed points.

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

Back to source separation

Observations

A typical run, 250/250 Gibbs/VB with tempering

Reconstructions

Posterior surface is multimodal, each mode corresponding to a viable separation
Bayesian Variable Selection

- Generalized Linear Model Column's of *C* are the basis vectors
- The exact posterior is a mixture of 2^W Gaussians
- When W is large, computation of posterior features becomes intractable.

Generative model

Example 1: Variable selection in Polynomial Regression

Given $\{t_j, x(t_j)\}_{j=1...J}$, what is the order N of the polynomial?

$$x(t) = \sum_{i=0}^{N} s_{i+1}t^{i} + \epsilon(t)$$

$$\mathbf{t} = \begin{pmatrix} t_1 & t_2 & \dots & t_J \end{pmatrix}^\top$$
$$C \equiv \begin{pmatrix} \mathbf{t}^0 & \mathbf{t}^1 & \dots & \mathbf{t}^{W-1} \end{pmatrix}$$

>> C = fliplr(vander(0:4)) % Van der Monde matrix

$$\begin{aligned} r_i &\sim \mathcal{C}(r_i; 0.5, 0.5) & r_i \in \{\text{on, off}\} \\ s_i | r_i &\sim \mathcal{N}(s_i; 0, \Sigma(r_i)) \\ \mathbf{x} | s_{1:W} &\sim \mathcal{N}(\mathbf{x}; Cs_{1:W}, R) \end{aligned}$$

$$\Sigma(r_i = \text{on}) \gg \Sigma(r_i = \text{off})$$

To find the "active" basis functions we need to calculate

$$r_{1:W}^* \equiv \operatorname*{argmax}_{r_{1:W}} p(r_{1:W}|\mathbf{x}) = \operatorname*{argmax}_{r_{1:W}} \int ds_{1:W} p(\mathbf{x}|s_{1:W}) p(s_{1:W}|r_{1:W}) p(r_{1:W})$$

Then, the reconstruction is given by

$$\hat{x}(t) = \left\langle \sum_{i=0}^{W-1} s_{i+1} t^i \right\rangle_{p(s_{1:W} | \mathbf{x}, r_{1:W}^*)}$$
$$= \sum_{i=0}^{W-1} \langle s_{i+1} \rangle_{p(s_{i+1} | \mathbf{x}, r_{1:W}^*)} t^i$$

Example 2: Chord Recognition

(Damped) Sinusoidal Basis

- $h = 1 \dots H$, number of harmonics, $t = 0 \dots T 1$, sample index
- ω : fundamental frequency in rad, ρ damping coefficient

$$C(\omega) \equiv \begin{pmatrix} C_0^1 & \dots & C_0^H \\ \vdots & C_t^h & \vdots \\ C_{T-1}^1 & \dots & C_{T-1}^H \end{pmatrix}$$

$$C_t^h \equiv \rho^t \left(\cos(th\omega) \sin(th\omega) \right)$$

$$\mathbf{C} = \left[C(\omega_1) \dots C(\omega_{\nu}) \dots C(\omega_W) \right]$$

• See also Badeau, Boyer, David. Eds parametric modelling and tracking of audio signals. In DAFx 2002

Factor graph

$$\begin{split} \log \phi(r_{1:W}, s_{1:W}) &= \sum_{i=1}^{W} (\log \pi(r_i)) \\ &+ \sum_{i=1}^{W} \left(-\frac{1}{2} s_i^\top \Sigma(r_i)^{-1} s_i + \mu(r_i)^\top \Sigma(r_i)^{-1} s_i \right. \\ &\left. -\frac{1}{2} \mu(r_i)^\top \Sigma(r_i)^{-1} \mu(r_i) - \frac{1}{2} \log |2\pi \Sigma(r_i)| \right) \\ &\left. -\frac{1}{2} \mathbf{x}^\top R^{-1} \mathbf{x} + s_{1:W}^\top C^\top R^{-1} \mathbf{x} - \frac{1}{2} s_{1:W}^\top C^\top R^{-1} C s_{1:W} - \frac{1}{2} \log |2\pi R| \end{split}$$

Approximating Structures

MCMC versus Variational Bayes (VB)

• Each configuration of $r_{1:W}$ corresponds to a corner of a W dimensional hypercube

- MCMC moves along the edges stochastically
- Iterative Improvement moves along the edges greedly
- VB moves inside the hypercube deterministically

Iterative Improvement

iteration r_1

 $r_M \log p(y_{1:T}, r_{1:M})$

1	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1220638254
2	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	-665073975
3	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	•	-311983860
4	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	•	-162334351
5	0	0	0	0	0	0	0	•	•	0	0	0	0	0	•	0	0	0	0	0	0	•	0	•	-43419569
6	0	0	0	0	0	0	0	•	•	0	0	0	0	0	•	0	0	0	0	•	0	•	0	•	-1633593
7	0	0	0	0	0	0	0	•	•	0	0	•	0	0	•	0	0	0	0	•	0	•	0	•	-14336
8	0	0	0	0	0	0	0	•	•	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-5766
9	0	0	0	0	0	0	0	•	0	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-5210
10	0	0	0	0	0	0	0	0	0	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-4664
True	0	0	0	0	0	0	0	0	0	0			0	0		0	0	0	0		0		0		-/66/
9 10 True	0 0 0	•	• 0	0 0 0	•	•	0 0 0	0 0 0	•	0 0 0	0 0 0	0 0 0	0 0 0	•	0 0 0	•	0 0 0	•	-5210 -4664 -4664						

