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Goals of this Tutorial

• Provide a basic understanding of underlying principles of
probabilistic modeling and Bayesian inference

• Orientation in the broad literature of Bayesian machine learning
and statistical signal processing

• Focus on fundamental concepts rather than technical details,

. . . we avoid heavy use of algebra by a graphical notation
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Goals of this Tutorial

• Model based approach

. . . rather than description of algorithms for solving specific problems

• Illustrate with examples how certain problems in music analysis
can be approached using generic tools

• Motivate participants to investigate further

. . . provide alternative perspective to existing solutions

. . . and hopefully provide new inspiration
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First Part, Basic Concepts

• Introduction

– Bayes’ Theorem,
– Trivial toy example to clarify notation

• Graphical Models

– Bayesian Networks
– Undirected Graphical models, Markov Random Fields
– Factor graphs

• Maximum Likelihood and Bayesian Learning

– Exponential family⋆
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Second Part, Models and Applications in Music Processing

• Hidden Markov Models,

– Harmonisation of Choral Melodies
– Inference in HMM
∗ Forward Backward Algorithm
∗ Viterbi
∗ Exact inference in general models by message passing

• Kalman Filter Models

– Tempo Tracking
– Kalman Filtering and Smoothing
– Computer Accompaniment

• Switching State Space models
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– MIDI transcription
– Particle Filtering

• Changepoint models

– Pitch tracking

• Factorial Models and Model selection

– Audio Source Separation
– Polyphonic Pitch Tracking
– Approximate Inference in Factorial Models
∗ Markov Chain Monte Carlo
∗ Variational Bayes

• Final Remarks and Bibliography
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Bayes’ Theorem [13, 15]

Thomas Bayes (1702-1761)

What you know about a parameter λ after the data D arrive is
what you knew before about λ and what the data D told you.

p(λ|D) =
p(D|λ)p(λ)

p(D)

Posterior =
Likelihood× Prior

Evidence
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An application of Bayes’ Theorem: “Source Separation”

Given two fair dice with outcomes λ and y,

D = λ+ y

What is λ when D = 9 ?
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An application of Bayes’ Theorem: “Source Separation”

D = λ+ y = 9

D = λ+ y y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 2 3 4 5 6 7
λ = 2 3 4 5 6 7 8
λ = 3 4 5 6 7 8 9
λ = 4 5 6 7 8 9 10
λ = 5 6 7 8 9 10 11
λ = 6 7 8 9 10 11 12

Bayes theorem “upgrades” p(λ) into p(λ|D).

But you have to provide an observation model: p(D|λ)
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“Beurocratical” derivation

Formally we write

p(λ) = C(λ; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(y) = C(y; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(D|λ, y) = δ(D − (λ+ y))

p(λ, y|D) =
1

p(D)
× p(D|λ, y)× p(y)p(λ)

Posterior =
1

Evidence
× Likelihood× Prior

Kronecker delta function denoting a degenerate (deterministic) distribution δ(x) =

�
1 x = 0
0 x 6= 0
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Prior

p(y)p(λ)

p(y)× p(λ) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 1/36 1/36 1/36 1/36 1/36 1/36
λ = 2 1/36 1/36 1/36 1/36 1/36 1/36
λ = 3 1/36 1/36 1/36 1/36 1/36 1/36
λ = 4 1/36 1/36 1/36 1/36 1/36 1/36
λ = 5 1/36 1/36 1/36 1/36 1/36 1/36
λ = 6 1/36 1/36 1/36 1/36 1/36 1/36

• A table with indicies λ and y

• Each cell denotes the probability p(λ, y)
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Likelihood

p(D = 9|λ, y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1

λ = 4 0 0 0 0 1 0
λ = 5 0 0 0 1 0 0
λ = 6 0 0 1 0 0 0

• A table with indicies λ and y

• The likelihood is not a probability distribution, but a positive function.
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Likelihood × Prior

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1/36

λ = 4 0 0 0 0 1/36 0
λ = 5 0 0 0 1/36 0 0
λ = 6 0 0 1/36 0 0 0
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Evidence

p(D = 9) =
∑

λ,y

p(D = 9|λ, y)p(λ)p(y)

= 0 + 0 + · · ·+ 1/36 + 1/36 + 1/36 + 1/36 + 0 + · · ·+ 0

= 1/9

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1/36

λ = 4 0 0 0 0 1/36 0
λ = 5 0 0 0 1/36 0 0
λ = 6 0 0 1/36 0 0 0
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Posterior

p(λ, y|D = 9) =
1

p(D)
p(D = 9|λ, y)p(λ)p(y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1/4
λ = 4 0 0 0 0 1/4 0
λ = 5 0 0 0 1/4 0 0
λ = 6 0 0 1/4 0 0 0

1/4 = (1/36)/(1/9)
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Marginal Posterior

p(λ|D) =
∑

y

1

p(D)
p(D|λ, y)p(λ)p(y)

p(λ|D = 9) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0 0
λ = 3 1/4 0 0 0 0 0 1/4
λ = 4 1/4 0 0 0 0 1/4 0
λ = 5 1/4 0 0 0 1/4 0 0
λ = 6 1/4 0 0 1/4 0 0 0
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The “proportional to” notation

p(λ|D) ∝
∑

y

p(D|λ, y)p(λ)p(y)

p(λ|D = 9) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0 0
λ = 3 1/36 0 0 0 0 0 1/36

λ = 4 1/36 0 0 0 0 1/36 0
λ = 5 1/36 0 0 0 1/36 0 0
λ = 6 1/36 0 0 1/36 0 0 0
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Exercise

p(x1, x2) x2 = 1 x2 = 2
x1 = 1 0.3 0.3
x1 = 2 0.1 0.3

1. Find the following quantities

• Marginals: p(x1), p(x2)
• Conditionals: p(x1|x2), p(x2|x1)
• Posterior: p(x1, x2 = 2), p(x1|x2 = 2)
• Evidence: p(x2 = 2)
• p({})
• Max: p(x∗1) = maxx1 p(x1|x2 = 1)
• Mode: x∗1 = arg maxx1 p(x1|x2 = 1)
• Max-marginal: maxx1 p(x1, x2)

2. Are x1 and x2 independent ? (i.e., Is p(x1, x2) = p(x1)p(x2) ?)
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Answers

p(x1, x2) x2 = 1 x2 = 2
x1 = 1 0.3 0.3
x1 = 2 0.1 0.3

• Marginals:

p(x1)
x1 = 1 0.6
x1 = 2 0.4

p(x2) x2 = 1 x2 = 2
0.4 0.6

• Conditionals:

p(x1|x2) x2 = 1 x2 = 2
x1 = 1 0.75 0.5
x1 = 2 0.25 0.5

p(x2|x1) x2 = 1 x2 = 2
x1 = 1 0.5 0.5

x1 = 2 0.25 0.75
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Answers

p(x1, x2) x2 = 1 x2 = 2
x1 = 1 0.3 0.3
x1 = 2 0.1 0.3

• Posterior:

p(x1, x2 = 2) x2 = 2
x1 = 1 0.3
x1 = 2 0.3

p(x1|x2 = 2) x2 = 2
x1 = 1 0.5
x1 = 2 0.5

• Evidence:
p(x2 = 2) =

∑

x1

p(x1, x2 = 2) = 0.6

• Normalisation constant:

p({}) =
∑

x1

∑

x2

p(x1, x2) = 1
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Answers

p(x1, x2) x2 = 1 x2 = 2
x1 = 1 0.3 0.3
x1 = 2 0.1 0.3

• Max: (get the value)
max
x1

p(x1|x2 = 1) = 0.75

• Mode: (get the index)
argmax

x1

p(x1|x2 = 1) = 1

• Max-marginal: (get the “skyline”) maxx1 p(x1, x2)

maxx1 p(x1, x2) x2 = 1 x2 = 2
0.3 0.3
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Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes λ1, λ2, . . . , λn,

D =
n∑

i=1

λi

How many dice are there when D = 9 ?

Assume that any number n is equally likely
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Another application of Bayes’ Theorem: “Model Selection”

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(n|D = 9) =
p(D = 9|n)p(n)

p(D)
∝ p(D = 9|n)

p(D|n = 1) =
∑

λ1

p(D|λ1)p(λ1)

p(D|n = 2) =
∑

λ1

∑

λ2

p(D|λ1, λ2)p(λ1)p(λ2)

. . .

p(D|n = n′) =
∑

λ1,...,λn′

p(D|λ1, . . . , λn′)

n′∏

i=1

p(λi)
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p(D|n) =
∑

λ
p(D|λ, n)p(λ|n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

p(
D

|n
=

1)

D

0

0.2

p(
D

|n
=

2)

0

0.2

p(
D

|n
=

3)

0

0.2

p(
D

|n
=

4)
0

0.2

p(
D

|n
=

5)
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Another application of Bayes’ Theorem: “Model Selection”

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

n = Number of Dice

p(
n|

D
 =

 9
)

• Complex models are more flexible but they spread their probability mass

• Bayesian inference inherently prefers “simpler models” – Occam’s razor

• Computational burden: We need to sum over all parameters λ
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Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

〈f(x)〉 =

∫

X

dxp(x)f(x) 〈f(x)〉 =
∑

x∈X

p(x)f(x)

• modes of functions under probability distributions: Optimization

x∗ = argmax
x∈X

p(x)f(x)

• any “mix” of the above: e.g.,

x∗ = argmax
x∈X

p(x) = argmax
x∈X

∫

Z

dzp(z)p(x|z)
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Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear
division between

• What to solve : Model Construction

– Both an Art and Science
– Highly domain specific

• How to solve : Inference Algorithm

– Mechanical (In theory! not in practice)
– Generic
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Applications of Probability Models

• Classification

• Optimal Decision, given a loss function

• Finding interesting (hidden) structure

– Clustering, Segmentation
– Dimensionality Reduction
– Outlier Detection

• Finding a compact representation = Data Compression

• Prediction
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Probability Models

+

Inference Algorithms

=

Bayesian Numerical Methods
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Graphical Models

• formal languages for specification of probability models and
associated inference algorithms

• historically, introduced in probabilistic expert systems (Pearl 1988)
as a visual guide for representing expert knowledge

• today, a standard tool in machine learning, statistics and signal
processing

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada 29



Graphical Models

• provide graph based algorithms for derivations and computation

• pedagogical insight/motivation for model/algorithm construction

– Statistics:
“Kalman filter models and hidden Markov models (HMM) are equivalent upto
parametrisation”

– Signal processing:
“Fast Fourier transform is an instance of sum-product algorithm on a factor
graph”

– Computer Science:
“Backtracking in Prolog is equivalent to inference in Bayesian networks with
deterministic tables”

• Automated tools for code generation start to emerge, making the
design/implement/test cycle shorter
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Important types of Graphical Models

• Useful for Model Construction

– Directed Acyclic Graphs (DAG), Bayesian Networks
– Undirected Graphs, Markov Networks, Random Fields
– Influence diagrams
– ...

