Introduction to Numerical Bayesian Methods

A. Taylan Cemgil

Signal Processing and Communications Lab.

@78 UNIVERSITY OF
CAMBRIDGE

Department of Engineering

4
u

IEE Professional Development Course on Adaptive Signal Processing,
1-3 March 2006, Birmingham, UK

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.



Thanks to

e Nick Whiteley
e Simon Godsill

¢ Bill Fitzgerald

Latest Version of the tutorial slides are available from my homepage under Quick
Links (or type cemgil to google)

http://ww si gproc. eng. cam ac. uk/ ~atc27/
http://ww si gproc. eng. cam ac. uk/ ~at c27/ papers/cengil -i ee- pres.
pdf

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 1



Outline

e Introduction, Bayes’ Theorem, Sample applications

e Deterministic Inference Techniques

— Variational Methods: Variational Bayes, EM, ICM

e Stochastic (Sampling Based) Methods

— Markov Chain Monte Carlo (MCMC)
— Importance Sampling

e Online Inference

— Seguential Monte Carlo

e Summary and Remarks
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Bayes’ Theorem [4, 5]

Thomas Bayes (1702-1761)

What you know about a parameter 8 after the data D arrive is
what you knew before about 8 and what the data D told you.

p(D|0)p(0)
D) =
. Likelihood x Prior
Posterior = :
Evidence
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An application of Bayes’ Theorem: “Parameter Estimation”

Given two fair dice with outcomes A and v,

D=X+ty

Whatis A\ when D =9 ?
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An application of Bayes’ Theorem: “Parameter Estimation”

D=X+y=9
D= X4y l|ly=1|y=2|y=3|y=4|y=5|y=256
A=1 2 3 4 5 6 7
A= 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=D5H 6 7 8 9 10 11
A=26 7 8 9 10 11 12

Bayes theorem “upgrades” p(\) into p(A|D).

But you have to provide an observation model: p(D|)\)
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Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes A1, Ao, ..., A\,

=1

How many dice there are when D =9 ?

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(D = 9|n)p(n)
p(D)

< > p(DAL A [ e

>\1,...,>\n Z:1

p(n|D =9) x p(D = 9In)
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p(DIn) = >, p(D|X,n)p(A|n)
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Another application of Bayes’ Theorem: “Model Selection”

05r
0.4+ 0 ¢
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n = Number of Dice

e Complex models are more flexible but they spread their probability mass
e Bayesian inference inherently prefers “simpler models” — occam’s razor

e Computational burden: We need to sum over all parameters A
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Example: AR(1) model

T = Axp_1 + € k=1... K

e, 1S 1.1.d., zero mean and normal with variance R.

Estimation problem

Given xy, ..., r g, determine coefficient A and variance R (both scalars).
0.5 T T T T T T T T T
O I
_05 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
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AR(1) model, Generative Model notation

A ~ N(A4;0,P)
R ~ IG(R;v,B/v)
Tplrp—1,A, R ~ N(xg; Azk_1, R) To = T

Gaussian : N (xz; u, V) = |27rV\‘% exp(—i(z — p)?/V)
Inverse-Gamma distribution: ZG (z; a, b) = I'(a) b %2~ @Y exp(—1/(bz)) = >0
Observed variables are shown with double circles
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Bayesian Posterior Inference

p(A7 leCo, L1y .- 71'K) X p(xlv s 7:EK|:CO7 A? R)p(A7 R)
Posterior o Likelihood x Prior

Using the Markovian (conditional independence) structure we have

p(A, Rlrg, x1,..., k) X (H p(xk|lrr_1, A, R)) p(A)p(R)
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Numerical Example

Suppose K =1,

By Bayes’ Theorem and the structure of AR(1) model

p(A7R|:CO7x1) X p(xllch?AaR)p(A)p(R)
= N(x1; Azo, R)IN(A;0,P)IG(R;v,3/v)
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Numerical Example, the prior p(A, R)
Equiprobability contour of p(A)p(R)