Results, VB with tempering and reinitialisation

Results, MCMC with tempering and reinitialisation

Bayesian/Generative/Probabilistic approaches to Polyphonic Transcription

(Walmsley 2000, Davy and Godsill 2002, Raphael 2001, Abdallah 2002, Cemgil et. al. 2003-2006, Vincent 2003, Vincent and Plumbley 2005, Vogel, Jordan and Wessel 2005, Thornburg, Leitsnikov and Berger 2004, Blumensath and Davies 2006, Dubois and Davy 2005)

- Various related but different models
- Inference schemata
 - Reversible Jump MCMC
 - Iterative Improvement
 - Laplace approximation
 - Particle filtering
 - Variational Bayes, MCMC

Summary

- Bayesian Inference
- Graphical models
- Exact Inference
- Approximate inference

Summary, Attributes of Probabilistic Inference

- Exact \leftrightarrow Approximate
- Deterministic \leftrightarrow Stochastic
- Online \leftrightarrow Offline
- **Centralized** \leftrightarrow Distributed

Summary of what we have mentioned

- Exact inference, Belief Propagation
- Approximate inference
 - Deterministic
 - * Variational Bayes,
 - * Expectation/Maximization (EM), Iterative Conditional Modes (ICM)
 - Stochastic
 - * Markov Chain Monte Carlo
 - * Importance Sampling,
 - * Particle filtering

Summary of what we have not mentioned

- Exact Inference (Junction Tree ...)
 - Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented Particle Filter
 - Structured Mean field
 - Loopy Belief Propagation, Expectation Propagation, Generalized Belief Propagation
 - Fractional Belief propagation, Bound Propagation, <your favorite name> Propagation
 - Graph cuts ...
- Stochastic
 - Unscented Particle Filter, Nonparametric Belief Propagation
 - Annealed Importance Sampling, Adaptive Importance Sampling
 - Hybrid Monte Carlo, Exact sampling, Coupling from the past

Bibliography

- General background about probability theory
- Graphical models
- Exact inference
- Variational Methods
- Markov Chain Monte Carlo
- Sequential Monte Carlo
- Applications

General background about probability theory

- Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability. Athena Scientific, 2002
- Geoffrey Grimmet and David Stirzaker, Probability and Random Processes, (3rd Ed), Oxford, 2006

"Instant Classics" of Bayesian Machine Learning and Graphical Models

- Michael I. Jordan, Learning in Graphical Models, 1998
- David MacKay Information Theory, Learning and Inference Algorithms, 2003, Cambridge
- Chris Bishop, Machine Learning and Pattern Recognition, 2006, Springer

Further Reading, Variational Methods

• Jaakkola "Tutorial on variational approximation methods", 2000 http://people.csail.mit.edu/tommi/papers/Jaa-var-tutorial.ps

- Wainwright and Jordan 2003 [19] Berkeley EECS Tech. Rep.
- Frey and Jojic, PAMI 2005 [11]
- Winn and Bishop "Variational Message Passing" 2005 JMLR [20]

Further Reading, MCMC and SMC tutorials and overviews

- Andrieu, de Freitas, Doucet, Jordan. *An Introduction to MCMC for Machine Learning*, 2001
- Andrieu. Monte Carlo Methods for Absolute beginners, 2004
- Doucet, Godsill, Andrieu. "On Sequential Monte Carlo Sampling Methods for Bayesian Filtering", Statistics and Computing, vol. 10, no. 3, pp. 197-208, 2000
- Gilks, Richardson, Spiegelhalter, *Markov Chain Monte Carlo in Practice*, Chapman Hall, 1996
- Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001

Some Generic Software Packages

- Kevin Murphy's Matlab Bayesian Networks toolkit (BNT)
- Gilks, et. al. BUGS, WinBUGS (Bayesian analysis Using Gibbs Sampling) A powerful program that compiles Gibbs Samplers from
- Winn, et. al, VIBES Similar to BUGS but for variational inference

For source separation, there are some specialised libraries

- Petersen and Winther (DTU, Kopenhagen)
- Harva, Raiko, Honkela, Valpola "Bayes Blocks" (HUT, Helsinki)

Music Applications

- Klapuri and Davy (Eds) Signal processing for Music Transcription, Springer, 2006
- Temperley, Probability and Music, MIT Press, 2007

References

- [1] M. Allan and C. K. I. Williams. Harmonising chorales by probabilistic inference. In <u>Advances in Neural</u> <u>Information Processing Systems 17</u>, 2004.
- [2] J.E. Besag. On the statistical analysis of dirty pictures (with discussion). Jr. R. Stat. Soc. B, 48:259–302, 1986.
- [3] A. T. Cemgil and S. J. Godsill. Efficient Variational Inference for the Dynamic Harmonic Model. In <u>Proc. of IEEE</u> Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October 2005.
- [4] A. T. Cemgil and S. J. Godsill. Probabilistic Phase Vocoder and its application to Interpolation of Missing Values in Audio Signals. In 13th European Signal Processing Conference, Antalya/Turkey, 2005. EURASIP.
- [5] A. T. Cemgil, S. J. Godsill, and C. Fevotte. Variational and Stochastic Inference for Bayesian Source Separation. <u>Submitted</u>, 2006.
- [6] A. T. Cemgil and H. J. Kappen. Monte Carlo methods for Tempo Tracking and Rhythm Quantization. Journal of Artificial Intelligence Research, 18:45–81, 2003.
- [7] A. T. Cemgil, H. J. Kappen, and D. Barber. A Generative Model for Music Transcription. <u>IEEE Transactions on</u> <u>Audio, Speech and Language Processing</u>, 14(2), March 2006.
- [8] A.T. Cemgil, H. J. Kappen, P. Desain, and H. Honing. On tempo tracking: Tempogram Representation and Kalman filtering. In <u>Proceedings of the 2000 International Computer Music Conference</u>, pages 352–355, Berlin, 2000. (This paper has received the Swets and Zeitlinger Distinguished Paper Award of the ICMC 2000).
- [9] R. Chen and J. S. Liu. Mixture Kalman filters. J. R. Statist. Soc., 10, 2000.
- [10] C. Févotte and S. J. Godsill. A Bayesian approach for blind separation of sparse sources. <u>IEEE Trans. Speech and Audio Processing</u>, in press. In press - Preprint available at http://persos.mist-technologies.com/~cfevotte/.