• Useful for Inference

– Factor Graphs
– Junction/Clique graphs
– Region graphs
– ...
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Directed Graphical models (DAG)
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Directed Graphical models

• Each random variable is associated with a node in the graph,

• We draw an arrow fromA→ B if p(B| . . . , A, . . . ) (A ∈ parent(B)),

• The edges tell us qualitatively about the factorization of the joint
probability

• For N random variables x1, . . . , xN , the distribution admits

p(x1, . . . , xN) =
N∏

i=1

p(xi|parent(xi))

• Describes in a compact way an algorithm to “generate” the data –
“Generative models”
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DAG Example: Two dice

p(λ) p(y)

λ y

D

p(D|λ, y)

p(D, λ, y) = p(D|λ, y)p(λ)p(y)
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DAG with observations

p(λ) p(y)

λ y

D

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y)
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Examples

Model Structure factorization

Full x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Markov(2) x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x2, x3)

Markov(1) x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1)p(x4)

Factorized x1 x2 x3 x4 p(x1)p(x2)p(x3)p(x4)

Removing edges eliminates a term from the conditional probability factors.
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Undirected Graphical Models
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Undirected Graphical Models

• Define a distribution by local compatibility functions φ(xα)

p(x) =
1

Z

∏

α

φ(xα)

where α runs over cliques : fully connected subsets

• Examples
x1

x2 x3

x4

x1

x2 x3

x4

p(x) = 1
Zφ(x1, x2)φ(x1, x3)φ(x2, x4)φ(x3, x4) p(x) = 1

Zφ(x1, x2, x3)φ(x2, x3, x4)
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Factor graphs
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Factor graphs [14]

• A bipartite graph. A powerful graphical representation of the inference problem

– Factor nodes : Black squares. Factor potentials (local functions) defining
the posterior.

– Variable nodes : White Nodes. Define collections of random variables
– Edges : denote membership. A variable node is connected to a factor node

if a member variable is an argument of the local function.

p(λ) p(y)

λ y

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y) = φ1(λ, y)φ2(λ)φ3(y)
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Exercise

• For the following Graphical models, write down the factors of the joint
distribution and plot an equivalent factor graph and an undirected graph.

Full x1 x2 x3 x4 Markov(1) x1 x2 x3 x4

HMM

h1 h2 h3 h4x1 x2 x3 x4 MIX

hx1 x2 x3 x4

IFA

h1 h2x1 x2 x3 x4 Factorized x1 x2 x3 x4
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Answer (Markov(1))

x1 x2 x3 x4

p(x1)

x1

p(x2|x1)

x2

p(x3|x2)

x3

p(x4|x3)

x4

x1 x2 x3 x4

p(x1)p(x2|x1)
︸ ︷︷ ︸

φ(x1,x2)

p(x3|x2)
︸ ︷︷ ︸

φ(x2,x3)

p(x4|x3)
︸ ︷︷ ︸

φ(x3,x4)
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Answer (IFA – Factorial)h1 h2x1 x2 x3 x4
p(h1)p(h2)

4∏

i=1

p(xi|h1, h2)

h1 h2

x1 x2 x3 x4
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Answer (IFA – Factorial)

h1 h2

x1 x2 x3 x4

• We can also cluster nodes together

h1, h2

x1 x2 x3 x4
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Inference and Learning

• Data set
D = {x1, . . . xN}

• Model with parameter λ
p(D|λ)

• Maximum Likelihood (ML)

λML = arg max
λ

log p(D|λ)

• Predictive distribution

p(xN+1|D) ≈ p(xN+1|λ
ML)
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Regularisation

• Prior
p(λ)

• Maximum a-posteriori (MAP) : Regularised Maximum Likelihood

λMAP = arg max
λ

log p(D|λ)p(λ)

• Predictive distribution

p(xN+1|D) ≈ p(xN+1|λ
MAP)

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada 46



Bayesian Learning

• We treat parameters on the same footing as all other variables

• We integrate over unknown parameters rather than using point
estimates (remember the many-dice example)

– Avoids overfitting
– Natural setup for online adaptation
– Model selection

– (arguably) many problems in music processing are model selection problems
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Bayesian Learning

• Predictive distribution

p(xN+1|D) =

∫

dλ p(xN+1|λ)p(λ|D)

λ

x1 x2 . . . xN xN+1

• Bayesian learning is just inference ...
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Some Applications: Audio Restoration

• During download or transmission, some samples of audio are lost

• Estimate missing samples given clean ones

0 50 100 150 200 250 300 350 400 450 500

0
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Examples: Audio Restoration

p(x¬κ|xκ) ∝

∫

dHp(x¬κ|H)p(xκ|H)p(H)

H ≡ (parameters, hidden states)

H

x¬κ xκ

Missing Observed

0 50 100 150 200 250 300 350 400 450 500

0
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Restoration (Cemgil and Godsill 2005 [4])

• Piano

– Signal with missing samples (37%)
– Reconstruction, 7.68 dB improvement
– Original

• Trumpet

– Signal with missing samples (37%)
– Reconstruction, 7.10 dB improvement
– Original
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piano_missing.wav
Media File (audio/wav)


piano_kalman.wav
Media File (audio/wav)


piano_clean.wav
Media File (audio/wav)


trumpet_missing.wav
Media File (audio/wav)


trumpet_kalman.wav
Media File (audio/wav)


trumpet_clean.wav
Media File (audio/wav)



Basic Distributions : Exponential Family

• Following distributions are used often as elementary building blocks:

– Gaussian
– Gamma, Inverse Gamma, (Exponential, Chi-square, Wishart)
– Dirichlet
– Discrete (Categorical), Bernoulli, multinomial

• All of those distributions can be written as

p(x|θ) = exp{θ⊤ψ(x)−A(θ)}

A(θ) = log

∫

Xn
dx exp(θ⊤ψ(x)) log-partition function

θ canonical parameters

ψ(x) sufficient statistics
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Example, Univariate Gaussian

The Gaussian distribution with mean m and covariance S has the form

N (x;m,S) = (2πS)−1/2 exp{−
1

2
(x−m)2/S}

= exp{−
1

2
(x2 +m2 − 2xm)/S −

1

2
log(2πS)}

= exp

{
m

S
x−

1

2S
x2 −

(
1

2
log(2πS) +

1

2S
m2

)}

= exp{

(
m/S
−1

2/S

)⊤

︸ ︷︷ ︸
θ

(
x
x2

)

︸ ︷︷ ︸

ψ(x)

−A(θ)}

Hence by matching coefficients we have

exp
{
−1

2Kx
2 + hx+ g

}
⇔ S = K−1 m = K−1h
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Example, Gaussian
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Example, Inverse Gamma

The inverse Gamma distribution with shape a and scale b

IG(r; a, b) =
1

Γ(a)

r−(a+1)

ba
exp(−

1

br
)

= exp

(

−(a+ 1) log r −
1

br
− log Γ(a)− a log b

)

= exp

((
−(a+ 1)
−1/b

)⊤(
log r
1/r

)

− log Γ(a)− a log b

)

Hence by matching coefficients, we have

exp

{

α log r + β
1

r
+ c

}

⇔ a = −α− 1 b = −1/β
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Example, Inverse Gamma

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a=1  b=1

a=1 b=0.5

a=2 b=1
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Conjugate priors: Posterior is in the same family as the prio r.

Example: posterior inference for the variance R of a zero mean Gaussian.

p(x|R) = N (x; 0, R)

p(R) = IG(R; a, b)

p(R|x) ∝ p(R)p(x|R)

∝ exp

(

−(a+ 1) logR − (1/b)
1

R

)

exp

(

−(x2/2)
1

R
−

1

2
logR

)

= exp

((
−(a+ 1 + 1

2)
−(1/b+ x2/2)

)⊤(
logR
1/R

))

∝ IG(R; a+
1

2
,

2

x2 + 2/b
)

Like the prior, this is an inverse-Gamma distribution.
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Conjugate priors: Posterior is in the same family as the prio r.

Example: posterior inference of variance R from x1, . . . , xN .

R

x1 x2 . . . xN xN+1

p(R|x) ∝ p(R)
NY

i=1

p(xi|R)

∝ exp

�

−(a+ 1) logR− (1/b)
1

R
�

exp

 
−

 
1

2

X
i

x
2
i

!

1

R
−
N

2
logR

!