10

10" r

10

10 “F

10

A~ N(4;0,1.2) R ~ IG(R;0.4,250)

Suppose: zg = 1 r1 = —6 r1 ~ N(x1; Az, R)
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Numerical Example, the posterior

p(4, R|x)

Note the bimodal posterior with xg = 1, 1 = —6

e A~ —6 < low noise variance R.
e A =~ 0 < high noise variance R.
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Remarks

e The maximum likelihood solution (or any other point estimate) is not always
representative about the solution

e (Unfortunately), exact posterior inference is only possible for few special cases
e Even very simple models can lead easily to complicated posterior distributions

e A-prioriindependent variables often become dependent a-posteriori (“Explaining
away”)

e Ambiguous data usually leads to a multimodal posterior, each mode
corresponding to one possible explanation

e The complexity of an inference problem depends, among others, upon the
particular “parameter regime” and observed data sequence

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK. 15



Probabilistic Inference

A huge spectrum of applications — all boil down to computation of

e expectations of functions under probability distributions: Integration
fa) = [ depla)s(e)

e modes of functions under probability distributions: Optimization

r* = argmaxp(x)f(x)
reX

e any “mix” of the above: e.qg.,

" = argmaxp(:c):argmaX/ dzp(z)p(x|2)
reEX reX zZ
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Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

e \What to solve : Model Construction
— Both an Art and Science
— Highly domain specific

e How to solve : Inference Algorithm

— (In principle) Mechanical
— Generic

“An approximate solution of the exact problem is often more useful than the exact
solution of an approximate problem”,

J. W. Tukey (1915-2000).
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Attributes of Probabilistic Inference

e Exact <« Approximate
e Deterministic «— Stochastic
e Online — Offline

e Centralized <« Distributed

This talk focuses on the bold ones
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Some Applications: Audio Restoration

e During download or transmission, some samples of audio are lost

e Estimate missing samples given clean ones

P iy WAL N A

0 50 100 150 200 250 300 350 400 450 500
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Examples: Audio Restoration

Pl nlze) o / IHp (o[ H)p( H)p(H)

H = (parameters, hidden states)
Missing Observed
0 \
| | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
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Some Applications: Source Separation
Estimate n hidden signals s; from m observed signals x;.

4 )

\

st~ p(s)

v~ N(x;als;™ 1))

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.



Deterministic Inference
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Toy Model : “One sample source separation (OSSS)”
p(Sl) p(Sg)

p($|51, 82)
This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)
s1 ~ p(s1) =N(si;p1, Pr)

s~ p(s2) = N(s2; 2, )
r|si, 89 ~ p(x|si, s2) = N(x; 81 + s2, R)

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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The Gaussian Distribution

1 1s the mean and P is the covariance:

1

2P 2exp (s = WP s - )

N (s; p, P) >

1 1 1
= exp <—§STP_1S + ,LLTP_ls—i,uTP_l,u — §|27TP\)

1
logN(s;u, P) = —§STP_1S + ' P71s + const

1
= -5 Tr P~ 'ss? + u'P~1s + const

1

—+ —3 Tr P lsst + pt' P 1s

Notation: log f(z) =" g(x) <= f(z) x exp(g(x)) <= Ic € R : f(x) = cexp(g(x))

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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OSSS example

Suppose, we observe = = z.

p(s1) p(s2)

p(x = z|s1, $2)
e By Bayes’ theorem, the posterior is given by:

1 1

P = p(s1,s212 = 2) = ——p(x = Z|s1, 52)p(51)p(52) =

e The function ¢(sy, s2) is proportional to the exact posterior. (Z;

]
=
8
|
=
N’
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OSSS example, cont.

