
Introduction to Numerical Bayesian Methods

A. Taylan Cemgil

Signal Processing and Communications Lab.

IEE Professional Development Course on Adaptive Signal Processing,
1-3 March 2006, Birmingham, UK

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.



Thanks to

• Nick Whiteley

• Simon Godsill

• Bill Fitzgerald

Latest Version of the tutorial slides are available from my homepage under Quick
Links (or type cemgil to google)

http://www-sigproc.eng.cam.ac.uk/∼atc27/
http://www-sigproc.eng.cam.ac.uk/∼atc27/papers/cemgil-iee-pres.
pdf

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 1



Outline

• Introduction, Bayes’ Theorem, Sample applications

• Deterministic Inference Techniques

– Variational Methods: Variational Bayes, EM, ICM

• Stochastic (Sampling Based) Methods

– Markov Chain Monte Carlo (MCMC)
– Importance Sampling

• Online Inference

– Sequential Monte Carlo

• Summary and Remarks
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Bayes’ Theorem [4, 5]

Thomas Bayes (1702-1761)

What you know about a parameter θ after the data D arrive is
what you knew before about θ and what the data D told you.

p(θ|D) =
p(D|θ)p(θ)

p(D)

Posterior =
Likelihood× Prior

Evidence
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An application of Bayes’ Theorem: “Parameter Estimation”

Given two fair dice with outcomes λ and y,

D = λ + y

What is λ when D = 9 ?
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An application of Bayes’ Theorem: “Parameter Estimation”

D = λ + y = 9

D = λ + y y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 2 3 4 5 6 7
λ = 2 3 4 5 6 7 8
λ = 3 4 5 6 7 8 9
λ = 4 5 6 7 8 9 10
λ = 5 6 7 8 9 10 11
λ = 6 7 8 9 10 11 12

Bayes theorem “upgrades” p(λ) into p(λ|D).

But you have to provide an observation model: p(D|λ)
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Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes λ1, λ2, . . . , λn,

D =
n∑

i=1

λi

How many dice there are when D = 9 ?

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(n|D = 9) =
p(D = 9|n)p(n)

p(D)
∝ p(D = 9|n)

∝
∑

λ1,...,λn

p(D|λ1, . . . , λn)
n∏

i=1

p(λi)
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p(D|n) =
∑

λ
p(D|λ, n)p(λ|n)
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Another application of Bayes’ Theorem: “Model Selection”

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

n = Number of Dice

p(
n|

D
 =

 9
)

• Complex models are more flexible but they spread their probability mass

• Bayesian inference inherently prefers “simpler models” – occam’s razor

• Computational burden: We need to sum over all parameters λ
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Example: AR(1) model

xk = Axk−1 + ǫk k = 1 . . .K

ǫk is i.i.d., zero mean and normal with variance R.

Estimation problem :

Given x0, . . . , xK, determine coefficient A and variance R (both scalars).

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5
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AR(1) model, Generative Model notation

A ∼ N (A; 0, P )

R ∼ IG(R; ν, β/ν)

xk|xk−1, A, R ∼ N (xk; Axk−1, R) x0 = x̂0

A R

x0 x1 . . . xk−1 xk . . . xK

Gaussian : N (x; µ, V ) ≡ |2πV |−
1
2 exp(−1

2(x− µ)2/V )

Inverse-Gamma distribution: IG(x; a, b) ≡ Γ(a)−1b−ax−(a+1) exp(−1/(bx)) x ≥ 0

Observed variables are shown with double circles
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Bayesian Posterior Inference

p(A, R|x0, x1, . . . , xK) ∝ p(x1, . . . , xK|x0, A, R)p(A,R)

Posterior ∝ Likelihood× Prior

Using the Markovian (conditional independence) structure we have

p(A, R|x0, x1, . . . , xK) ∝

(
K∏

k=1

p(xk|xk−1, A,R)

)

p(A)p(R)
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Numerical Example

Suppose K = 1,

A R

x0 x1

By Bayes’ Theorem and the structure of AR(1) model

p(A, R|x0, x1) ∝ p(x1|x0, A, R)p(A)p(R)

= N (x1; Ax0, R)N (A; 0, P )IG(R; ν, β/ν)
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Numerical Example, the prior p(A,R)

Equiprobability contour of p(A)p(R)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

A ∼ N (A; 0, 1.2) R ∼ IG(R; 0.4, 250)