= exp

 �

−(a + 1 + N
2 )

−(1/b + 1
2

P

i x
2
i )

�⊤�
logR

1/R
�!

∝ IG(R; a+
N

2
,

2P

i x
2
i + 2/b

)

Sufficient statistics are additive
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Inverse Gamma,
∑

i x
2
i = 10 N = 10

0 1 2 3 4 5
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0.2

0.4

0.6

0.8

1

1.2

1.4

Σ
i
 x

i
2 = 10    N = 10
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Inverse Gamma,
∑

i x
2
i = 100 N = 100

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Σ
i
 x

i
2 = 100    N = 100
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Inverse Gamma,
∑

i x
2
i = 1000 N = 1000

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Σ
i
 x

i
2 = 1000    N = 1000
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Example: AR(1) model

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

xk = Axk−1 + ǫk k = 1 . . .K

ǫk is i.i.d., zero mean and normal with variance R.

Estimation problem :

Given x0, . . . , xK, determine coefficient A and variance R (both scalars).
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AR(1) model, Generative Model notation

A ∼ N (A; 0, P )

R ∼ IG(R; ν, β/ν)

xk|xk−1, A,R ∼ N (xk;Axk−1, R) x0 = x̂0

A R

x0 x1 . . . xk−1 xk . . . xK

Gaussian : N (x;µ, V ) ≡ |2πV |−
1
2 exp(−1

2(x− µ)2/V )

Inverse-Gamma distribution: IG(x; a, b) ≡ Γ(a)−1b−ax−(a+1) exp(−1/(bx)) x ≥ 0

Observed variables are shown with double circles
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AR(1) Model. Bayesian Posterior Inference

p(A,R|x0, x1, . . . , xK) ∝ p(x1, . . . , xK|x0, A,R)p(A,R)

Posterior ∝ Likelihood× Prior

Using the Markovian (conditional independence) structure we have

p(A,R|x0, x1, . . . , xK) ∝

(
K∏

k=1

p(xk|xk−1, A,R)

)

p(A)p(R)

A R

x0 x1 . . . xk−1 xk . . . xK
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Numerical Example

Suppose K = 1,

A R

x0 x1

A R

x0 x1

By Bayes’ Theorem and the structure of AR(1) model

p(A,R|x0, x1) ∝ p(x1|x0, A,R)p(A)p(R)

= N (x1;Ax0, R)N (A; 0, P )IG(R; ν, β/ν)
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Numerical Example

p(A,R|x0, x1) ∝ p(x1|x0, A,R)p(A)p(R)

= N (x1;Ax0, R)N (A; 0, P )IG(R; ν, β/ν)

∝ exp

(

−
1

2

x2
1

R
+ x0x1

A

R
−

1

2

x2
0A

2

R
−

1

2
log 2πR

)

exp

(

−
1

2

A2

P

)

exp

(

−(ν + 1) logR−
ν

β

1

R

)

This posterior has a nonstandard form

exp

(

α1
1

R
+ α2

A

R
+ α3

A2

R
+ α4 logR+ α5A

2

)
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Numerical Example, the prior p(A,R)

Equiprobability contour of p(A)p(R)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

A ∼ N (A; 0, 1.2) R ∼ IG(R; 0.4, 250)

Suppose: x0 = 1 x1 = −6 x1 ∼ N (x1;Ax0, R)
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Numerical Example, the posterior p(A,R|x)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

Note the bimodal posterior with x0 = 1, x1 = −6

• A ≈ −6⇔ low noise variance R.
• A ≈ 0⇔ high noise variance R.
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Remarks

• The point estimates such as ML or MAP are not always
representative about the solution

• (Unfortunately), exact posterior inference is only possible for few
special cases

• Even very simple models can lead easily to complicated posterior
distributions

• Ambiguous data usually leads to a multimodal posterior, each
mode corresponding to one possible explanation
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Remarks

• A-priori independent variables often become dependent a-
posteriori (“Explaining away”)

• The difficulty of an inference problem depends, among others,
upon the particular “parameter regime” and observed data
sequence
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Dynamical (Time Series) Models and Example
Applications
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Time series models and Inference, Terminology

In music signal processing and machine learning many
phenomena are modelled by dynamical models

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

• x is the latent state (tempo, pitch, section, score position, ...)

• y are observations (audio samples, MIDI, spectral features, ... )

• In a full Bayesian setting, x includes unknown model parameters
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Time series models and applications

• Hidden Markov Models

– Score following, Transcription
– Segmentation, Classification
– Key finding

• (Time varying) AR, ARMA, MA models

– Adaptive filtering

• Linear Dynamical Systems, Kalman Filter models

– Computer Accompaniment
– Tempo and Pitch tracking
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Types of time series models

• Switching state space models

– Rhythm Quantization
– Onset detection
– Polyphonic pitch tracking, transcription

• Dynamic Bayesian networks

– Computer Accompaniment

• Nonlinear Stochastic Dynamical Systems
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Online Inference, Terminology

• Filtering: p(xk|y1:k)

– Distribution of current state given all past information
– Realtime/Online/Sequential Processing

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Potentially confusing misnomer:

– More general than “digital filtering” (convolution) in DSP – but
algoritmically related for some models (KFM)
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Online Inference, Terminology

• Prediction p(yk:K, xk:K|y1:k−1)

– evaluation of possible future outcomes; like filtering without
observations

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Accompaniment, Tracking, Restoration
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Offline Inference, Terminology
• Smoothing p(x0:K|y1:K),

Most likely trajectory – Viterbi path arg maxx0:K
p(x0:K|y1:K)

better estimate of past states, essential for learning

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Interpolation p(yk, xk|y1:k−1, yk+1:K)
fill in lost observations given past and future

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Hidden Markov Model [17]

• Mixture model evolving in time

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Observations yk are continuous or discrete

• Latent variables xk are discrete

– Represents the fading memory of the process

• Exact inference possible if xk has a “small” number of states
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Harmonisation of Chorals

(Sugawara, Nishimoto and Sagayama 2003, Allan and Williams 2006 [1] )

• k denotes the score position as measured in quarter notes

• Latent variables xk denote chords

– Using a representation relative to soprano voice

• The transition model p(xk|xk−1) encodes likely chord progressions

• Observations yk are individual voices (bass/tenor/alto/soprano)

• Observation model p(yk|xk) encodes inversions, voicings and ornamentation

• For a nice demo see http://www.tardis.ed.ac.uk/ ˜ moray/harmony/
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Harmonisation, Inference Problem

Given a model and given a soprano melody, harmonise in the style of Bach

C0 C1 . . . Ck−1 Ck . . . CK Chords

S1 . . . Sk−1 Sk . . . SK Soprano

A1 . . . Ak−1 Ak . . . AK Alto

...
... Tenor

B1 . . . Bk−1 Bk . . . BK Bass

• Find most likely harmonisation C∗1:K = arg maxC1:K
p(C1:K|S1:K) by Viterbi

• Sample from Bk ∼ p(Bk|C
∗
k), Tk ∼ p(Tk|C

∗
k), Ak ∼ p(Ak|C

∗
k),
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Harmonisation of Chorale K85 by J. S. Bach1
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Exact Inference in HMM, Forward/Backward Algorithm
p(x1)

x1

p(x2|x1)

x2

p(x3|x2)

x3

p(x4|x3)

x4

p(y1|x1) p(y2|x2) p(y3|x3) p(y4|x4)

• Forward Pass

p(y1:K) =

X
x1:K

p(y1:K|x1:K)p(x1:K)

=

X

xK

p(yT |xK)

X
xK−1

p(xK|xK−1)| {z }
αK

· · ·

X
x2

p(x3|x2) p(y2|x2)

α2|1z }| {X

x1

p(x2|x1)| {z }

α2

p(y1|x1)

α1|0z }| {

p(x1)| {z }

α1

• Backward Pass

p(y1:K) =

X

x1

p(x1)p(y1|x1) . . .

X
xK−1

p(xK−1|xK−2)p(yK−1|xK−1)| {z }
βK−2

X
xK

p(xK|xK−1)p(yK|xK)| {z }

βK−1

111|{z}

βK
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Exact Inference in HMM, Viterbi Algorithm
p(x1)

x1

p(x2|x1)

x2

p(x3|x2)

x3

p(x4|x3)

x4

p(y1|x1) p(y2|x2) p(y3|x3) p(y4|x4)

• Merely replace sum by max, equivalent to dynamic programming

• Forward Pass

p(y1:K|x
∗
1:K) = max

x1:K
p(y1:K|x1:K)p(x1:K)

= max
xK

p(yT |xK) max
xK−1

p(xK|xK−1)| {z }
αK

. . .max
x2

p(x3|x2) p(y2|x2)

α2|1z }| {

max
x1

p(x2|x1)| {z }

α2

p(y1|x1)

α1|0z }| {

p(x1)| {z }

α1

• Backward Pass

p(y1:K|x
∗
1:K) = max

x1
p(x1)p(y1|x1) . . . max

xK−1
p(xK−1|xK−2)p(yK−1|xK−1)| {z }

βK−2

max
xK

p(xK|xK−1)p(yK|xK)| {z }

βK−1

111|{z}

βK
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Exact Inference on general factor graphs

• When the factor graph is a tree, one can define a local message propagation

– If factor graph is not a tree, one can always do this by clustering nodes
together

• Sum-product

– Generalises Forward/Backward
– Rule:

“The message sent from a node v on an edge e is the product of the local function at v (or
the unit function if is a variable node) with all messages received at v on edges other than
e, summarized for the variable associated with e.”