- [11] B. J. Frey and N. Jojic. A comparison of algorithms for inference and learning in probabilistic graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 2005.
- [12] Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In <u>Neural Information</u> <u>Processing Systems 13</u>, 2000.
- [13] E. T. Jaynes. <u>Probability Theory, The Logic of Science</u>. Cambridge University Press, edited by G. L. Bretthorst, 2003.
- [14] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. <u>IEEE</u> <u>Transactions on Information Theory</u>, 47(2):498–519, February 2001.
- [15] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
- [16] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In <u>Learning in graphical models</u>, pages 355–368. MIT Press, 1999.
- [17] L. R. Rabiner. A tutorial in hidden Markov models and selected applications in speech recognation. <u>Proc. of the</u> IEEE, 77(2):257–286, 1989.
- [18] C. Raphael. A probabilistic expert system for automatic musical accompaniment. Journal of Computational and Graphical Statistics, 10(3):467–512, 2001.
- [19] M. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Technical Report 649, Department of Statistics, UC Berkeley, September 2003.
- [20] J. Winn and C. Bishop. Variational message passing. Journal of Machine Learning Research, 6:661–694, 2005.

Thank you for your patience and attention!

Slides will be available online

http://www-sigproc.eng.cam.ac.uk/~atc27/papers/cemgil-ismir-tutorial.pdf

APPENDIX A

Deterministic Inference

Mean Field – Variational Bayes

Toy Model : "One sample source separation (OSSS)"

This graph encodes the joint: $p(x, s_1, s_2) = p(x|s_1, s_2)p(s_1)p(s_2)$

$$s_{1} \sim p(s_{1}) = \mathcal{N}(s_{1}; \mu_{1}, P_{1})$$

$$s_{2} \sim p(s_{2}) = \mathcal{N}(s_{2}; \mu_{2}, P_{2})$$

$$x|s_{1}, s_{2} \sim p(x|s_{1}, s_{2}) = \mathcal{N}(x; s_{1} + s_{2}, R)$$

The Gaussian Distribution

 μ is the mean and *P* is the covariance:

$$\begin{split} \mathcal{N}(s;\mu,P) &= |2\pi P|^{-1/2} \exp\left(-\frac{1}{2}(s-\mu)^T P^{-1}(s-\mu)\right) \\ &= \exp\left(-\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s - \frac{1}{2}\mu^T P^{-1}\mu - \frac{1}{2}|2\pi P|\right) \\ \log \mathcal{N}(s;\mu,P) &= -\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s + \operatorname{const} \\ &= -\frac{1}{2}\operatorname{\mathbf{Tr}} P^{-1}ss^T + \mu^T P^{-1}s + \operatorname{const} \\ &=^+ -\frac{1}{2}\operatorname{\mathbf{Tr}} P^{-1}ss^T + \mu^T P^{-1}s \end{split}$$

Notation: $\log f(x) =^+ g(x) \iff f(x) \propto \exp(g(x)) \iff \exists c \in \mathbb{R} : f(x) = c \exp(g(x))$

OSSS example

Suppose, we observe $x = \hat{x}$.

• By Bayes' theorem, the posterior is given by:

$$\mathcal{P} \equiv p(s_1, s_2 | x = \hat{x}) = \frac{1}{Z_{\hat{x}}} p(x = \hat{x} | s_1, s_2) p(s_1) p(s_2) \equiv \frac{1}{Z_{\hat{x}}} \phi(s_1, s_2)$$

• The function $\phi(s_1, s_2)$ is proportional to the exact posterior. ($Z_{\hat{x}} \equiv p(x = \hat{x})$)

OSSS example, cont.

$$\log p(s_1) = \mu_1^T P_1^{-1} s_1 - \frac{1}{2} s_1^T P_1^{-1} s_1 + \text{const}$$

$$\log p(s_2) = \mu_2^T P_2^{-1} s_2 - \frac{1}{2} s_2^T P_2^{-1} s_2 + \text{const}$$

$$\log p(x|s_1, s_2) = \hat{x}^T R^{-1} (s_1 + s_2) - \frac{1}{2} (s_1 + s_2)^T R^{-1} (s_1 + s_2) + \text{const}$$

$$\log \phi(s_1, s_2) = \log p(x = \hat{x} | s_1, s_2) + \log p(s_1) + \log p(s_2)$$

= + $(\mu_1^T P_1^{-1} + \hat{x}^T R^{-1}) s_1 + (\mu_2^T P_2^{-1} + \hat{x}^T R^{-1}) s_2$
 $-\frac{1}{2} \operatorname{Tr} (P_1^{-1} + R^{-1}) s_1 s_1^T - \underbrace{s_1^T R^{-1} s_2}_{(*)} - \frac{1}{2} \operatorname{Tr} (P_2^{-1} + R^{-1}) s_2 s_2^T$

• The (*) term is the cross correlation term that makes s_1 and s_2 a-posteriori dependent.