Suppose: x0 = 1 x1 = −6 x1 ∼ N (x1; Ax0, R)
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Numerical Example, the posterior p(A,R|x)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

Note the bimodal posterior with x0 = 1, x1 = −6

• A ≈ −6⇔ low noise variance R.
• A ≈ 0⇔ high noise variance R.
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Remarks

• The maximum likelihood solution (or any other point estimate) is not always
representative about the solution

• (Unfortunately), exact posterior inference is only possible for few special cases

• Even very simple models can lead easily to complicated posterior distributions

• A-priori independent variables often become dependent a-posteriori (“Explaining
away”)

• Ambiguous data usually leads to a multimodal posterior, each mode
corresponding to one possible explanation

• The complexity of an inference problem depends, among others, upon the
particular “parameter regime” and observed data sequence
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Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

〈f(x)〉 =

∫

X

dxp(x)f(x)

• modes of functions under probability distributions: Optimization

x∗ = argmax
x∈X

p(x)f(x)

• any “mix” of the above: e.g.,

x∗ = argmax
x∈X

p(x) = argmax
x∈X

∫

Z

dzp(z)p(x|z)
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Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

• What to solve : Model Construction

– Both an Art and Science
– Highly domain specific

• How to solve : Inference Algorithm

– (In principle) Mechanical
– Generic

“An approximate solution of the exact problem is often more useful than the exact
solution of an approximate problem”,

J. W. Tukey (1915-2000).
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Attributes of Probabilistic Inference

• Exact↔ Approximate

• Deterministic ↔ Stochastic

• Online ↔ Offline

• Centralized ↔ Distributed

This talk focuses on the bold ones

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 18



Some Applications: Audio Restoration

• During download or transmission, some samples of audio are lost

• Estimate missing samples given clean ones

0 50 100 150 200 250 300 350 400 450 500

0

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 19



Examples: Audio Restoration

p(x¬κ|xκ) ∝

∫

dHp(x¬κ|H)p(xκ|H)p(H)

H ≡ (parameters, hidden states)

H

x¬κ xκ

Missing Observed

0 50 100 150 200 250 300 350 400 450 500

0

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 20



Some Applications: Source Separation
Estimate n hidden signals st from m observed signals xt.

s1
t s2

t . . . sn
t

x1
t . . . xm

t

t = 1 . . . T

a
1 r1 . . . a

m rm

si
t ∼ p(si

t)

xj
t ∼ N (x; ajs1:n

t , rj)
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Deterministic Inference
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Toy Model : “One sample source separation (OSSS)”

s1

p(s1)

s2

p(s2)

x

p(x|s1, s2)

This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)

s1 ∼ p(s1) = N (s1; µ1, P1)

s2 ∼ p(s2) = N (s2; µ2, P2)

x|s1, s2 ∼ p(x|s1, s2) = N (x; s1 + s2, R)
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The Gaussian Distribution

µ is the mean and P is the covariance:

N (s; µ, P ) = |2πP |−1/2 exp

(

−
1

2
(s− µ)TP−1(s− µ)

)

= exp

(

−
1

2
sTP−1s + µTP−1s−

1

2
µTP−1µ−

1

2
|2πP |

)

logN (s; µ, P ) = −
1

2
sTP−1s + µTP−1s + const

= −
1

2
TrP−1ssT + µTP−1s + const

=+ −
1

2
TrP−1ssT + µTP−1s

Notation: log f(x) =+ g(x)⇐⇒ f(x) ∝ exp(g(x)) ⇐⇒ ∃c ∈ R : f(x) = c exp(g(x))
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OSSS example

Suppose, we observe x = x̂.

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

• By Bayes’ theorem, the posterior is given by:

P ≡ p(s1, s2|x = x̂) =
1

Zx̂
p(x = x̂|s1, s2)p(s1)p(s2) ≡

1

Zx̂
φ(s1, s2)

• The function φ(s1, s2) is proportional to the exact posterior. (Zx̂ ≡ p(x = x̂))
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OSSS example, cont.

log p(s1) = µT
1 P−1

1 s1 −
1

2
sT
1 P−1

1 s1 + const

log p(s2) = µT
2 P−1

2 s2 −
1

2
sT
2 P−1

2 s2 + const

log p(x|s1, s2) = x̂TR−1(s1 + s2)−
1

2
(s1 + s2)

TR−1(s1 + s2) + const

log φ(s1, s2) = log p(x = x̂|s1, s2) + log p(s1) + log p(s2)

=+
(
µT

1 P−1
1 + x̂TR−1

)
s1 +

(
µT

2 P−1
2 + x̂TR−1

)
s2

−
1

2
Tr
(
P−1

1 + R−1
)
s1s

T
1 − sT

1 R−1s2
︸ ︷︷ ︸

(∗)

−
1

2
Tr
(
P−1

2 + R−1
)
s2s

T
2

• The (*) term is the cross correlation term that makes s1 and s2 a-posteriori
dependent.
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution Q.