1
logp(s1) = piP;lsy — §S{P1_151 + const
1
log p(ss) = pa Py tsy— 5 s3 Py sy + const
T p—1 1 T p—1
logp(x|si,s2) = "R (s1+ 82) — 5(31 + 52)" R™"(s1 + s2) + const
log ¢(s1,s2) = logp(z = Z[s1,s2) +logp(s1) + logp(s2)

=t (W Py '+ 2" R ) s1+ (us P+ 2" R71) 52

—%Tr (Pl_l + R~ ) 5151 R S9 —%Tr (P2_1 + R_l) SQSg
(+)

e The (*) term is the cross correlation term that makes s; and s, a-posteriori
dependent.
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution Q.

1

_ Z_xp(x = Z|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

C](Sl) = N(S1; my, 51) CJ(S2) = N(SQ; ma, 52)

A “measure of fit” between distributions is the KL divergence

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Kullback-Leibler (KL) Divergence

e A “guasi-distance” between two distributions P = p(x) and Q = q(z).

KL(P|lQ) = /X dxp<x>log%=<log7>>p—<logg>p

e Unlike a metric, (in general) it is not symmetric,

KL(P||Q) # KL(Q|P)

e But it is non-negative (by Jensen’s Inequality)

KL(P||Q) = —/){dmp(x)log%

— log/)(dxp(x)% = —log/)(da:q(a:) = —logl=0

IV
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OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

C](Sl) = N(S1; my, 51) CJ(S2) = N(SQ; ma, 52)

The m; and S; are the variational parameters to be optimized to minimize

L

\ .

KL(Q|IP) = <10gQ>Q<10gi¢(81782)>

5 o

(1)

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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The form of the mean field solution

0

VAN

(0g q(51)a(52)) 4(s1)g(s) T+ 108 Zu — (108 D(51, 52)) 4 (51 )g(s50)
(log ¢(51,52)) (51 )q(s9) — 108 4(51)2(52)) 4(s1)q(s0)
—F(p;q) + H(q) (2)

'V

log 7,

Here, F' is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence > —Energy + Entropy

Note r.h.s. is a lower bound [6]. The mean field equations monotonically
Increase this bound. Good for assessing convergence and debugging computer
code.
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Detalils of derivation

Define the Lagrangian

A = [dsigtsnloga(sn) + [ dsaa(s)loga(ss) +log Zi — [ dsidsza(si)a(sz) og (s, 52)
(1= [ dsia(sn) + 2201~ [ dsza(s2)) ©
e Calculate the functional derivatives w.r.t. ¢(s1) and set to zero
)
5q(81)1\ = logq(s1) +1 — (log ¢(s1,52))4(sq) — M1
e Solve for q(s1),
logq(s1) = A1 — 14 (log¢(s1,52))y(sy)
q(s1) = exp(Ar —1)exp((log ¢(s1,52))4(s,)) (4)
e Use the fact that
1 = [ dsiglsr) = exphn — 1) [ dsyexp((log d(s1.52)g(sy)
M= 1-log [ dsiexp({logd(s1, 52)g(sy)
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The form of the solution

e No direct analytical solution

e \We obtain fixed point equations in closed form

q(s1) o< exp((logo(si, 32)>q(52))

q(s2) o< exp((log (s, 32)>q(31))

Note the nice symmetry

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Fixed Point Iteration for OSSS

logq(s1) — logp(s1)+ (logp(z = &|s1,52))y(s,)

log q(s2) <« logp(ss) + (logp(z = &|s1, 52)) g (s

We can think of sending messages back and forth.