• Max-product

– Generalises Viterbi

Look at the seminal tutorial paper by Kschischang, Frey and Loeliger [14] on factor
graphs.
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Exact Inference on general factor graphs
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Kalman Filter Models, Linear Dynamical Systems

• The latent variables sk and observations yk are continuous

• The transition and observations models are linear

– Example: a perfect metronome
– A deterministic dynamical system with two state variables

sk =

(
phase
period

)

k

=

(
1 1

0 1

)

sk−1 = Ask−1

yk = phasek =
(

1 0
)
sk = Csk
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Tempo Tracking

(Cemgil et.al. 2000 [8], Hainsworth and MacLeod 2003)

• We allow random (unknown) accelerations and expressive timing
deviations

sk =

(
1 1

0 1

)

sk−1 + ǫk

= Ask−1 + ǫk

yk =
(

1 0
)
sk + νk

= Csk + νk
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Tempo Tracking

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

• In generative model notation

sk ∼ N (sk;Ask−1, Q)

yk ∼ N (yk;Csk, R)

• Tempo tracking = estimating the latent state of the metronome =
Kalman filtering
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Kalman Filtering and Smoothing (two filter formulation)
p(x1)

x1

p(x2|x1)

x2

p(x3|x2)

x3

p(x4|x3)

x4

p(y1|x1) p(y2|x2) p(y3|x3) p(y4|x4)

• Forward Pass

p(y1:K) =

Z
xK

p(yT |xK)

Z
xK−1

p(xK|xK−1)| {z }
αK

. . .

Z
x2

p(x3|x2) p(y2|x2)

α2|1z }| {Z

x1

p(x2|x1)| {z }

α2

p(y1|x1)

α1|0z }| {

p(x1)| {z }

α1

• Backward Pass

p(y1:K) =

Z

x1

p(x1)p(y1|x1) . . .

Z
xK−1

p(xK−1|xK−2)p(yK−1|xK−1)| {z }
βK−2

Z

xK

p(xK|xK−1)p(yK|xK)| {z }

βK−1

111|{z}

βK

• Replace summation by integration
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p(y1|s1)p(s1)
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p(s2|y1) ∝
∫
ds1p(s2|s1)p(y1|s1)p(s1)
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p(y2|s2)p(s2|y1)
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p(s5|y1:5)
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Computer Accompaniment

(Music Plus One, Raphael 2000 [18], Dannenberg and Raphael 2006)

c0 c1 . . . ck−1 ck . . . cK

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

• ck are score positions of notes of the soloist and lk = ck − ck−1

sk =

(
1 lk
0 1

)

sk−1 + ǫk = Aksk−1 + ǫk yk = Csk + νk

ǫk ∼ N (ǫ; 0, Qk)

νk ∼ N (ν;mk, Rk) (note k dependent mean and variance!)
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Music Plus One

c0 c1 . . . ck−1 ck . . . cK

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

ya1 . . . yak−1 yak . . . yaK

a0 a1 . . . ak−1 ak . . . aK

• Note that this is ruthless simplification, see Chris’ papers...
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Switching State Space models

c0 c1 . . . ck−1 ck . . . cK

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

• We introduce latent switch variables to switch between different transition and
observation models

• Powerful framework for modelling nonstationary processes and nonlinear
dynamical systems
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Inference in Switching State Space models

• Unlike HMM’s or KFM’s, summing over ck does not simplify the filtering density.

• Number of Gaussian kernels to represent exact filtering density p(ck, sk|y1:k)
increases exponentially

−7.90366.6343

0.76292

−10.3422

−10.1982−2.393

−2.7957

−0.4593

• Bad news: exact inference problem is shown to be NP hard
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Rhythm Quantization Problem

Example: A Performed Onset Sequence

1.
18

0.
59

0.
29

0.
34

0.
44

0.
34

0.
39

0.
6

0.
63

0.
3

0.
28

0.
3

0.
35

1.
19

Very accurate but too complex� � � � � � �� � � � � � � � � � � � � � � � � �
Simple but a very poor description of the rhythm� � � � � � � � � � � � � �
Desired quantization balances accuracy and simplicity� � � � � 3� � � � � � � � � �
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MIDI transcription

Score 0.5 = (� 1 = � 0.5 = (� . . .
Tempo 1 1.1 1.2 . . .
Exact 0 0.5 1.6 2.2 . . .

Onsets 0 0.53 1.62 2.11 . . .

Table 1: A ritardando (slowing down).

Score ? ? ? . . .
Tempo ? ? ? . . .
Exact ? ? ? ? . . .

Onsets 0 0.53 1.62 2.11 . . .

Given the model and observations, probabilistic inference “fills in” the remaining
cells.
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MIDI transcription

(Raphael 2001, Cemgil and Kappen 2001)

c0 c1 . . . ck−1 ck . . . cK

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

p(Score, Tempo|Onsets) ∝ p(Onsets|Tempo,Score)× p(Tempo,Score)

Score∗ = argmax
Score

∫

Tempo
p(Score, Tempo|Onsets)

Score⋆ = argmax
Score

max
Tempo

p(Score, Tempo|Onsets)
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Example

Suppose that a score can consist of only two notes: (� and �
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Sequential Monte Carlo (Particle Filtering)

• Main idea: Select a branch to expand with a probability propotional to the
evidence

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.8

−0.6
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0
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−5.7925
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−0.4
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0
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0.4

0.6

τ
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0.34919
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Particle Filtering for tempo tracking and quantisation

Repeating pattern with fluctuating tempo 7 > � � > �� �� � 7 .
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Sequential Monte Carlo

• This variant is known as Mixture Kalman Filter or Rao-Blackwellized Particle
filter (Chen and Liu 2001 [9], Cemgil 2002 [6], Hainsworth and MacLeod 2003)

• (For this model) algorithmically similar to Breadth first search/Multi Hypothesis
Tracking/Genetic algorithms

• Generic tool for inference with a rich background theory (Doucet, et. al. 2001,
Del Moral, “Feynman-Kac Formulae”, 2005)

• Many applications in various fields

– Robotics, Navigation, Econometrics,...
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Changepoint models

rk ∼ p(rk|rk−1) Indicators ∈ {new, reg}

θk ∼ [rk = reg] f(θk|θk−1)
︸ ︷︷ ︸

Transition

+[rk = new] π(θk)
︸ ︷︷ ︸

Reinitialization

Latent State

yk ∼ p(yk|θk) Observations

r1 r2 r3 r4 r5

θ0 θ1 θ2 θ3 θ4 θ5

y1 y2 y3 y4 y5
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Example: Single Key, Onsets

r k
fr

eq
ue

nc
y

k

k

x k

• Each changepoint denotes the onset of a new audio event
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Dynamic Harmonic Model (Cemgil et. al. 2005, 2006) [3, 7]

rk|rk−1 ∼ p(rk|rk−1)

sk|sk−1, rk ∼ [rk = 0]N (Ask−1, Q)
︸ ︷︷ ︸

reg

+ [rk = 1]N (0, S)
︸ ︷︷ ︸

new

yk|sk ∼ N (Csk, R)

A =







Gω
G2
ω

. . .
GHω







N

Gω = ρk

(
cos(ω) − sin(ω)
sin(ω) cos(ω)

)

damping factor 0 < ρk < 1, framelength N and damped sinusoidal basis matrix C of size
N × 2H
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Monophonic model [7]

• We introduce a pitch label indicator m

• At each time k, the process can be in one of the {“mute”, “sound”}×M states.

r0 r1 . . . rT

m0 m1 . . . mT

s0 s1 . . . sT

y1 . . . yT
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Monophonic Pitch Tracking

Monophonic Pitch Tracking = Online estimation (filtering) of p(rk,mk|y1:k).

100 200 300 400 500 600 700 800 900 1000
−100

−50

0

50

100 200 300 400 500 600 700 800 900 1000

5

10

15

• If pitch is constant exact inference is possible
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Tracking Pitch Variations

• Allow m to change with k. We take a fine grid Piano-roll, e.g. Q = 21/128

50 100 150 200 250 300 350 400 450 500

• Intractable, need to run a particle filter
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Real Data Results

500 1000 1500 2000 2500 3000 3500

Top: F major scale played on an electric bass.
Bottom: Estimated MAP configuration (r,m)1:T .
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Real Data Results

500 1000 1500 2000 2500 3000 3500

A finer analysis with Q = 21/48 reveals that the 5’th and 7’th degree of the scale
are intonated slightly low.
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Polyphony: Factorial Dynamic Harmonic Model [3]

r0,ν ∼ C(r0,ν;π0,ν)

θ0,ν ∼ N (θ0,ν;µν, Pν)

rk,ν|rk−1,ν ∼ C(rk,ν;πν(rt−1,ν)) Changepoint indicator

θk,ν|θk−1,ν ∼ N (θk,ν;Aν(rk)θk−1,ν, Qν(rk)) Latent state

yk|θk,1:W ∼ N (yk;Ckθk,1:W , R) Observation

rν0 · · · rνk · · · rνK

θ
ν
0 · · · θ

ν
k · · · θ

ν
K

ν = 1 . . . W

yk yK
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Factorial Models

Source Separation

Bayesian Model selection
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Audio Source Separation
Estimate n hidden signals st from m observed signals xt.

s1t s2t . . . snt

x1
t . . . xmt

t = 1 . . . T

a
1 r1 . . . a

m rm

sit ∼ p(sit)

xjt ∼ N (x; ajs1:nt , rj)
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Audio Source Separation

t/sec
f/H

z
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s1.wav
Media File (audio/wav)


s2.wav
Media File (audio/wav)


s3.wav
Media File (audio/wav)


x1.wav
Media File (audio/wav)



Audio Source Separation

• Hierarchical Prior Model (Fevotte and Godsill 2005 [10], Cemgil et. al. 2006 [5])