P =
1

Zx
p(x = x̂|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

q(s1) = N (s1; m1, S1) q(s2) = N (s2;m2, S2)

A “measure of fit” between distributions is the KL divergence
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Kullback-Leibler (KL) Divergence

• A “quasi-distance” between two distributions P = p(x) and Q = q(x).

KL(P||Q) ≡

∫

X

dxp(x) log
p(x)

q(x)
= 〈logP〉P − 〈logQ〉P

• Unlike a metric, (in general) it is not symmetric,

KL(P||Q) 6= KL(Q||P)

• But it is non-negative (by Jensen’s Inequality)

KL(P||Q) = −

∫

X

dxp(x) log
q(x)

p(x)

≥ − log

∫

X

dxp(x)
q(x)

p(x)
= − log

∫

X

dxq(x) = − log 1 = 0
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OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

q(s1) = N (s1; m1, S1) q(s2) = N (s2;m2, S2)

The mi and Sj are the variational parameters to be optimized to minimize

KL(Q||P) = 〈logQ〉Q −

〈

log
1

Zx
φ(s1, s2)

︸ ︷︷ ︸
=P

〉

Q

(1)
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The form of the mean field solution

0 ≤ 〈log q(s1)q(s2)〉q(s1)q(s2)
+ log Zx − 〈log φ(s1, s2)〉q(s1)q(s2)

log Zx ≥ 〈log φ(s1, s2)〉q(s1)q(s2)
− 〈log q(s1)q(s2)〉q(s1)q(s2)

≡ −F (p; q) + H(q) (2)

Here, F is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence ≥ −Energy + Entropy

Note r.h.s. is a lower bound [6]. The mean field equations monotonically
increase this bound. Good for assessing convergence and debugging computer
code.
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Details of derivation

• Define the Lagrangian

Λ =
Z

ds1q(s1) log q(s1) +

Z

ds2q(s2) log q(s2) + log Zx −

Z

ds1ds2q(s1)q(s2) log φ(s1, s2)

+λ1(1−

Z
ds1q(s1)) + λ2(1−

Z

ds2q(s2)) (3)

• Calculate the functional derivatives w.r.t. q(s1) and set to zero

δ

δq(s1)
Λ = log q(s1) + 1− 〈log φ(s1, s2)〉q(s2) − λ1

• Solve for q(s1),

log q(s1) = λ1 − 1 + 〈log φ(s1, s2)〉q(s2)

q(s1) = exp(λ1 − 1) exp(〈log φ(s1, s2)〉q(s2)) (4)

• Use the fact that

1 =

Z

ds1q(s1) = exp(λ1 − 1)
Z

ds1 exp(〈log φ(s1, s2)〉q(s2))

λ1 = 1− log

Z

ds1 exp(〈log φ(s1, s2)〉q(s2))
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The form of the solution

• No direct analytical solution

• We obtain fixed point equations in closed form

q(s1) ∝ exp(〈log φ(s1, s2)〉q(s2)
)

q(s2) ∝ exp(〈log φ(s1, s2)〉q(s1)
)

Note the nice symmetry
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Fixed Point Iteration for OSSS

log q(s1) ← log p(s1) + 〈log p(x = x̂|s1, s2)〉q(s2)

log q(s2) ← log p(s2) + 〈log p(x = x̂|s1, s2)〉q(s1)

We can think of sending messages back and forth.
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Fixed Point Iteration for the Gaussian Case

log q(s1) ← −
1

2
Tr
(
P−1

1 + R−1
)
s1s

T
1 − sT

1 R−1 〈s2〉q(s2)︸ ︷︷ ︸
=m2

+
(
µT

1 P−1
1 + x̂TR−1

)
s1

log q(s2) ← −〈s1〉
T
q(s1)︸ ︷︷ ︸

=mT
1

R−1s2 −
1

2
Tr
(
P−1

2 + R−1
)
s2s

T
2 +

(
µT

2 P−1
2 + x̂TR−1

)
s2

Remember q(s) = N (s; m, S)

log q(s) =+ −
1

2
TrKssT + hTs

⇓

S = K−1 m = K−1h
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Fixed Point Equations for the Gaussian Case