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Fixed Point Iteration for the Gaussian Case

1 _
logqg(s1) <« —§Tr (Pt + R s1s1 —si R <32>q(82) +(pi Pyt + 2 R s
N —

:m2

1 _ _
logq(sy) «— — <51>:§(31) R 'sy — §Tr (Pt + R ") sasy + (s Py "+ 3" R s9

N——

Y &
_m1

Remember ¢(s) = N (s;m, S)
1 T T
logq(s) =T —§TrKss +h's
Y
S=K' m=K""'h
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Fixed Point Equations for the Gaussian Case

e Covariances are obtained directly
Si=(P7P+ R S=(Pt R

e To compute the means, we should iterate:

m; = S (Pl_l,ul -+ R~1 (f — mg))
mo = SQ (Pz_l,LLQ + R_l (5?3 — ml))

¢ Intuitive algorithm:
— Substract from the observation z the prediction of the other factors of Q.
— Compute a fit to this residual (e.g. “fit” ms to £ — my).

e Equivalent to Gauss-Seidel, an iterative method for solving linear systems of
equations.
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OSSS example, cont.

exact posterior

factorized MF

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.

36



Direct Link to Expectation-Maximisation (EM) Algorithm [3 |
Suppose we choose one of the distributions degenerate, I1.e.
q(s2) = O(sa—m)

where m corresponds to the “location parameter” of ¢(s2). We need to find the
closest degenerate distribution to the actual mean field solution ¢(s2), hence we
take one more KL and minimize

m = argéninKL(5(82—f)||Q<52>)

It can be shown that this leads exactly to the EM fixed point iterations.
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lterated Conditional Modes (ICM) Algorithm [1, 2]

If we choose both distributions degenerate, i.e.

q(s1) = d(s1—m)
q(s2) = 0d(s2 —ma)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface

qb(SlaSQ)'

mp = argmaxo(sy,ss = mo)
51

me = argmax ¢(s; = mi, S2)
S2
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
In terms of fixed points.

10* t
10°
10° |
107

10

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

10* |

10° |

10° |

107}

10
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Convergence Issues

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.

40



OSSS example, Slow Convergence

exact posterior

\ factorized MF

N
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Annealing, Bridging, Relaxation, Tempering
Main idea:
e If the original target P is too complex, relax it.
e First solve a simple version P.,. Call the solution m.,

e Make the problem little bit harder P,, — P,,, and improve the solution m.., —

Moy .
e While P, — P,,,...,— Pr =P, we hope to get better and better solutions.
The sequence 11, 7, ..., 77 IS called annealing schedule if
P o< PT
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OSSS example: Annealing, Bridging, ...

e Remember the cross term (x) of the posterior:

TR sy

(*)

e \When the noise variance is low, the coupling is strong.

e If we choose a decreasing sequence of noise covariances
R >R;,>--->R, . =R

we increase correlations gradually.

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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OSSS example: Annealing, Bridging, ...
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Stochastic Inference
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Deterministic versus Stochastic

Let 6 denote the parameter vector of O.

e Given the fixed point equation F' and an initial parameter §(?), the inference
algorithm is simply

plt+1) F(g(t))

For OSSS 6 = (my, ms)? (S1, S2 were constant, so we exclude them). The update
equations were

mgt—l—l) - Fl(mgt))

mgt—l—l) - FZ(mgt—l—l))

This is a deterministic dynamical system in the parameter space.
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Fixed Point iteration for my in the OSS model

9 . . .
(t) (t-1)
my” « f(m 1 )

,,,,,,, ® _ D)
ml ml

m(lt_l) (Previous)

m(lt) (Next)

e Think of a movement along the m® = m(=1) line

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Stochastic Inference

Stochastic inference is similar, but everything happens directly in the configuration
space (= domain) of variables s.

e Given a transition kernel T' (=a collection of probability distributions conditioned
on each s) and an initial configuration s(®)

st~ T(s[s) t=1,...,

e This is a stochastic dynamical system in the configuration space.

e A remarkable fact is that we can estimate any desired expectation by ergodic
averages

FE)n = 30 FE)

n=tg

e Consecutive samples s*) are dependent but we can “pretend” as if they are
Independent!
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Looking ahead...

e For OSSS, the configuration space is s = (s1, 52)7.

e A possible transition kernel T is specified by

st~ plsifst, x = 2) x ¢(s1,55))
Sgt+1) ~ p(32]85t+1),x:£) X ¢(Sgt+1),82)

e This algorithm, that samples from above conditional marginals is a particular
iInstance of the Gibbs sampler .