OSSS example, cont.

Completing the square

$$\log \phi(s_1, s_2) =^+ \begin{pmatrix} P_1^{-1} \mu_1 + R^{-1} \hat{x} \\ P_2^{-1} \mu_2 + R^{-1} \hat{x} \end{pmatrix}^\top \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^\top \begin{pmatrix} -\frac{1}{2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^\top \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

Remember:
$$\log \mathcal{N}(s; m, \Sigma) =^+ (\Sigma^{-1}m)^\top s - \frac{1}{2}s^\top \Sigma^{-1}s$$

$$\Sigma = \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix}^{-1} \qquad m = \Sigma \qquad \begin{pmatrix} P_1^{-1} \mu_1 + R^{-1} \hat{x} \\ P_2^{-1} \mu_2 + R^{-1} \hat{x} \end{pmatrix}$$
Variational Bayes (VB), mean field

We will approximate the posterior \mathcal{P} with a simpler distribution \mathcal{Q} .

$$\mathcal{P} = \frac{1}{Z_x} p(x = \hat{x} | s_1, s_2) p(s_1) p(s_2)$$

$$\mathcal{Q} = q(s_1) q(s_2)$$

Here, we choose

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

A "measure of fit" between distributions is the KL divergence

Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P} = p(x)$ and $\mathcal{Q} = q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

• Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

• But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

OSSS example, cont.

Let the approximating distribution be factorized as

 $\mathcal{Q} = q(s_1)q(s_2)$

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

The m_i and S_j are the variational parameters to be optimized to minimize

$$KL(\mathcal{Q}||\mathcal{P}) = \langle \log \mathcal{Q} \rangle_{\mathcal{Q}} - \left\langle \log \frac{1}{Z_x} \phi(s_1, s_2) \right\rangle_{\mathcal{Q}}$$
(3)

The form of the mean field solution

$$0 \leq \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)} + \log Z_x - \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)}$$

$$\log Z_x \geq \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)} - \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)}$$

$$\equiv -F(p;q) + H(q)$$
(4)

Here, F is the *energy* and H is the *entropy*. We need to maximize the right hand side.

 $Evidence \ge -Energy + Entropy$

Note r.h.s. is a **lower bound** [16]. The mean field equations **monotonically** increase this bound. Good for assessing convergence and debugging computer code.

Details of derivation

• Define the Lagrangian

$$\Lambda = ds_1 q(s_1) \log q(s_1) + ds_2 q(s_2) \log q(s_2) + \log Z_x - ds_1 ds_2 q(s_1) q(s_2) \log \phi(s_1, s_2)$$

$$+\lambda_1(1 - ds_1q(s_1)) + \lambda_2(1 - ds_2q(s_2))$$
(5)

• Calculate the functional derivatives w.r.t. $q(s_1)$ and set to zero

$$\frac{\delta}{\delta q(s_1)}\Lambda = \log q(s_1) + 1 - \langle \log \phi(s_1, s_2) \rangle_{q(s_2)} - \lambda_1$$

• Solve for $q(s_1)$,

$$\log q(s_1) = \lambda_1 - 1 + \langle \log \phi(s_1, s_2) \rangle_{q(s_2)}$$

$$q(s_1) = \exp(\lambda_1 - 1) \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$
(6)

• Use the fact that

1 =
$$ds_1q(s_1) = \exp(\lambda_1 - 1) \quad ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$\lambda_1 = 1 - \log ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

The form of the solution

- No direct analytical solution
- We obtain fixed point equations in closed form

$$q(s_1) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$q(s_2) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_1)})$$

Note the nice symmetry

OSSS: Factor Graph

- A graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior \mathcal{P} .
 - Variable nodes: Circles. Think of them as "factors" of the approximating distribution Q. (Caution non standard interpretation!)
 - Edges: denote membership. A variable is connected to a factor if it is a variable of the local function.

Fixed Point Iteration for OSSS

$$\log q(s_1) \leftarrow \log p(s_1) + \langle \log p(x = \hat{x} | s_1, s_2) \rangle_{q(s_2)}$$

$$\log q(s_2) \quad \leftarrow \quad \log p(s_2) + \langle \log p(x = \hat{x} | s_1, s_2) \rangle_{q(s_1)}$$

Fixed Point Iteration for the Gaussian Case

$$\log q(s_{1}) \leftarrow -\frac{1}{2} \operatorname{Tr} \left(P_{1}^{-1} + R^{-1} \right) s_{1} s_{1}^{\top} - s_{1}^{\top} R^{-1} \underbrace{\langle s_{2} \rangle_{q(s_{2})}}_{=m_{2}} + \left(\mu_{1}^{\top} P_{1}^{-1} + \hat{x}^{\top} R^{-1} \right) s_{1}$$

$$\log q(s_{2}) \leftarrow -\underbrace{\langle s_{1} \rangle_{q(s_{1})}^{\top}}_{=m_{1}^{\top}} R^{-1} s_{2} - \frac{1}{2} \operatorname{Tr} \left(P_{2}^{-1} + R^{-1} \right) s_{2} s_{2}^{\top} + \left(\mu_{2}^{\top} P_{2}^{-1} + \hat{x}^{\top} R^{-1} \right) s_{2}$$

Remember $q(s) = \mathcal{N}(s;m,S)$

Fixed Point Equations for the Gaussian Case

• Covariances are obtained directly

$$S_1 = (P_1^{-1} + R^{-1})^{-1}$$
 $S_2 = (P_2^{-1} + R^{-1})^{-1}$

• To compute the means, we should iterate:

$$m_1 = S_1 \left(P_1^{-1} \mu_1 + R^{-1} \left(\hat{x} - m_2 \right) \right)$$

$$m_2 = S_2 \left(P_2^{-1} \mu_2 + R^{-1} \left(\hat{x} - m_1 \right) \right)$$

- Intuitive algorithm:
 - Substract from the observation \hat{x} the prediction of the other factors of Q.
 - Compute a fit to this residual (e.g. "fit" m_2 to $\hat{x} m_1$).
- Equivalent to Gauss-Seidel, an iterative method for solving linear systems of equations.