• Covariances are obtained directly

S1 =
(
P−1

1 + R−1
)−1

S2 =
(
P−1

2 + R−1
)−1

• To compute the means, we should iterate:

m1 = S1

(
P−1

1 µ1 + R−1 (x̂−m2)
)

m2 = S2

(
P−1

2 µ2 + R−1 (x̂−m1)
)

• Intuitive algorithm:

– Substract from the observation x̂ the prediction of the other factors of Q.
– Compute a fit to this residual (e.g. “fit” m2 to x̂−m1).

• Equivalent to Gauss-Seidel, an iterative method for solving linear systems of
equations.
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OSSS example, cont.

s
1

s 2

prior 

exact posterior 

factorized MF 
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Direct Link to Expectation-Maximisation (EM) Algorithm [3 ]

Suppose we choose one of the distributions degenerate, i.e.

q̃(s2) = δ(s2 − m̃)

where m̃ corresponds to the “location parameter” of q̃(s2). We need to find the
closest degenerate distribution to the actual mean field solution q(s2), hence we
take one more KL and minimize

m̃ = argmin
ξ

KL(δ(s2 − ξ)||q(s2))

It can be shown that this leads exactly to the EM fixed point iterations.
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Iterated Conditional Modes (ICM) Algorithm [1, 2]

If we choose both distributions degenerate, i.e.

q̃(s1) = δ(s1 − m̃1)

q̃(s2) = δ(s2 − m̃2)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface
φ(s1, s2).

m̃1 = argmax
s1

φ(s1, s2 = m̃2)

m̃2 = argmax
s2

φ(s1 = m̃1, s2)
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
in terms of fixed points.

A

R
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A
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2
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Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.
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Convergence Issues

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 40



OSSS example, Slow Convergence

s
1

s 2

prior 

exact posterior 

factorized MF 
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Annealing, Bridging, Relaxation, Tempering

Main idea:

• If the original target P is too complex, relax it.

• First solve a simple version Pτ1. Call the solution mτ1

• Make the problem little bit harder Pτ1 → Pτ2, and improve the solution mτ1 →
mτ2.

• While Pτ1 → Pτ2, . . . ,→ PT = P, we hope to get better and better solutions.

The sequence τ1, τ2, . . . , τT is called annealing schedule if

Pτi ∝ Pτi
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OSSS example: Annealing, Bridging, ...

• Remember the cross term (∗) of the posterior:

· · · − sT
1 R−1s2
︸ ︷︷ ︸

(∗)

. . .

• When the noise variance is low, the coupling is strong.

• If we choose a decreasing sequence of noise covariances

Rτ1 > Rτ2 > · · · > RτT
= R

we increase correlations gradually.
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OSSS example: Annealing, Bridging, ...

s
1

s 2

prior 

exact posterior 

factorized MF 

R
1
 

R
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Rτ 
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Stochastic Inference
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Deterministic versus Stochastic

Let θ denote the parameter vector of Q.

• Given the fixed point equation F and an initial parameter θ(0), the inference
algorithm is simply

θ(t+1) ← F (θ(t))

For OSSS θ = (m1, m2)
T (S1, S2 were constant, so we exclude them). The update

equations were

m
(t+1)
1 ← F1(m

(t)
2 )

m
(t+1)
2 ← F2(m

(t+1)
1 )

This is a deterministic dynamical system in the parameter space.
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Fixed Point iteration for m1 in the OSS model

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

m
1
(t)  (Next)

m
1(t

−
1)

 (
P

re
vi

ou
s)

m
1
(t) ← f(m

1
(t−1))

m
1
(t) = m

1
(t−1)

• Think of a movement along the m(t) = m(t−1) line

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 47



Stochastic Inference

Stochastic inference is similar, but everything happens directly in the configuration
space (= domain) of variables s.

• Given a transition kernel T (=a collection of probability distributions conditioned
on each s) and an initial configuration s

(0)

s
(t+1) ∼ T (s|s(t)) t = 1, . . . ,∞

• This is a stochastic dynamical system in the configuration space.

• A remarkable fact is that we can estimate any desired expectation by ergodic
averages

〈f(s)〉P ≈
1

t− t0

t∑

n=t0

f(s(n))

• Consecutive samples s
(t) are dependent but we can “pretend” as if they are

independent!
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Looking ahead...