e The desired posterior P is the stationary distribution of T' (why? — later...).

e Note the algorithmic similarity to ICM. In Gibbs, we make a random move
Instead of directly going to the conditional mode.
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Gibbs Sampling
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Gibbs Sampling, ¢ =20
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Gibbs Sampling, ¢ = 100
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Gibbs Sampling, ¢ = 250

Voo
f '
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Gibbs Sampling, Slow convergence
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Markov Chain Monte Carlo (MCMC)

e Construct a transition kernel T'(s’|s) with the stationary distribution
P = ¢(s)/Z, = n(s) for any initial distribution r(s).

m(s) =Tr(s) (5)
e Sample s(® ~ r(s)
e Fort=1...00, Sample s() ~ T(s|s(!=1))

e Estimate any desired expectation by the average

(f(8))0) & (st™)

’rLtQ

where %, is a preset burn-in period.

But how to construct T and verify that 7(s) is indeed its stationary distribution ?
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Equilibrium condition = Detailed Balance

T(s|s)m(s’) = T(s'ls)m(s)

If detailed balance is satisfied then 7 (s) is a stationary distribution

m(s) = /ds’T(s\s’)W(S’)

If the configuration space is discrete, we have
m(s) = > T(sls)r(s)
™ = I

7 has to be a (right) eigenvector of T'.

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Conditionson T

e Irreducibility (probabilisic connectedness): Every state s’ can be reached from
every s

T(s'|s) = ( (1) (1) ) is not irreducible

e Aperiodicity : Cycling around is not allowed

T(s'|s) = ( 2 (1) ) is not aperiodic

Surprisingly, it Is easy to construct a transition kernel with these properties by
following the recipe provided by Metropolis (1953) and Hastings (1970).
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Metropolis-Hastings Kernel

e We choose an arbitrary proposal distribution ¢(s’|s) (that satisfies mild
regularity conditions).

(When ¢ is symmetric, i.e., q(s’|s) = q(s|s’), we have a Metropolis algorithm.)

e We define the acceptance probability of a jump from s to s’ as

q(s]s")m(s")

q(s'|s)m(s)

a(s — s') = min{l,

}

100

os’)
o &

T

|

1—>S,)
=
I

|

5-59) a(s
[EEY
T
H

\.
(
/
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Acceptance Probability a(s — )
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Basic MCMC algorithm: Metropolis-Hastings

1. Initialize: 59 ~ r(s)

2. Fort=1,2,...

e Propose:
S, N q(s/ls(t—l))

e Evaluate Proposal: v ~ Uniform|0, 1]

s wu<a(stY =) Accept

st =

s(t=1) otherwise Reject

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Transition Kernel of the Metropolis Algorithm

T(s'|s) = g(s’]s)a(s —> s’2+ §(s' — s)/ds’q(s’]s)(l —a(s — )

\ . 7

Ac?:%pt ~~
Reject

-5 0 5 10 15 20

Only Accept part for visual convenience
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\/ariniic Karnale with tha eamao ctatinnarv dicetrihiitinn

o2 = 1000

q(s'|s) = N(s';s,07)
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Cascades and Mixtures of Transition Kernels
Let 77 and T, have the same stationary distribution p(s).

Then:

1. = 1il5
T, v+ (1—v)Ty; 0<v<1

are also transition kernels with stationary distribution p(s).
This opens up many possibilities to “tailor” application specific algorithms.
For example let

Ty . global proposal (allows large “jumps”)
T5 : local proposal (investigates locally)

We can use T, and adjust v as a function of rejection rate.
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Optimization : Simulated Annealing and Iterative Improvem

For optimization, (e.g. to find a MAP solution)

* _
s” = argmax 7(s)

The MCMC sampler may not visit s*.