λ1 . . . λn . . . λN ∼ G(λn; aλ, bλ)

vk,1 . . . vk,n · · · vk,N ∼ IG(vk,n; ν/2, 2/(νλn))

sk,1 . . . sk,n . . . sk,N ∼ N (sk,n; 0, vk,n)

xk,1 . . . xk,M

k = 1 . . .K

∼ N (xk,m;a⊤msk,1:N , rm)

a1 r1 . . . aM

∼ N (am; · · · )

rM

∼ IG(rm; · · · )
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Reconstructions
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var_se1.wav
Media File (audio/wav)


var_se2.wav
Media File (audio/wav)


var_se3.wav
Media File (audio/wav)



Audio Source Separation, Inference

λ1 . . . λn . . . λN

. . . . . .

vk,1 . . . vk,n · · · vk,N

. . . · · ·

sk,1:N

. . .

k = 1 . . .K

a1 r1 . . . aM rM

• Exact inference is not possible
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Approximate Inference

• Markov Chain Monte Carlo, Gibbs sampler

• Variational Bayes

It turns out that these algorithms can be viewed as alternative message passing
schemata on a factor graph

• Lets focus on a simpler graph to illustrate these algorithms

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)
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Gibbs Sampling

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)
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Gibbs Sampling

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)
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Gibbs Sampling

s
1

s 2
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Gibbs Sampling, t = 20

s
1

s 2
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Gibbs Sampling, t = 100

s
1

s 2
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Gibbs Sampling, t = 250

s
1

s 2
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Gibbs Sampling

• A remarkable fact is that we can estimate any desired expectation
by ergodic averages

〈f(s)〉P ≈
1

t− t0

t∑

n=t0

f(s(n))

• Consecutive samples s
(t) are dependent but we can “pretend” as

if they are independent!

• The sequence of samples are obtained from a Markov chain,
hence the name MCMC
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution Q.

P =
1

Zx
p(x = x̂|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

q(s1) = N (s1;m1, S1) q(s2) = N (s2;m2, S2)

A “measure of fit” between distributions is the KL divergence
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Kullback-Leibler (KL) Divergence

• A “quasi-distance” between two distributions P = p(x) and Q = q(x).

KL(P||Q) ≡

∫

X

dxp(x) log
p(x)

q(x)
= 〈logP〉P − 〈logQ〉P

• Unlike a metric, (in general) it is not symmetric,

KL(P||Q) 6= KL(Q||P)

• But it is non-negative (by Jensen’s Inequality)

KL(P||Q) = −

∫

X

dxp(x) log
q(x)

p(x)

≥ − log

∫

X

dxp(x)
q(x)

p(x)
= − log

∫

X

dxq(x) = − log 1 = 0
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OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

q(s1) = N (s1;m1, S1) q(s2) = N (s2;m2, S2)

The mi and Sj are the variational parameters to be optimized to minimize

KL(Q||P) = 〈logQ〉Q −

〈

log
1

Zx
φ(s1, s2)

︸ ︷︷ ︸
=P

〉

Q

(1)
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The form of the mean field solution

0 ≤ 〈log q(s1)q(s2)〉q(s1)q(s2) + logZx − 〈log φ(s1, s2)〉q(s1)q(s2)

logZx ≥ 〈log φ(s1, s2)〉q(s1)q(s2) − 〈log q(s1)q(s2)〉q(s1)q(s2)

≡ −F (p; q) +H(q) (2)

Here, F is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence ≥ −Energy + Entropy

Note r.h.s. is a lower bound [16]. The mean field equations monotonically
increase this bound. Good for assessing convergence and debugging computer
code.
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The form of the solution

• No direct analytical solution

• We obtain fixed point equations in closed form

q(s1) ∝ exp(〈log φ(s1, s2)〉q(s2))

q(s2) ∝ exp(〈log φ(s1, s2)〉q(s1))

Note the nice symmetry
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Variational Message Passing on a Factor Graph
p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

• Factor nodes : Factor potentials (local functions) defining the
posterior P .

• Variable nodes : Now, think of them as “factors” of the
approximating distribution Q. (Caution – non standard interpretation!)
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Fixed Point Iteration

p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

log q(s1) ← log p(s1) + 〈log p(x = x̂|s1, s2)〉q(s2)

log q(s2) ← log p(s2) + 〈log p(x = x̂|s1, s2)〉q(s1)
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VB Convergence

s
1

s 2

prior 

exact posterior 

factorized MF 
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Direct Link to Expectation-Maximisation (EM) [12]

Suppose we choose one of the distributions degenerate, i.e.

q̃(s2) = δ(s2 − m̃)

where m̃ corresponds to the “location parameter” of q̃(s2). We need to find the
closest degenerate distribution to the actual mean field solution q(s2), hence we
take one more KL and minimize

m̃ = argmin
ξ

KL(δ(s2 − ξ)||q(s2))

It can be shown that this leads exactly to the EM fixed point iterations.
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Iterated Conditional Modes (ICM) [2, 11]

If we choose both distributions degenerate, i.e.

q̃(s1) = δ(s1 − m̃1)

q̃(s2) = δ(s2 − m̃2)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface
φ(s1, s2).

m̃1 = argmax
s1

φ(s1, s2 = m̃2)

m̃2 = argmax
s2

φ(s1 = m̃1, s2)
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
in terms of fixed points.

A
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Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.
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Back to source separation

λ1 . . . λn . . . λN

. . . . . .

vk,1 . . . vk,n · · · vk,N

. . . · · ·

sk,1:N

. . .

k = 1 . . .K

a1 r1 . . . aM rM
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Observations

m

k
20 40 60 80 100 120 140 160 180 200

1

2 −1000
−500
0
500
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A typical run, 250/250 Gibbs/VB with tempering

0 500 1000 1500 2000

−0.8024

0.8295

2.0375

a

0 500 1000 1500 2000

7.2408

25.1398
36.2295

λ

0 500 1000 1500 2000

0.5451
1.8648

r

Epoch
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Reconstructions

n

Epoch = 500

1

2

3

n
Epoch = 1000

1

2

3

n

Epoch = 1500

1

2

3

n

Epoch = 2000

1

2

3

n

k
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1
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3

Posterior surface is multimodal, each mode corresponding to a viable separation
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Bayesian Variable Selection

C(r1;π) C(rW ;π)

r1 . . . rW

N (s1;µ(r1),Σ(r1)) s1 . . . sW N (sW ;µ(rW ),Σ(rW ))

x

N (x;Cs1:W , R)

• Generalized Linear Model – Column’s of C are the basis vectors

• The exact posterior is a mixture of 2W Gaussians

• When W is large, computation of posterior features becomes intractable.
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Generative model

ri ∼ C(ri;π)

si|ri ∼ N (si;µ(ri),Σ(ri))

x|s1:W ∼ N (x;Cs1:W , R)

C ≡ [ C1 . . . Ci . . . CW ]

r1 . . . rW

s1 . . . sW

x

p(x, s1:W , r1:W ) = p(x|s1:W , r1:W )
W∏

i=1

p(si|ri)p(ri)
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Example 1: Variable selection in Polynomial Regression

Given {tj, x(tj)}j=1...J , what is the order N of the polynomial?

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(t) =
N∑

i=0

si+1t
i + ǫ(t)
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Ex1: Regression

t =
(
t1 t2 . . . tJ

)⊤

C ≡
(

t
0

t
1 . . . t

W−1
)

>> C = fliplr(vander(0:4)) % Van der Monde matrix
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256

ri ∼ C(ri; 0.5, 0.5) ri ∈ {on, off}

si|ri ∼ N (si; 0,Σ(ri))

x|s1:W ∼ N (x;Cs1:W , R)

Σ(ri = on)≫ Σ(ri = off)
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Ex1: Regression

To find the “active” basis functions we need to calculate

r∗1:W ≡ argmax
r1:W

p(r1:W |x) = argmax
r1:W

∫

ds1:Wp(x|s1:W )p(s1:W |r1:W )p(r1:W )

Then, the reconstruction is given by

x̂(t) =

〈
W−1∑

i=0

si+1t
i

〉

p(s1:W |x,r
∗
1:W )

=
W−1∑

i=0

〈si+1〉p(si+1|x,r
∗
1:W

) t
i
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Ex1: Regression

i
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Ex1: Regression

−1 −0.5 0 0.5 1
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0
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Example 2: Chord Recognition
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(Damped) Sinusoidal Basis

• h = 1 . . . H, number of harmonics, t = 0 . . . T − 1, sample index

• ω : fundamental frequency in rad, ρ damping coefficient

C(ω) ≡





C1
0 . . . CH0... Cht

...
C1
T−1 . . . CHT−1





Cht ≡ ρt
(

cos(thω) sin(thω)
)

C = [C(ω1) . . . C(ων) . . . C(ωW )]

• See also Badeau, Boyer, David. Eds parametric modelling and tracking of
audio signals. In DAFx 2002
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Factor graph

log φ(r1:W , s1:W ) =
WX
i=1

(log π(ri))

+

WX
i=1

�
−

1

2
s
⊤
i Σ(ri)

−1
si + µ(ri)

⊤
Σ(ri)

−1
si

−
1

2
µ(ri)

⊤
Σ(ri)

−1
µ(ri)−

1

2
log |2πΣ(ri)|

�

−
1

2
x
⊤R−1

x + s⊤1:WC
⊤R−1

x−
1

2
s⊤1:WC

⊤R−1Cs1:W −
1

2
log |2πR|

. . .

r1 . . . rW

. . .

s1 . . . sW
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Approximating Structures

. . .

r1 . . . rW

. . .

s1 . . . sW

. . .

r1 . . . rW

. . .

s1:W

. . .