• For OSSS, the configuration space is s = (s1, s2)
T .

• A possible transition kernel T is specified by

s
(t+1)
1 ∼ p(s1|s

(t)
2 , x = x̂) ∝ φ(s1, s

(t)
2 )

s
(t+1)
2 ∼ p(s2|s

(t+1)
1 , x = x̂) ∝ φ(s

(t+1)
1 , s2)

• This algorithm, that samples from above conditional marginals is a particular
instance of the Gibbs sampler .

• The desired posterior P is the stationary distribution of T (why? – later...).

• Note the algorithmic similarity to ICM. In Gibbs, we make a random move
instead of directly going to the conditional mode.

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 49



Gibbs Sampling

s
1

s 2
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Gibbs Sampling, t = 20

s
1

s 2
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Gibbs Sampling, t = 100

s
1

s 2
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Gibbs Sampling, t = 250

s
1

s 2
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Gibbs Sampling, Slow convergence

s
1

s 2
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Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel T (s′|s) with the stationary distribution
P = φ(s)/Zx ≡ π(s) for any initial distribution r(s).

π(s) = T∞r(s) (5)

• Sample s
(0) ∼ r(s)

• For t = 1 . . .∞, Sample s
(t) ∼ T (s|s(t−1))

• Estimate any desired expectation by the average

〈f(s)〉π(s) ≈
1

t− t0

t∑

n=t0

f(s(n))

where t0 is a preset burn-in period.

But how to construct T and verify that π(s) is indeed its stationary distribution ?
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Equilibrium condition = Detailed Balance

T (s|s′)π(s′) = T (s′|s)π(s)

If detailed balance is satisfied then π(s) is a stationary distribution

π(s) =

∫

ds′T (s|s′)π(s′)

If the configuration space is discrete, we have

π(s) =
∑

s′

T (s|s′)π(s′)

π = Tπ

π has to be a (right) eigenvector of T .
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Conditions on T

• Irreducibility (probabilisic connectedness): Every state s′ can be reached from
every s

T (s′|s) =

(
1 0
0 1

)

is not irreducible

• Aperiodicity : Cycling around is not allowed

T (s′|s) =

(
0 1
1 0

)

is not aperiodic

Surprisingly, it is easy to construct a transition kernel with these properties by
following the recipe provided by Metropolis (1953) and Hastings (1970).
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Metropolis-Hastings Kernel

• We choose an arbitrary proposal distribution q(s′|s) (that satisfies mild
regularity conditions).
(When q is symmetric, i.e., q(s′|s) = q(s|s′), we have a Metropolis algorithm.)

• We define the acceptance probability of a jump from s to s′ as

a(s→ s′) ≡ min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
}

1
0

1

a(
s=

1 
→

 s
’)

5
0

1

a(
s=

5 
→

 s
’)

s’

1 5
0

50

100

φ(
s’

)
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Acceptance Probability a(s→ s′)
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Basic MCMC algorithm: Metropolis-Hastings

1. Initialize: s(0) ∼ r(s)

2. For t = 1, 2, . . .

• Propose:

s′ ∼ q(s′|s(t−1))

• Evaluate Proposal: u ∼ Uniform[0, 1]

s(t) :=







s′ u < a(s(t−1)→ s′) Accept

s(t−1) otherwise Reject
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Transition Kernel of the Metropolis Algorithm

T (s′|s) = q(s′|s)a(s→ s′)
︸ ︷︷ ︸

Accept

+ δ(s′ − s)

∫

ds′q(s′|s)(1− a(s→ s′))
︸ ︷︷ ︸

Reject

s

s’

σ2 = 10
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Only Accept part for visual convenience
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Various Kernels with the same stationary distribution
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Cascades and Mixtures of Transition Kernels

Let T1 and T2 have the same stationary distribution p(s).

Then:

Tc = T1T2

Tm = νT1 + (1− ν)T2 0 ≤ ν ≤ 1

are also transition kernels with stationary distribution p(s).

This opens up many possibilities to “tailor” application specific algorithms.

For example let

T1 : global proposal (allows large “jumps”)
T2 : local proposal (investigates locally)

We can use Tm and adjust ν as a function of rejection rate.
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Optimization : Simulated Annealing and Iterative Improvem ent

For optimization, (e.g. to find a MAP solution)

s∗ = arg max
s∈S

π(s)

The MCMC sampler may not visit s∗.