Simulated Annealing : We define the target distribution as
m(s)"
where 7; is an annealing schedule. For example,
71 =0.1,..., 7 =10, 7Tny4+1 = 00...
Iterative Improvement (greedy search) is a special case of SA

TG =T =+ =TN = OO

ent
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Acceptance probabilities a(s — s) at different 7

=01 =1

20 20

15

15

10
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Importance Sampling,

Online Inference, Sequential Monte Carlo

Cemgil Introduction to Numerical Bayesian Methods. 2 March 2006, Birmingham, UK.
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Importance Sampling

Consider a probability distribution with Z = [ dx¢(x)

Estimate expectations (or features) of p(x) by a weighted sample

(), = / d £ (x)p(x)

N
<f(x)>p(x) ~ Z@(i)f(x(i))
i=1

(6)

(7)
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Importance Sampling (cont.)

e Change of measure with weight function W (x) = ¢(x)/q(x)

6Dy = [ ixso0Sga = 5 (F00505) =7 (W6l

e If Z Iis unknown, as is often the case in Bayesian inference

7 = [axot = [ oot = V00,
<f(X)W(X)> X
<f(x)>p(X) <W(X)>q(X)( |
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Importance Sampling (cont.)

e Draw: = 1, ... N independent samples from g
x" ~ g(x)
e \We calculate the importance weights
W= W) = ¢x")/ax")

e Approximate the normalizing constant

N
Z = (W)~ oW
=1

e Desired expectation is approximated by

(FEOW g i, W)
(W (%)) 40 S, W

<f(X)>p(x) —

Here 9 = W@/ 5% WU are normalized importance weights.

N . .
Z ﬁ)(l) f (X(l))
=1
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Importance Sampling (cont.)

0.2

-10

30

N
o
T

=
o
I

0.1

-10
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Resampling
e Importance sampling computes an approximation with weighted delta functions

p(x) = ZW“M(:C—:A”)

e In this representation, most of W@ will be very close to zero and the representation may be
dominated by few large weights.

e Resampling samples a set of new “particles”

29, o~ S W8 — )

new

1 ()

p(x) =~ N Z O(T — Trey
J

e Since we sample from a degenerate distribution, particle locations stay unchanged. We merely
dublicate (, triplicate, ...) or discard particles according to their weight.

e This process is also named “selection”, “survival of the fittest”, e.t.c., in various fields (Genetic
algorithms, Al..).
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Resampling

0.2

0.1

=N
o O
T T

-10 -5 0 5 10 15 20 25

2y ~ S WD (1 — 20)
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Examples of Proposal Distributions

plely) o plyle)p(o)

Task: Obtain samples from the posterior p(x|y)

e Prior as the proposal. ¢(z) = p(z)
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Examples of Proposal Distributions

plaly) o plyle)p(z)

Task: Obtain samples from the posterior p(x|y)

e Likelihood as the proposal. ¢(x) = p(y|z)/ | dzp(y|z) = p(y|z)/c(y)

_ PWl)P(T) N N s ol
W(z) = D(gl)/e) = p(z)c(y) o< p(x)

e Interesting when sensors are very accurate and dim(y) > dim(z). Idea behind
“Dual-PF” (Thrun et.al.. 2000)

Since there are many proposals, is there a “best” proposal distribution?
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Optimal Proposal Distribution

plaly) o plyle)p(o)

Task: Estimate (f(x))

p(z|y)

e IS constructs the estimator I(f) = (f(z)W(x)),(., (Where W(z) = p(z|y)/q(z))

e Minimize the variance of the estimator

(F@W@) = F@W@)*) = {

q(x)

~~

22)WA(x)), 0y — (F@)W (@) 1,48)

)>q(x) - <f(5’3)>;29(a;) 9)
= (L@W?(@)), — () (10)

I
A~
—
P
2
<
P
8

e Minimize the first term since only it depends upon ¢
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Optimal Proposal Distribution