r1, s1 . . . rW , sW

Q1 =
∏W
i=1Q(si)Q(ri) Q2 = Q(s1:W )

∏W
i=1Q(ri) Q3 =

∏W
i=1Q(si, ri)
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MCMC versus Variational Bayes (VB)

• Each configuration of r1:W corresponds to a corner of a W dimensional
hypercube

b

b b

bb

b

b

b

• MCMC moves along the edges stochastically

• Iterative Improvement moves along the edges greedly

• VB moves inside the hypercube deterministically
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Iterative Improvement

iteration r1 rM log p(y1:T , r1:M )

1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −1220638254

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −665073975

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • −311983860

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −162334351

5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −43419569

6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1633593

7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −14336

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5766

9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5210

10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

True ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664
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Results, VB with tempering and reinitialisation
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Fs = 22050 Hz, N = 29 msec, H = 1, Midinotes = 30 . . . 50
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Results, MCMC with tempering and reinitialisation

Iteration index
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Bayesian/Generative/Probabilistic approaches to Polyph onic
Transcription

(Walmsley 2000, Davy and Godsill 2002, Raphael 2001, Abdallah 2002, Cemgil
et. al. 2003-2006, Vincent 2003, Vincent and Plumbley 2005, Vogel, Jordan and
Wessel 2005, Thornburg, Leitsnikov and Berger 2004, Blumensath and Davies
2006, Dubois and Davy 2005)

• Various related but different models

• Inference schemata

– Reversible Jump MCMC
– Iterative Improvement
– Laplace approximation
– Particle filtering
– Variational Bayes, MCMC
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Summary

• Bayesian Inference

• Graphical models

• Exact Inference

• Approximate inference

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada 160



Summary, Attributes of Probabilistic Inference

• Exact ↔ Approximate

• Deterministic ↔ Stochastic

• Online ↔ Offline

• Centralized ↔ Distributed
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Summary of what we have mentioned

• Exact inference, Belief Propagation

• Approximate inference

– Deterministic
∗ Variational Bayes,
∗ Expectation/Maximization (EM), Iterative Conditional Modes (ICM)

– Stochastic
∗ Markov Chain Monte Carlo
∗ Importance Sampling,
∗ Particle filtering
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Summary of what we have not mentioned

• Exact Inference (Junction Tree ...)

– Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented
Particle Filter

– Structured Mean field
– Loopy Belief Propagation, Expectation Propagation, Generalized Belief

Propagation
– Fractional Belief propagation, Bound Propagation, <your favorite name>

Propagation
– Graph cuts ...

• Stochastic

– Unscented Particle Filter, Nonparametric Belief Propagation
– Annealed Importance Sampling, Adaptive Importance Sampling
– Hybrid Monte Carlo, Exact sampling, Coupling from the past
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Bibliography

• General background about probability theory

• Graphical models

• Exact inference

• Variational Methods

• Markov Chain Monte Carlo

• Sequential Monte Carlo

• Applications
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General background about probability theory

• Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to
Probability. Athena Scientific, 2002

• Geoffrey Grimmet and David Stirzaker, Probability and Random
Processes, (3rd Ed), Oxford, 2006
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“Instant Classics” of Bayesian Machine Learning and
Graphical Models

• Michael I. Jordan, Learning in Graphical Models, 1998

• David MacKay Information Theory, Learning and Inference
Algorithms, 2003, Cambridge

• Chris Bishop, Machine Learning and Pattern Recognition, 2006,
Springer
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Further Reading, Variational Methods

• Jaakkola “Tutorial on variational approximation methods”, 2000
http://people.csail.mit.edu/tommi/papers/Jaa-var-tu torial.ps

• Wainwright and Jordan 2003 [19] Berkeley EECS Tech. Rep.

• Frey and Jojic, PAMI 2005 [11]

• Winn and Bishop “Variational Message Passing” 2005 JMLR [20]
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Further Reading, MCMC and SMC tutorials and overviews

• Andrieu, de Freitas, Doucet, Jordan. An Introduction to MCMC for
Machine Learning, 2001

• Andrieu. Monte Carlo Methods for Absolute beginners, 2004

• Doucet, Godsill, Andrieu. ”On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering”, Statistics and Computing, vol.
10, no. 3, pp. 197-208, 2000

• Gilks, Richardson, Spiegelhalter, Markov Chain Monte Carlo in
Practice, Chapman Hall, 1996

• Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in
Practice, Springer, 2001
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Some Generic Software Packages

• Kevin Murphy’s Matlab Bayesian Networks toolkit (BNT)

• Gilks, et. al. BUGS, WinBUGS – (Bayesian analysis Using Gibbs
Sampling) A powerful program that compiles Gibbs Samplers
from

• Winn, et. al, VIBES – Similar to BUGS but for variational inference

For source separation, there are some specialised libraries

• Petersen and Winther (DTU, Kopenhagen)

• Harva, Raiko, Honkela, Valpola “Bayes Blocks” (HUT, Helsinki)
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Music Applications

• Klapuri and Davy (Eds) Signal processing for Music Transcription,
Springer, 2006

• Temperley, Probability and Music, MIT Press, 2007
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Thank you for your patience and attention!

Slides will be available online
http://www-sigproc.eng.cam.ac.uk/ ˜ atc27/papers/cemgil-ismir-tutorial.pdf
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APPENDIX A

Deterministic Inference

Mean Field – Variational Bayes
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Toy Model : “One sample source separation (OSSS)”

s1

p(s1)

s2

p(s2)

x

p(x|s1, s2)

This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)

s1 ∼ p(s1) = N (s1;µ1, P1)

s2 ∼ p(s2) = N (s2;µ2, P2)

x|s1, s2 ∼ p(x|s1, s2) = N (x; s1 + s2, R)
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The Gaussian Distribution

µ is the mean and P is the covariance:

N (s;µ, P ) = |2πP |−1/2 exp

(

−
1

2
(s− µ)TP−1(s− µ)

)

= exp

(

−
1

2
sTP−1s+ µTP−1s−

1

2
µTP−1µ−

1

2
|2πP |

)

logN (s;µ, P ) = −
1

2
sTP−1s+ µTP−1s+ const

= −
1

2
TrP−1ssT + µTP−1s+ const

=+ −
1

2
TrP−1ssT + µTP−1s

Notation: log f(x) =+ g(x)⇐⇒ f(x) ∝ exp(g(x)) ⇐⇒ ∃c ∈ R : f(x) = c exp(g(x))
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OSSS example

Suppose, we observe x = x̂.

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

• By Bayes’ theorem, the posterior is given by:

P ≡ p(s1, s2|x = x̂) =
1

Zx̂
p(x = x̂|s1, s2)p(s1)p(s2) ≡

1

Zx̂
φ(s1, s2)

• The function φ(s1, s2) is proportional to the exact posterior. (Zx̂ ≡ p(x = x̂))
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OSSS example, cont.

log p(s1) = µT1 P
−1
1 s1 −

1

2
sT1 P

−1
1 s1 + const

log p(s2) = µT2 P
−1
2 s2 −

1

2
sT2 P

−1
2 s2 + const

log p(x|s1, s2) = x̂TR−1(s1 + s2)−
1

2
(s1 + s2)

TR−1(s1 + s2) + const

log φ(s1, s2) = log p(x = x̂|s1, s2) + log p(s1) + log p(s2)

=+
(
µT1 P

−1
1 + x̂TR−1

)
s1 +

(
µT2 P

−1
2 + x̂TR−1

)
s2

−
1

2
Tr
(
P−1

1 +R−1
)
s1s

T
1 − s

T
1R
−1s2

︸ ︷︷ ︸

(∗)

−
1

2
Tr
(
P−1

2 +R−1
)
s2s

T
2

• The (*) term is the cross correlation term that makes s1 and s2 a-posteriori
dependent.
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OSSS example, cont.

Completing the square

log φ(s1, s2) =+

(
P−1

1 µ1 +R−1x̂
P−1

2 µ2 +R−1x̂

)⊤(
s1
s2

)

−
1

2

(
s1
s2

)⊤(
P−1

1 +R−1 R−1

R−1 P−1
2 +R−1

)(
s1
s2

)

Remember: logN (s;m,Σ) =+ (Σ
−1
m)
⊤
s−

1

2
s
⊤
Σ
−1
s

Σ =

�

P−1
1 + R−1 R−1

R−1 P−1
2 + R−1

�−1

m = Σ

�
P−1

1 µ1 + R−1x̂

P−1
2 µ2 + R−1x̂

�
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution Q.

P =
1

Zx
p(x = x̂|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

q(s1) = N (s1;m1, S1) q(s2) = N (s2;m2, S2)

A “measure of fit” between distributions is the KL divergence
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Kullback-Leibler (KL) Divergence

• A “quasi-distance” between two distributions P = p(x) and Q = q(x).