Simulated Annealing : We define the target distribution as

π(s)τi

where τi is an annealing schedule. For example,

τ1 = 0.1, . . . , τN = 10, τN+1 =∞ . . .

Iterative Improvement (greedy search) is a special case of SA

τ1 = τ2 = · · · = τN =∞
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Acceptance probabilities a(s→ s′) at different τ
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Importance Sampling,

Online Inference, Sequential Monte Carlo
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Importance Sampling

Consider a probability distribution with Z =
∫

dxφ(x)

p(x) =
1

Z
φ(x) (6)

Estimate expectations (or features) of p(x) by a weighted sample

〈f(x)〉p(x) =

∫

dxf(x)p(x)

〈f(x)〉p(x) ≈
N∑

i=1

w̃(i)f(x(i)) (7)
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Importance Sampling (cont.)

• Change of measure with weight function W (x) ≡ φ(x)/q(x)

〈f(x)〉p(x) =
1

Z

∫

dxf(x)
φ(x)

q(x)
q(x) =

1

Z

〈

f(x)
φ(x)

q(x)

〉

q(x)

≡
1

Z
〈f(x)W (x)〉q(x)

• If Z is unknown, as is often the case in Bayesian inference

Z =

∫

dxφ(x) =

∫

dx
φ(x)

q(x)
q(x) = 〈W (x)〉q(x)

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)
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Importance Sampling (cont.)

• Draw i = 1, . . . N independent samples from q

x
(i) ∼ q(x)

• We calculate the importance weights

W
(i)

= W (x
(i)

) = φ(x
(i)

)/q(x
(i)

)

• Approximate the normalizing constant

Z = 〈W (x)〉q(x) ≈
NX

i=1

W
(i)

• Desired expectation is approximated by

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)

≈

PN
i=1 W (i)f(x(i))PN

i=1 W (i)
≡

NX
i=1

w̃(i)f(x(i))

Here w̃(i) = W (i)/

PN
j=1 W (j) are normalized importance weights.
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Importance Sampling (cont.)
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Resampling

• Importance sampling computes an approximation with weighted delta functions

p(x) ≈
∑

i

W̃ (i)δ(x− x(i))

• In this representation, most of W̃ (i) will be very close to zero and the representation may be
dominated by few large weights.

• Resampling samples a set of new “particles”

x(j)
new ∼

X
i

W̃ (i)δ(x− x(i))

p(x) ≈
1

N
X

j

δ(x− x
(j)
new)

• Since we sample from a degenerate distribution, particle locations stay unchanged. We merely
dublicate (, triplicate, ...) or discard particles according to their weight.

• This process is also named “selection”, “survival of the fittest”, e.t.c., in various fields (Genetic
algorithms, AI..).
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Resampling
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Prior as the proposal. q(x) = p(x)

W (x) =
p(y|x)p(x)

p(x)
= p(y|x)
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Likelihood as the proposal. q(x) = p(y|x)/
∫

dxp(y|x) = p(y|x)/c(y)

W (x) =
p(y|x)p(x)

p(y|x)/c(y)
= p(x)c(y) ∝ p(x)

• Interesting when sensors are very accurate and dim(y)≫ dim(x). Idea behind
“Dual-PF” (Thrun et.al.. 2000)

Since there are many proposals, is there a “best” proposal distribution?
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Optimal Proposal Distribution

x y p(x|y) ∝ p(y|x)p(x)

Task: Estimate 〈f(x)〉p(x|y)

• IS constructs the estimator I(f) = 〈f(x)W (x)〉q(x) (where W (x) = p(x|y)/q(x))

• Minimize the variance of the estimator
〈

(f(x)W (x)− 〈f(x)W (x)〉)2
〉

q(x)
=

〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)W (x)〉2q(x)(8)

=
〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)〉2p(x) (9)

=
〈
f2(x)W 2(x)

〉

q(x)
− I2(f) (10)

• Minimize the first term since only it depends upon q
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Optimal Proposal Distribution

• (By Jensen’s inequality) The first term is lower bounded:

〈
f2(x)W 2(x)

〉

q(x)
≥ 〈|f(x)|W (x)〉2q(x) =

(∫

|f(x)| p(x|y)dx

)2

• We well look for a distribution q∗ that attains this lower bound. Take

q∗(x) =
|f(x)|p(x|y)

∫
|f(x′)|p(x′|y)dx′
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Optimal Proposal Distribution (cont.)