Direct Link to Expectation-Maximisation (EM) [12]

Suppose we choose one of the distributions degenerate, i.e.

$$\tilde{q}(s_2) = \delta(s_2 - \tilde{m})$$

where \tilde{m} corresponds to the "location parameter" of $\tilde{q}(s_2)$. We need to find the closest degenerate distribution to the actual mean field solution $q(s_2)$, hence we take one more KL and minimize

$$\tilde{m} = \operatorname*{argmin}_{\xi} KL(\delta(s_2 - \xi) || q(s_2))$$

It can be shown that this leads exactly to the EM fixed point iterations.

Iterated Conditional Modes (ICM) [2, 11]

If we choose both distributions degenerate, i.e.

$$\widetilde{q}(s_1) = \delta(s_1 - \widetilde{m}_1)$$

 $\widetilde{q}(s_2) = \delta(s_2 - \widetilde{m}_2)$

It can be shown that this leads exactly to the ICM fixed point iterations. This algorithm is equivalent to coordinate ascent in the original posterior surface $\phi(s_1, s_2)$.

$$\widetilde{m}_1 = \operatorname*{argmax}_{s_1} \phi(s_1, s_2 = \widetilde{m}_2)$$

 $\widetilde{m}_2 = \operatorname*{argmax}_{s_2} \phi(s_1 = \widetilde{m}_1, s_2)$

ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences in terms of fixed points.

Figure 2: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

Convergence Issues

Annealing, Bridging, Relaxation, Tempering

Main idea:

- If the original target \mathcal{P} is too complex, relax it.
- First solve a simple version \mathcal{P}_{τ_1} . Call the solution m_{τ_1}
- Make the problem little bit harder $\mathcal{P}_{\tau_1} \to \mathcal{P}_{\tau_2}$, and improve the solution $m_{\tau_1} \to m_{\tau_2}$.
- While $\mathcal{P}_{\tau_1} \to \mathcal{P}_{\tau_2}, \ldots, \to \mathcal{P}_T = \mathcal{P}$, we hope to get better and better solutions.

The sequence $\tau_1, \tau_2, \ldots, \tau_T$ is called annealing schedule if

$$\mathcal{P}_{ au_i} ~\propto~ \mathcal{P}^{ au_i}$$

OSSS example: Annealing, Bridging, ...

• Remember the cross term (*) of the posterior:

$$\cdots - \underbrace{s_1^\top R^{-1} s_2}_{(*)} \cdots$$

- When the noise variance is low, the coupling is strong.
- If we choose a decreasing sequence of noise covariances

$$R_{\tau_1} > R_{\tau_2} > \dots > R_{\tau_T} = \mathbf{R}$$

we increase correlations gradually.

APPENDIX B

Stochastic Inference

Deterministic versus Stochastic

Let θ denote the parameter vector of Q.

• Given the fixed point equation F and an initial parameter $\theta^{(0)}$, the inference algorithm is simply

$$\theta^{(t+1)} \leftarrow F(\theta^{(t)})$$

For OSSS $\theta = (m_1, m_2)^{\top}$ (S_1, S_2 were constant, so we exclude them). The update equations were

$$m_1^{(t+1)} \leftarrow F_1(m_2^{(t)})$$
$$m_2^{(t+1)} \leftarrow F_2(m_1^{(t+1)})$$

This is a deterministic dynamical system in the parameter space.

OSSS: Fixed Point iteration for m_1

Stochastic Inference

Stochastic inference is similar, but everything happens directly in the configuration space (= domain) of variables s.

• Given a transition kernel T (=a collection of probability distributions conditioned on each s) and an initial configuration $s^{(0)}$

$$\mathbf{s}^{(t+1)} \sim T(\mathbf{s}|\mathbf{s}^{(t)}) \qquad t = 1, \dots, \infty$$

- This is a stochastic dynamical system in the configuration space.
- A remarkable fact is that we can estimate any desired expectation by ergodic averages

$$\langle f(\mathbf{s}) \rangle_{\mathcal{P}} \approx \frac{1}{t - t_0} \sum_{n=t_0}^{t} f(\mathbf{s}^{(n)})$$

 Consecutive samples s^(t) are dependent but we can "pretend" as if they are independent!

Looking ahead...

- For OSSS, the configuration space is $\mathbf{s} = (s_1, s_2)^{\top}$.
- A possible transition kernel *T* is specified by

$$s_1^{(t+1)} \sim p(s_1|s_2^{(t)}, x = \hat{x}) \propto \phi(s_1, s_2^{(t)})$$

$$s_2^{(t+1)} \sim p(s_2|s_1^{(t+1)}, x = \hat{x}) \propto \phi(s_1^{(t+1)}, s_2)$$

- This algorithm, that samples from above conditional marginals is a particular instance of the **Gibbs sampler**.
- The desired posterior \mathcal{P} is the stationary distribution of T (why? later...).
- Note the algorithmic similarity to ICM. In Gibbs, we make a random move instead of directly going to the conditional mode.