KL(P||Q) ≡

∫

X

dxp(x) log
p(x)

q(x)
= 〈logP〉P − 〈logQ〉P

• Unlike a metric, (in general) it is not symmetric,

KL(P||Q) 6= KL(Q||P)

• But it is non-negative (by Jensen’s Inequality)

KL(P||Q) = −

∫

X

dxp(x) log
q(x)

p(x)

≥ − log

∫

X

dxp(x)
q(x)

p(x)
= − log

∫

X

dxq(x) = − log 1 = 0
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OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

q(s1) = N (s1;m1, S1) q(s2) = N (s2;m2, S2)

The mi and Sj are the variational parameters to be optimized to minimize

KL(Q||P) = 〈logQ〉Q −

〈

log
1

Zx
φ(s1, s2)

︸ ︷︷ ︸
=P

〉

Q

(3)
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The form of the mean field solution

0 ≤ 〈log q(s1)q(s2)〉q(s1)q(s2) + logZx − 〈log φ(s1, s2)〉q(s1)q(s2)

logZx ≥ 〈log φ(s1, s2)〉q(s1)q(s2) − 〈log q(s1)q(s2)〉q(s1)q(s2)

≡ −F (p; q) +H(q) (4)

Here, F is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence ≥ −Energy + Entropy

Note r.h.s. is a lower bound [16]. The mean field equations monotonically
increase this bound. Good for assessing convergence and debugging computer
code.
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Details of derivation

• Define the Lagrangian

Λ =
Z

ds1q(s1) log q(s1) +

Z

ds2q(s2) log q(s2) + logZx −

Z

ds1ds2q(s1)q(s2) logφ(s1, s2)

+λ1(1−

Z
ds1q(s1)) + λ2(1−

Z

ds2q(s2)) (5)

• Calculate the functional derivatives w.r.t. q(s1) and set to zero

δ

δq(s1)
Λ = log q(s1) + 1− 〈log φ(s1, s2)〉q(s2) − λ1

• Solve for q(s1),

log q(s1) = λ1 − 1 + 〈logφ(s1, s2)〉q(s2)

q(s1) = exp(λ1 − 1) exp(〈logφ(s1, s2)〉q(s2)) (6)

• Use the fact that

1 =

Z

ds1q(s1) = exp(λ1 − 1)
Z

ds1 exp(〈logφ(s1, s2)〉q(s2))

λ1 = 1− log

Z

ds1 exp(〈logφ(s1, s2)〉q(s2))

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada 184



The form of the solution

• No direct analytical solution

• We obtain fixed point equations in closed form

q(s1) ∝ exp(〈log φ(s1, s2)〉q(s2))

q(s2) ∝ exp(〈log φ(s1, s2)〉q(s1))

Note the nice symmetry
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OSSS: Factor Graph

p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

• A graphical representation of the inference problem

– Factor nodes : Black squares. Factor potentials (local functions) defining
the posterior P.

– Variable nodes : Circles. Think of them as “factors” of the approximating
distribution Q. (Caution – non standard interpretation!)

– Edges : denote membership. A variable is connected to a factor if it is a
variable of the local function.
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Fixed Point Iteration for OSSS

p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

log q(s1) ← log p(s1) + 〈log p(x = x̂|s1, s2)〉q(s2)

log q(s2) ← log p(s2) + 〈log p(x = x̂|s1, s2)〉q(s1)
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Fixed Point Iteration for the Gaussian Case

log q(s1) ← −
1

2
Tr
(
P−1

1 +R−1
)
s1s
⊤
1 − s

⊤
1 R
−1 〈s2〉q(s2)︸ ︷︷ ︸

=m2

+
(
µ⊤1 P

−1
1 + x̂⊤R−1

)
s1

log q(s2) ← −〈s1〉
⊤
q(s1)︸ ︷︷ ︸

=m⊤1

R−1s2 −
1

2
Tr
(
P−1

2 +R−1
)
s2s
⊤
2 +

(
µ⊤2 P

−1
2 + x̂⊤R−1

)
s2

Remember q(s) = N (s;m,S)

log q(s) =+ −
1

2
TrKss⊤ + h⊤s

⇓

S = K−1 m = K−1h
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Fixed Point Equations for the Gaussian Case

• Covariances are obtained directly

S1 =
(
P−1

1 +R−1
)−1

S2 =
(
P−1

2 +R−1
)−1

• To compute the means, we should iterate:

m1 = S1

(
P−1

1 µ1 +R−1 (x̂−m2)
)

m2 = S2

(
P−1

2 µ2 +R−1 (x̂−m1)
)

• Intuitive algorithm:

– Substract from the observation x̂ the prediction of the other factors of Q.
– Compute a fit to this residual (e.g. “fit” m2 to x̂−m1).

• Equivalent to Gauss-Seidel, an iterative method for solving linear systems of
equations.
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OSSS example, cont.

s
1

s 2

prior 

exact posterior 

factorized MF 
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Direct Link to Expectation-Maximisation (EM) [12]

Suppose we choose one of the distributions degenerate, i.e.

q̃(s2) = δ(s2 − m̃)

where m̃ corresponds to the “location parameter” of q̃(s2). We need to find the
closest degenerate distribution to the actual mean field solution q(s2), hence we
take one more KL and minimize

m̃ = argmin
ξ

KL(δ(s2 − ξ)||q(s2))

It can be shown that this leads exactly to the EM fixed point iterations.
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Iterated Conditional Modes (ICM) [2, 11]

If we choose both distributions degenerate, i.e.

q̃(s1) = δ(s1 − m̃1)

q̃(s2) = δ(s2 − m̃2)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface
φ(s1, s2).

m̃1 = argmax
s1

φ(s1, s2 = m̃2)

m̃2 = argmax
s2

φ(s1 = m̃1, s2)
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
in terms of fixed points.
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Figure 2: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.
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Convergence Issues
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OSSS example, Slow Convergence

s
1

s 2

prior 

exact posterior 
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Annealing, Bridging, Relaxation, Tempering

Main idea:

• If the original target P is too complex, relax it.

• First solve a simple version Pτ1. Call the solution mτ1

• Make the problem little bit harder Pτ1 → Pτ2, and improve the solution mτ1 →
mτ2.

• While Pτ1 → Pτ2, . . . ,→ PT = P, we hope to get better and better solutions.

The sequence τ1, τ2, . . . , τT is called annealing schedule if

Pτi ∝ Pτi
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OSSS example: Annealing, Bridging, ...

• Remember the cross term (∗) of the posterior:

· · · − s⊤1 R
−1s2

︸ ︷︷ ︸

(∗)

. . .

• When the noise variance is low, the coupling is strong.

• If we choose a decreasing sequence of noise covariances

Rτ1 > Rτ2 > · · · > RτT = R

we increase correlations gradually.
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OSSS example: Annealing, Bridging, ...

s
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s 2

prior 

exact posterior 

factorized MF 
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APPENDIX B

Stochastic Inference
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Deterministic versus Stochastic

Let θ denote the parameter vector of Q.

• Given the fixed point equation F and an initial parameter θ(0), the inference
algorithm is simply

θ(t+1) ← F (θ(t))

For OSSS θ = (m1,m2)
⊤ (S1, S2 were constant, so we exclude them). The update

equations were

m
(t+1)
1 ← F1(m

(t)
2 )

m
(t+1)
2 ← F2(m

(t+1)
1 )

This is a deterministic dynamical system in the parameter space.

Cemgil ISMIR 2006 Tutorial - Bayesian Methods for Music Signal Analysis. October 8, 2006, Victoria, Canada 200



OSSS: Fixed Point iteration for m1
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Stochastic Inference

Stochastic inference is similar, but everything happens directly in the configuration
space (= domain) of variables s.

• Given a transition kernel T (=a collection of probability distributions conditioned
on each s) and an initial configuration s

(0)

s
(t+1) ∼ T (s|s(t)) t = 1, . . . ,∞

• This is a stochastic dynamical system in the configuration space.

• A remarkable fact is that we can estimate any desired expectation by ergodic
averages

〈f(s)〉P ≈
1

t− t0

t∑

n=t0

f(s(n))

• Consecutive samples s
(t) are dependent but we can “pretend” as if they are

independent!
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Looking ahead...

• For OSSS, the configuration space is s = (s1, s2)
⊤.

• A possible transition kernel T is specified by

s
(t+1)
1 ∼ p(s1|s

(t)
2 , x = x̂) ∝ φ(s1, s

(t)
2 )

s
(t+1)
2 ∼ p(s2|s

(t+1)
1 , x = x̂) ∝ φ(s

(t+1)
1 , s2)

• This algorithm, that samples from above conditional marginals is a particular
instance of the Gibbs sampler .

• The desired posterior P is the stationary distribution of T (why? – later...).

• Note the algorithmic similarity to ICM. In Gibbs, we make a random move
instead of directly going to the conditional mode.
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Gibbs Sampling

s
1

s 2
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Gibbs Sampling, t = 20

s
1

s 2
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Gibbs Sampling, t = 100

s
1

s 2
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Gibbs Sampling, t = 250

s
1

s 2
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Gibbs Sampling, Slow convergence

s
1

s 2
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Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel T (s′|s) with the stationary distribution
P = φ(s)/Zx ≡ π(s) for any initial distribution r(s).

π(s) = T∞r(s) (7)

• Sample s
(0) ∼ r(s)

• For t = 1 . . .∞, Sample s
(t) ∼ T (s|s(t−1))

• Estimate any desired expectation by the average

〈f(s)〉π(s) ≈
1

t− t0

t∑

n=t0

f(s(n))

where t0 is a preset burn-in period.

But how to construct T and verify that π(s) is indeed its stationary distribution ?
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Equilibrium condition = Detailed Balance

T (s|s′)π(s′) = T (s′|s)π(s)

If detailed balance is satisfied then π(s) is a stationary distribution

π(s) =

∫

ds′T (s|s′)π(s′)

If the configuration space is discrete, we have

π(s) =
∑

s′

T (s|s′)π(s′)

π = Tπ

π has to be a (right) eigenvector of T .
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Conditions on T

• Irreducibility (probabilisic connectedness): Every state s′ can be reached from
every s

T (s′|s) =

(
1 0
0 1

)

is not irreducible

• Aperiodicity : Cycling around is not allowed

T (s′|s) =

(
0 1
1 0

)

is not aperiodic

Surprisingly, it is easy to construct a transition kernel with these properties by
following the recipe provided by Metropolis (1953) and Hastings (1970).
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Metropolis-Hastings Kernel

• We choose an arbitrary proposal distribution q(s′|s) (that satisfies mild
regularity conditions).
(When q is symmetric, i.e., q(s′|s) = q(s|s′), we have a Metropolis algorithm.)