• The weight function for this particular proposal q∗ is

W∗(x) = p(x|y)/q∗(x) =

∫
|f(x′)|p(x′|y)dx′

|f(x)|

• We show that q∗ attains its lower bound

〈
f2(x)W 2

∗ (x)
〉

q∗(x)
=

〈

f2(x)

(∫
|f(x′)|p(x′|y)dx′

)2

|f(x)|2

〉

q∗(x)

=

(∫

|f(x′)|p(x′|y)dx′
)2

= 〈|f(x)|〉2p(x|y)

= 〈|f(x)|W∗(x)〉2q∗(x)

• ⇒ There are distributions q∗ that are even “better” than the exact posterior!
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

Task: Obtain samples from the posterior p(x1:2|y1:2)

• Prior as the proposal. q(x1:2) = p(x1)p(x2|x1)

W (x1, x2) = p(y1|x1)p(y2|x2)

• We sample from the prior as follows:

x
(i)
1 ∼ p(x1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1|x

(i)
1 )p(y2|x

(i)
2 )
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

• State prediction as the proposal. q(x1:2) = p(x1|y1)p(x2|x1)

W (x1, x2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1)
= p(y1)p(y2|x2)

• Note that this proposal does not depend on x1

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1)p(y2|x

(i)
2 )
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

• Filtering distribution as the proposal. q(x1:2) = p(x1|y1)p(x2|x1, y2)

W (x1, x2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1, y2)
= p(y1)p(y2|x1)

• Note that this proposal does not depend on x2

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 , y2) W (x(i)) = p(y1)p(y2|x

(i)
1 )
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Online Inference, Terminology

In signal processing we often have dynamical state space models (SSM)

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

Here, x is the latent state and y are observations. In a Bayesian setting, x can also include
unknown model parameters. This model is very generic and includes as special cases:

• Linear Dynamical Systems (Kalman Filter models)

• (Time varying) AR, ARMA, MA models

• Hidden Markov Models, Switching state space models

• Dynamic Bayesian networks, Nonlinear Stochastic Dynamical Systems
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Online Inference, Terminology

• Filtering p(xk|y1:k)
belief state—distribution of current state given all past information

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Prediction p(yk:K, xk:K|y1:k−1)
evaluation of possible future outcomes; like filtering without observations

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Online Inference, Terminology
• Smoothing p(x0:K|y1:K),

Most likely trajectory – Viterbi path arg maxx0:K
p(x0:K|y1:K)

better estimate of past states, essential for learning

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Interpolation p(yk, xk|y1:k−1, yk+1:K)
fill in lost observations given past and future

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 83



Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior
p(x0:K|y1:K).

p(x0:K|y1:K) =
1

p(y1:K)
p(y1:K|x0:K)p(x0:K) ≡

1

Zy
φ(x0:K) (11)

Key idea: sequential construction of the proposal distribution q, possibly using the
available observations y1:k, i.e.

q(x1:K|y1:K) = q(x0)
K∏

k=1

q(xk|x1:k−1y1:k)

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 84



Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight
function W (x0:k) ≡Wk admits recursive computation

Wk =
φ(x0:k)

q(x0:k|y1:k)
=

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1y1:k)

φ(x0:k−1)

q(x0:k−1|y1:k−1)
(12)

=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, y1:k)
Wk−1 ≡ uk|0:k−1Wk−1 (13)

Suppose we had an approximation to the posterior (in the sense 〈f(x)〉φ ≈

P

i W
(i)
k−1f(x

(i)
0:k−1))

φ(x0:k−1) ≈
∑

i

W
(i)
k−1δ(x0:k−1 − x

(i)
0:k−1)

x
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

φ(x0:k) ≈
∑

i

W
(i)
k δ(x0:k − x

(i)
0:k)
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Example

• Prior as the proposal density

q(xk|x0:k−1, y1:k) = p(xk|xk−1)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

=
p(yk|x

(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1)

W
(i)
k−1 = p(yk|x

(i)
k )W

(i)
k−1

• However, this schema will not work, since we blindly sample from the prior. But
...
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Example (cont.)
• Perhaps surprisingly, interleaving importance sampling steps with (occasional)

resampling steps makes the approach work quite well !!