Gibbs Sampling

Gibbs Sampling, t = 250

Gibbs Sampling, Slow convergence

Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel $T(\mathbf{s}'|\mathbf{s})$ with the stationary distribution $\mathcal{P} = \phi(\mathbf{s})/Z_x \equiv \pi(\mathbf{s})$ for any initial distribution $r(\mathbf{s})$.

$$\pi(\mathbf{s}) = T^{\infty} r(\mathbf{s}) \tag{7}$$

- Sample $\mathbf{s}^{(0)} \sim r(\mathbf{s})$
- For $t = 1...\infty$, Sample $\mathbf{s}^{(t)} \sim T(\mathbf{s}|\mathbf{s}^{(t-1)})$
- Estimate any desired expectation by the average

$$\langle f(\mathbf{s}) \rangle_{\pi(\mathbf{s})} \approx \frac{1}{t - t_0} \sum_{n=t_0}^t f(\mathbf{s}^{(n)})$$

where t_0 is a preset burn-in period.

But how to construct T and verify that $\pi(s)$ is indeed its stationary distribution?

Equilibrium condition = Detailed Balance

 $T(\mathbf{s}|\mathbf{s}')\pi(\mathbf{s}') = T(\mathbf{s}'|\mathbf{s})\pi(\mathbf{s})$

If detailed balance is satisfied then $\pi(s)$ is a stationary distribution

$$\pi(\mathbf{s}) = \int d\mathbf{s}' T(\mathbf{s}|\mathbf{s}') \pi(\mathbf{s}')$$

If the configuration space is discrete, we have

$$\pi(\mathbf{s}) = \sum_{\mathbf{s}'} T(\mathbf{s}|\mathbf{s}')\pi(\mathbf{s}')$$
$$\pi = T\pi$$

 π has to be a (right) eigenvector of T.

Conditions on T

 Irreducibility (probabilisic connectedness): Every state s' can be reached from every s

$$T(s'|s) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is **not** irreducible

• Aperiodicity : Cycling around is not allowed

$$T(s'|s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is **not** aperiodic

Surprisingly, it is easy to construct a transition kernel with these properties by following the recipe provided by Metropolis (1953) and Hastings (1970).

Metropolis-Hastings Kernel

- We choose an arbitrary proposal distribution q(s'|s) (that satisfies mild regularity conditions). (When q is symmetric, i.e., q(s'|s) = q(s|s'), we have a Metropolis algorithm.)
- We define the *acceptance probability* of a jump from s to s' as

$$a(s \to s') \equiv \min\{1, \frac{q(s|s')\pi(s')}{q(s'|s)\pi(s)}\}$$

Acceptance Probability $a(s \rightarrow s')$

Basic MCMC algorithm: Metropolis-Hastings

- 1. Initialize: $s^{(0)} \sim r(s)$
- **2.** For t = 1, 2, ...
 - Propose:

$$s' \sim q(s'|s^{(t-1)})$$

• Evaluate Proposal: $u \sim \text{Uniform}[0, 1]$

$$s^{(t)} := \begin{cases} s' & u < a(s^{(t-1)} \rightarrow s') & \text{Accept} \\ s^{(t-1)} & \text{otherwise Reject} \end{cases}$$

Transition Kernel of the Metropolis Algorithm

$$T(s'|s) = \underbrace{q(s'|s)a(s \to s')}_{\text{Accept}} + \underbrace{\delta(s'-s) \int ds' q(s'|s)(1-a(s \to s'))}_{\text{Reject}}$$

Only Accept part for visual convenience
Variance Karnale with the same stationary distribution

Cascades and Mixtures of Transition Kernels

Let T_1 and T_2 have the same stationary distribution p(s).

Then:

$$T_c = T_1 T_2$$

 $T_m = \nu T_1 + (1 - \nu) T_2 \quad 0 \le \nu \le 1$

are also transition kernels with stationary distribution p(s).

This opens up many possibilities to "tailor" application specific algorithms. For example let

> T_1 : global proposal (allows large "jumps") T_2 : local proposal (investigates locally)

We can use T_m and adjust ν as a function of rejection rate.

Optimization : Simulated Annealing and Iterative Improvement

For optimization, (e.g. to find a MAP solution)

 $s^* = rg\max_{s \in \mathcal{S}} \pi(s)$

The MCMC sampler may not visit s^* .

Simulated Annealing: We define the target distribution as

 $\pi(s)^{\tau_i}$

where τ_i is an annealing schedule. For example,

 $\tau_1 = 0.1, \ldots, \tau_N = 10, \tau_{N+1} = \infty \ldots$

Iterative Improvement (greedy search) is a special case of SA

 $\tau_1 = \tau_2 = \cdots = \tau_N = \infty$

Acceptance probabilities $a(s \rightarrow s')$ at different τ

Importance Sampling,

Online Inference, Sequential Monte Carlo

Importance Sampling

Consider a probability distribution with $Z = \int d\mathbf{x} \phi(\mathbf{x})$

$$p(\mathbf{x}) = \frac{1}{Z}\phi(\mathbf{x}) \tag{8}$$

Estimate expectations (or features) of $p(\mathbf{x})$ by a weighted sample

$$\left\langle f(\mathbf{x})\right\rangle _{p(\mathbf{x})}=\int dx f(\mathbf{x})p(\mathbf{x})$$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} \approx \sum_{i=1}^{N} \tilde{w}^{(i)} f(\mathbf{x}^{(i)})$$
 (9)

Importance Sampling (cont.)