• We define the acceptance probability of a jump from s to s′ as

a(s→ s′) ≡ min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
}

1
0

1

a(
s=

1 
→

 s
’)

5
0

1

a(
s=

5 
→

 s
’)

s’

1 5
0

50

100

φ(
s’

)
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Acceptance Probability a(s→ s′)
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Basic MCMC algorithm: Metropolis-Hastings

1. Initialize: s(0) ∼ r(s)

2. For t = 1, 2, . . .

• Propose:

s′ ∼ q(s′|s(t−1))

• Evaluate Proposal: u ∼ Uniform[0, 1]

s(t) :=







s′ u < a(s(t−1)→ s′) Accept

s(t−1) otherwise Reject
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Transition Kernel of the Metropolis Algorithm

T (s′|s) = q(s′|s)a(s→ s′)
︸ ︷︷ ︸

Accept

+ δ(s′ − s)

∫

ds′q(s′|s)(1− a(s→ s′))
︸ ︷︷ ︸

Reject

s

s’
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Only Accept part for visual convenience
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Various Kernels with the same stationary distribution
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Cascades and Mixtures of Transition Kernels

Let T1 and T2 have the same stationary distribution p(s).

Then:

Tc = T1T2

Tm = νT1 + (1− ν)T2 0 ≤ ν ≤ 1

are also transition kernels with stationary distribution p(s).

This opens up many possibilities to “tailor” application specific algorithms.

For example let

T1 : global proposal (allows large “jumps”)
T2 : local proposal (investigates locally)

We can use Tm and adjust ν as a function of rejection rate.
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Optimization : Simulated Annealing and Iterative Improvem ent

For optimization, (e.g. to find a MAP solution)

s∗ = arg max
s∈S

π(s)

The MCMC sampler may not visit s∗.

Simulated Annealing : We define the target distribution as

π(s)τi

where τi is an annealing schedule. For example,

τ1 = 0.1, . . . , τN = 10, τN+1 =∞ . . .

Iterative Improvement (greedy search) is a special case of SA

τ1 = τ2 = · · · = τN =∞
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Acceptance probabilities a(s→ s′) at different τ
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Importance Sampling,

Online Inference, Sequential Monte Carlo
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Importance Sampling

Consider a probability distribution with Z =
∫
dxφ(x)

p(x) =
1

Z
φ(x) (8)

Estimate expectations (or features) of p(x) by a weighted sample

〈f(x)〉p(x) =

∫

dxf(x)p(x)

〈f(x)〉p(x) ≈
N∑

i=1

w̃(i)f(x(i)) (9)
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Importance Sampling (cont.)

• Change of measure with weight function W (x) ≡ φ(x)/q(x)

〈f(x)〉p(x) =
1

Z

∫

dxf(x)
φ(x)

q(x)
q(x) =

1

Z

〈

f(x)
φ(x)

q(x)

〉

q(x)

≡
1

Z
〈f(x)W (x)〉q(x)

• If Z is unknown, as is often the case in Bayesian inference

Z =

∫

dxφ(x) =

∫

dx
φ(x)

q(x)
q(x) = 〈W (x)〉q(x)

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)
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Importance Sampling (cont.)

• Draw i = 1, . . . N independent samples from q

x
(i) ∼ q(x)

• We calculate the importance weights

W
(i)

= W (x
(i)

) = φ(x
(i)

)/q(x
(i)

)

• Approximate the normalizing constant

Z = 〈W (x)〉q(x) ≈
NX
i=1

W
(i)

• Desired expectation is approximated by

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)

≈
PN

i=1W
(i)f(x(i))PN

i=1W
(i)

≡
NX
i=1

w̃(i)f(x(i))

Here w̃(i) = W (i)/

PN
j=1W

(j) are normalized importance weights.
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Importance Sampling (cont.)
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Resampling

• Importance sampling computes an approximation with weighted delta functions

p(x) ≈
∑

i

W̃ (i)δ(x− x(i))

• In this representation, most of W̃ (i) will be very close to zero and the representation may be
dominated by few large weights.

• Resampling samples a set of new “particles”

x(j)
new ∼

X
i

W̃ (i)δ(x− x(i))

p(x) ≈
1

N
X

j

δ(x− x(j)
new)

• Since we sample from a degenerate distribution, particle locations stay unchanged. We merely
dublicate (, triplicate, ...) or discard particles according to their weight.

• This process is also named “selection”, “survival of the fittest”, e.t.c., in various fields (Genetic
algorithms, AI..).
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Resampling
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Prior as the proposal. q(x) = p(x)

W (x) =
p(y|x)p(x)

p(x)
= p(y|x)
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Likelihood as the proposal. q(x) = p(y|x)/
∫
dxp(y|x) = p(y|x)/c(y)

W (x) =
p(y|x)p(x)

p(y|x)/c(y)
= p(x)c(y) ∝ p(x)

• Interesting when sensors are very accurate and dim(y)≫ dim(x). Idea behind
“Dual-PF” (Thrun et.al.. 2000)

Since there are many proposals, is there a “best” proposal distribution? Yes. See
Doucet et. al.
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Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior
p(x0:K|y1:K).

p(x0:K|y1:K) =
1

p(y1:K)
p(y1:K|x0:K)p(x0:K) ≡

1

Zy
φ(x0:K) (10)

Key idea: sequential construction of the proposal distribution q, possibly using the
available observations y1:k, i.e.

q(x1:K|y1:K) = q(x0)
K∏

k=1

q(xk|x1:k−1y1:k)
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Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight
function W (x0:k) ≡Wk admits recursive computation

Wk =
φ(x0:k)

q(x0:k|y1:k)
=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1y1:k)

φ(x0:k−1)

q(x0:k−1|y1:k−1)
(11)

=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, y1:k)
Wk−1 ≡ uk|0:k−1Wk−1 (12)

Suppose we had an approximation to the posterior (in the sense 〈f(x)〉φ ≈

P

iW
(i)
k−1f(x

(i)
0:k−1))

φ(x0:k−1) ≈
∑

i

W
(i)
k−1δ(x0:k−1 − x

(i)
0:k−1)

x
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

φ(x0:k) ≈
∑

i

W
(i)
k δ(x0:k − x

(i)
0:k)
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Example

• Prior as the proposal density

q(xk|x0:k−1, y1:k) = p(xk|xk−1)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

=
p(yk|x

(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1)

W
(i)
k−1 = p(yk|x

(i)
k )W

(i)
k−1

• However, this schema will not work, since we blindly sample from the prior. But
...
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Example (cont.)
• Perhaps surprisingly, interleaving importance sampling steps with (occasional)

resampling steps makes the approach work quite well !!

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = p(yk|x

(i)
k )W

(i)
k−1 Update weight

W̃
(i)
k = W

(i)
k /Z̃k Normalize (Z̃k ≡

∑

i′
W

(i′)
k )

x
(j)
0:k,new ∼

N∑

i=1

W̃ (i)δ(x0:k − x
(i)
0:k) Resample j = 1 . . . N

• This results in a new representation as

φ(x) ≈
1

N

∑

j

Z̃kδ(x0:k − x
(j)
0:k,new)

x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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A Generic Particle Filter

1. Generation :
Compute the proposal distribution q(xk|x

(i)
0:k−1, y1:k).

Generate offsprings for i = 1 . . . N

x̂
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k)

2. Evaluate importance weights

W
(i)
k =

p(yk|x̂
(i)
k )p(x̂

(i)
k |x

(i)
k−1)

q(x̂
(i)
k |x

(i)
0:k−1, y1:k)

W
(i)
k−1 x

(i)
0:k = (x̂

(i)
k , x

(i)
0:k−1)

3. Resampling (optional but recommended)

Normalize weigts W̃
(i)
k = W

(i)
k /Z̃k Z̃k ≡

X

j
W

(j)
k

Resample x
(j)
0:k,new ∼

NX
i=1

W̃ (i)δ(x0:k − x
(i)
0:k) j = 1 . . . N

Reset x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Summary of what we have (hopefully) covered

• Deterministic

– Variational Bayes, Mean field
– Expectation/Maximization (EM), Iterative Conditional Modes (ICM)

• Stochastic

– Markov Chain Monte Carlo
– Importance Sampling,
– Particle filtering
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Summary of what we have not covered

• Exact Inference (Belief Propagation, Junction Tree ...)

• Deterministic

– Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented
Particle Filter

– Structured Mean field
– Loopy Belief Propagation, Expectation Propagation, Generalized Belief

Propagation
– Fractional Belief propagation, Bound Propagation, <your favorite name>

Propagation
– Graph cuts ...

• Stochastic

– Unscented Particle Filter, Nonparametric Belief Propagation
– Annealed Importance Sampling, Adaptive Importance Sampling
– Hybrid Monte Carlo, Exact sampling, Coupling from the past
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Variational or Sampling ?

• Possible criteria

– How accu rate
– How fast
– How easy to learn
– How easy to code /test /maintain

When all you own is a hammer, every problem looks like a nail
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Variational or Sampling ?

• Depends upon application domain. My personal impression is:

– Sampling dominated
∗ Bayesian statistics, Scientific data analysis
∗ Finance/auditing
∗ Operations research
∗ Genetics
∗ Tracking

– Variational dominated
∗ Communications/error correcting codes

– Mixed territory
∗ Machine Learning, Robotics
∗ Computer Vision
∗ Human-Computer Interaction
∗ Speech/audio/multimedia analysis/information retrieval
∗ Statistical Signal processing
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