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = p(yk|x

(i)
k )W

(i)
k−1 Update weight

W̃
(i)
k = W

(i)
k /Z̃k Normalize (Z̃k ≡

∑

i′
W

(i′)
k )

x
(j)
0:k,new ∼

N∑

i=1

W̃ (i)δ(x0:k − x
(i)
0:k) Resample j = 1 . . . N

• This results in a new representation as

φ(x) ≈
1

N

∑

j

Z̃kδ(x0:k − x
(j)
0:k,new)

x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Optimal proposal distribution

• The algorithm in the previous example is known as Bootstrap particle filter or
Sequential Importance Sampling/Resampling (SIS/SIR).

• Can we come up with a better proposal in a sequential setting?

– We are not allowed to move previous sampling points x
(i)
1:k−1 (because in

many applications we can’t even store them)

– Better in the sense of minimizing the variance of weight function Wk(x).
(remember the optimality story in Eq.(10) and set f(x) = 1).

• The answer turns out to be the filtering distribution

q(xk|x1:k−1, y1:k) = p(xk|xk−1, yk) (14)
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Optimal proposal distribution (cont.)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1, yk) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1W

(i)
k−1 Update weight

u
(i)
k|0:k−1 =

p(yk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1, yk)

×
p(yk|x

(i)
k−1)

p(yk|x
(i)
k−1)

=
p(yk, x

(i)
k |x

(i)
k−1)p(yk|x

(i)
k−1)

p(x
(i)
k , yk|x

(i)
k−1)

= p(yk|x
(i)
k−1)
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A Generic Particle Filter

1. Generation :
Compute the proposal distribution q(xk|x

(i)
0:k−1, y1:k).

Generate offsprings for i = 1 . . . N

x̂
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k)

2. Evaluate importance weights

W
(i)
k =

p(yk|x̂
(i)
k )p(x̂

(i)
k |x

(i)
k−1)

q(x̂
(i)
k |x

(i)
0:k−1, y1:k)

W
(i)
k−1 x

(i)
0:k = (x̂

(i)
k , x

(i)
0:k−1)

3. Resampling (optional but recommended)

Normalize weigts W̃
(i)
k = W

(i)
k /Z̃k Z̃k ≡

X

j
W

(j)
k

Resample x
(j)
0:k,new ∼

NX
i=1

W̃ (i)δ(x0:k − x
(i)
0:k) j = 1 . . . N

Reset x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Summary of what we have (hopefully) covered

• Deterministic

– Variational Bayes, Mean field
– Expectation/Maximization (EM), Iterative Conditional Modes (ICM)

• Stochastic

– Markov Chain Monte Carlo
– Importance Sampling,
– Particle filtering
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Summary of what we have not covered

• Exact Inference (Belief Propagation, Junction Tree ...)

• Deterministic

– Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented
Particle Filter

– Structured Mean field
– Loopy Belief Propagation, Expectation Propagation, Generalized Belief

Propagation
– Fractional Belief propagation, Bound Propagation, <your favorite name>

Propagation
– Graph cuts ...

• Stochastic

– Unscented Particle Filter, Nonparametric Belief Propagation
– Annealed Importance Sampling, Adaptive Importance Sampling
– Hybrid Monte Carlo, Exact sampling, Coupling from the past
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Variational or Sampling ?

• Possible criteria

– How accu rate
– How fast
– How easy to learn
– How easy to code /test /maintain

When all you own is a hammer, every problem looks like a nail
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Variational or Sampling ?

• Depends upon application domain. My personal impression is:

– Sampling dominated
∗ Bayesian statistics, Scientific data analysis
∗ Finance/auditing
∗ Operations research
∗ Genetics
∗ Tracking

– Variational dominated
∗ Communications/error correcting codes

– Mixed territory
∗ Machine Learning, Robotics
∗ Computer Vision
∗ Human-Computer Interaction
∗ Speech/audio/multimedia analysis/information retrieval
∗ Statistical Signal processing
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Further Reading

Variational tutorials and overviews

• Tommi Jaakkola. Tutorial on variational approximation methods. (2000).
http://people.csail.mit.edu/tommi/papers/Jaa-var-tutorial.ps

• Frey and Jojic [2]

• Wainwright and Jordan [7]

MCMC and SMC tutorials and overviews

• Andrieu, de Freitas, Doucet, Jordan. An Introduction to MCMC for Machine Learning, 2001

• Andrieu. Monte Carlo Methods for Absolute beginners, 2004

• Doucet, Godsill, Andrieu. ”On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering”, Statistics and Computing, vol. 10, no. 3, pp. 197-208, 2000

The “in Practice” Books

• Gilks, Richardson, Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman Hall, 1996

• Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001
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