• Change of measure with weight function $W(\mathbf{x}) \equiv \phi(x)/q(x)$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \frac{1}{Z} \int d\mathbf{x} f(\mathbf{x}) \frac{\phi(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) = \frac{1}{Z} \left\langle f(\mathbf{x}) \frac{\phi(\mathbf{x})}{q(\mathbf{x})} \right\rangle_{q(\mathbf{x})} \equiv \frac{1}{Z} \left\langle f(\mathbf{x}) W(\mathbf{x}) \right\rangle_{q(\mathbf{x})}$$

• If Z is unknown, as is often the case in Bayesian inference

$$Z = \int d\mathbf{x}\phi(\mathbf{x}) = \int d\mathbf{x} \frac{\phi(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) = \langle W(\mathbf{x}) \rangle_{q(\mathbf{x})}$$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \frac{\langle f(\mathbf{x}) W(\mathbf{x}) \rangle_{q(\mathbf{x})}}{\langle W(\mathbf{x}) \rangle_{q(\mathbf{x})}}$$

Importance Sampling (cont.)

• Draw $i = 1, \ldots N$ independent samples from q

 $\mathbf{x}^{(i)} \sim q(\mathbf{x})$

• We calculate the **importance weights**

$$W^{(i)} = W(\mathbf{x}^{(i)}) = \phi(\mathbf{x}^{(i)})/q(\mathbf{x}^{(i)})$$

• Approximate the normalizing constant

$$Z = \langle W(\mathbf{x})
angle_{q(\mathbf{x})} pprox inom{N}{i=1} W^{(i)}$$

• Desired expectation is approximated by

$$\left\langle f(\mathbf{x})\right\rangle_{p(\mathbf{x})} = \frac{\left\langle f(\mathbf{x})W(\mathbf{x})\right\rangle_{q(\mathbf{x})}}{\left\langle W(\mathbf{x})\right\rangle_{q(\mathbf{x})}} \approx \frac{\sum_{i=1}^{N} W^{(i)} f(\mathbf{x}^{(i)})}{\sum_{i=1}^{N} W^{(i)}} \equiv \sum_{i=1}^{N} \tilde{w}^{(i)} f(\mathbf{x}^{(i)})$$

Here $\tilde{w}^{(i)} = W^{(i)} / \sum_{j=1}^{N} W^{(j)}$ are normalized importance weights.

Importance Sampling (cont.)

Resampling

• Importance sampling computes an approximation with weighted delta functions

$$p(x) \approx \sum_{i} \tilde{W}^{(i)} \delta(x - x^{(i)})$$

- In this representation, most of $\tilde{W}^{(i)}$ will be very close to zero and the representation may be dominated by few large weights.
- Resampling samples a set of new "particles"

$$egin{array}{lll} x_{\mathsf{new}}^{(j)} &\sim & ilde{W}^{(i)} \delta(x-x^{(i)}) \\ & & & i & \ & & i & \ & \ & & \$$

- Since we sample from a degenerate distribution, particle locations stay unchanged. We merely dublicate (, triplicate, ...) or discard particles according to their weight.
- This process is also named "selection", "survival of the fittest", e.t.c., in various fields (Genetic algorithms, Al..).

Resampling

Examples of Proposal Distributions

$$p(x|y) \propto p(y|x)p(x)$$

Task: Obtain samples from the posterior p(x|y)

• Prior as the proposal. q(x) = p(x)

$$W(x) = \frac{p(y|x)p(x)}{p(x)} = p(y|x)$$

Examples of Proposal Distributions

Task: Obtain samples from the posterior p(x|y)

• Likelihood as the proposal. $q(x) = p(y|x) / \int dx p(y|x) = p(y|x) / c(y)$

$$W(x) = \frac{p(y|x)p(x)}{p(y|x)/c(y)} = p(x)c(y) \propto p(x)$$

• Interesting when sensors are very accurate and $\dim(y) \gg \dim(x)$. Idea behind "Dual-PF" (Thrun et.al., 2000)

Since there are many proposals, is there a "best" proposal distribution? Yes. See Doucet et. al.

Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior $p(x_{0:K}|y_{1:K})$.

$$p(x_{0:K}|y_{1:K}) = \frac{1}{p(y_{1:K})} p(y_{1:K}|x_{0:K}) p(x_{0:K}) \equiv \frac{1}{Z_y} \phi(x_{0:K})$$
(10)

Key idea: sequential construction of the proposal distribution q, possibly using the available observations $y_{1:k}$, i.e.

$$q(x_{1:K}|y_{1:K}) = q(x_0) \prod_{k=1}^{K} q(x_k|x_{1:k-1}y_{1:k})$$

Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight function $W(x_{0:k}) \equiv W_k$ admits *recursive* computation

$$W_{k} = \frac{\phi(x_{0:k})}{q(x_{0:k}|y_{1:k})} = \frac{p(y_{k}|x_{k})p(x_{k}|x_{k-1})}{q(x_{k}|x_{0:k-1}y_{1:k})} \frac{\phi(x_{0:k-1})}{q(x_{0:k-1}|y_{1:k-1})}$$
(11)
$$= \frac{p(y_{k}|x_{k})p(x_{k}|x_{k-1})}{q(x_{k}|x_{0:k-1},y_{1:k})} W_{k-1} \equiv u_{k|0:k-1}W_{k-1}$$
(12)

Suppose we had an approximation to the posterior (in the sense $\langle f(x) \rangle_{\phi} \approx \sum_{i} W_{k-1}^{(i)} f(x_{0:k-1}^{(i)})$)

$$\begin{split} \phi(x_{0:k-1}) &\approx \sum_{i} W_{k-1}^{(i)} \delta(x_{0:k-1} - x_{0:k-1}^{(i)}) \\ x_{k}^{(i)} &\sim q(x_{k} | x_{0:k-1}^{(i)}, y_{1:k}) & \text{Extend trajectory} \\ W_{k}^{(i)} &= u_{k|0:k-1}^{(i)} W_{k-1} & \text{Update weight} \\ \phi(x_{0:k}) &\approx \sum_{i} W_{k}^{(i)} \delta(x_{0:k} - x_{0:k}^{(i)}) \end{split}$$

Example

• Prior as the proposal density

$$q(x_k|x_{0:k-1}, y_{1:k}) = p(x_k|x_{k-1})$$

• The weight is given by

$$\begin{aligned} x_k^{(i)} &\sim p(x_k | x_{k-1}^{(i)}) & \text{Extend trajectory} \\ W_k^{(i)} &= u_{k|0:k-1}^{(i)} W_{k-1} & \text{Update weight} \\ &= \frac{p(y_k | x_k^{(i)}) p(x_k^{(i)} | x_{k-1}^{(i)})}{p(x_k^{(i)} | x_{k-1}^{(i)})} W_{k-1}^{(i)} = p(y_k | x_k^{(i)}) W_{k-1}^{(i)} \end{aligned}$$

• However, this schema will **not** work, since we blindly sample from the prior. But ...

Example (cont.)

 Perhaps surprisingly, interleaving importance sampling steps with (occasional) resampling steps makes the approach work quite well !!

 $x_{k}^{(i)} \sim p(x_{k} | x_{k-1}^{(i)})$ $W_{k}^{(i)} = p(y_{k}|x_{k}^{(i)})W_{k-1}^{(i)}$ Normalize $(\tilde{Z}_k \equiv \sum_{i'} W_k^{(i')})$ $\tilde{W}_{k}^{(i)} = W_{k}^{(i)} / \tilde{Z}_{k}$ $x_{0:k,\text{new}}^{(j)} \sim \sum_{i=1}^{N} \tilde{W}^{(i)} \delta(x_{0:k} - x_{0:k}^{(i)})$

Extend trajectory Update weight

Resample
$$j = 1 \dots N$$

• This results in a new representation as

$$\begin{split} \phi(x) &\approx \frac{1}{N} \sum_{j} \tilde{Z}_k \delta(x_{0:k} - x_{0:k,\text{new}}^{(j)}) \\ x_{0:k}^{(i)} \leftarrow x_{0:k,\text{new}}^{(j)} & W_k^{(i)} \leftarrow \tilde{Z}_k / N \end{split}$$

A Generic Particle Filter

1. Generation:

Compute the proposal distribution $q(x_k | x_{0:k-1}^{(i)}, y_{1:k})$. Generate offsprings for $i = 1 \dots N$

$$\hat{x}_k^{(i)} ~~ \sim ~~ q(x_k | x_{0:k-1}^{(i)}, y_{1:k})$$

2. Evaluate importance weights

$$W_{k}^{(i)} = \frac{p(y_{k}|\hat{x}_{k}^{(i)})p(\hat{x}_{k}^{(i)}|x_{k-1}^{(i)})}{q(\hat{x}_{k}^{(i)}|x_{0:k-1}^{(i)}, y_{1:k})}W_{k-1}^{(i)} \qquad x_{0:k}^{(i)} = (\hat{x}_{k}^{(i)}, x_{0:k-1}^{(i)})$$

3. Resampling (optional but recommended)

Normalize weigts
$$\tilde{W}_k^{(i)} = W_k^{(i)} / \tilde{Z}_k$$
 $\tilde{Z}_k \equiv \int_j W_k^{(j)}$ Resample $x_{0:k,\text{new}}^{(j)} \sim \sum_{i=1}^N \tilde{W}^{(i)} \delta(x_{0:k} - x_{0:k}^{(i)})$ $j = 1 \dots N$ Reset $x_{0:k}^{(i)} \leftarrow x_{0:k,\text{new}}^{(j)}$ $W_k^{(i)} \leftarrow \tilde{Z}_k / N$

Summary of what we have (hopefully) covered

- Deterministic
 - Variational Bayes, Mean field
 - Expectation/Maximization (EM), Iterative Conditional Modes (ICM)
- Stochastic
 - Markov Chain Monte Carlo
 - Importance Sampling,
 - Particle filtering

Summary of what we have not covered

- Exact Inference (Belief Propagation, Junction Tree ...)
- Deterministic
 - Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented Particle Filter
 - Structured Mean field
 - Loopy Belief Propagation, Expectation Propagation, Generalized Belief Propagation
 - Fractional Belief propagation, Bound Propagation, <your favorite name> Propagation
 - Graph cuts ...
- Stochastic
 - Unscented Particle Filter, Nonparametric Belief Propagation
 - Annealed Importance Sampling, Adaptive Importance Sampling
 - Hybrid Monte Carlo, Exact sampling, Coupling from the past

Variational or Sampling?

- Possible criteria
 - How accurate
 - How fast
 - How easy to learn
 - How easy to code/test/maintain

When all you own is a hammer, every problem looks like a nail

Variational or Sampling?

- Depends upon application domain. My personal impression is:
 - Sampling dominated
 - * Bayesian statistics, Scientific data analysis
 - * Finance/auditing
 - * Operations research
 - * Genetics
 - * Tracking
 - Variational dominated
 - * Communications/error correcting codes
 - Mixed territory
 - * Machine Learning, Robotics
 - * Computer Vision
 - * Human-Computer Interaction
 - * Speech/audio/multimedia analysis/information retrieval
 - * Statistical Signal processing