¢ (By Jensen’s inequality) The first term is lower bounded:
2
(P@Wa), = U@ @) = ( [ 17@)] plalids )

e We well look for a distribution ¢* that attains this lower bound. Take

|f (@) |p(z]y)
J1f (@) |p(a'|y)da’

¢ (z) =
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Optimal Proposal Distribution (cont.)

e The weight function for this particular proposal ¢* is

J 1 (@) |p(z'|y)da’
|f ()]

W.(z) = p(zly)/q" () =

e We show that ¢* attains its lower bound

Y ) ([ y)da)

_ (/,f )p(z'|y) d:c) = (|f(z )|>p(m|y)

= )W) ge (0

e = There are distributions ¢* that are even “better” than the exact posterior!
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Examples of Proposal Distributions

\|, @ p(zly) o< p(y1|z1)p(z1)p(yz|ze)p(z2|21)

Task: Obtain samples from the posterior p(x1.2|y1.2)

e Prior as the proposal. q(x1.2) = p(x1)p(x2|r1)
W (z1,22) = p(y1|z1)p(y2l|22)

e \We sample from the prior as follows:

2\ ~ p(ay) 2~ pao)zy = 21P) W (x®) = p(y1|2{?)p(ya|2$?)
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Examples of Proposal Distributions

p(z|y) o< p(y1|T1)p(z1)p(y2|22)p(T2|21)

e State prediction as the proposal. q(x1.2) = p(x1|y1)p(x2|r])

p(y1|w1)p(w1)p(y2|r2)p(w2|71)

W(z1,22) = p(@1|y1)p(z2|z1)

= p(y1)p(y2|z2)

e Note that this proposal does not depend on x;

e We sample from the proposal and compute the weight

2\Y ~ p(a1|yr)

25 ~ p(ao)zy = 217) W (xD) = p(y1)p(yala

())
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Examples of Proposal Distributions

\l, @ p(zly) o< p(y1|z1)p(z1)p(y2|z2)p(22|21)

e Filtering distribution as the proposal. ¢(x1.2) = p(x1|y1)p(x2|z1, Y2)

p(y1|w1)p(w1)p(y2|r2)p(w2|71)

Wixi,z0) =
(71, 22) P(waly1)p(walzr, o)

= p(y1)p(y2|z1)

e Note that this proposal does not depend on x5

e We sample from the proposal and compute the weight

2\ ~ p(a1|yr) 2~ p(aa]zr = 217, o) W (xD) = p(y1)p(ya| =i
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Online Inference, Terminology

In signal processing we often have dynamical state space models (SSM)

D S O G

rr ~ plxg|re_1) Transition Model
yr ~ plyklrk) Observation Model

Here, x is the latent state and y are observations. In a Bayesian setting, = can also include
unknown model parameters. This model is very generic and includes as special cases:

e Linear Dynamical Systems (Kalman Filter models)

e (Time varying) AR, ARMA, MA models

e Hidden Markov Models, Switching state space models

e Dynamic Bayesian networks, Nonlinear Stochastic Dynamical Systems
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Online Inference, Terminology

o Filtering p(zk|y1.x)
belief state—distribution of current state given all past information

©Zo > T - > .. > Lk—1" > Tk > .. > TK -
o o {yK}

e Prediction p(yk.x, Tk k|Y1:k—-1)
evaluation of possible future outcomes; like filtering without observations

e
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Online Inference, Terminology

® Smoothing p(xo;K|y1:K),
Most likely trajectory — Viterbi path  arg max,, . p(o:x|y1:K)
better estimate of past states, essential for learning

@Q_)@A@Q_)@

e Interpolation p(y, Tk|y1:k—1, Yr+1:K)
fill in lost observations given past and future

s = e O s
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Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior
P(To:x|Y1:K)-

1 1

p(To:k|Y1:K) = p(ylzK)P(yLK|$0:K)p($0:K)Esz(%:f{) (11)

Key idea: sequential construction of the proposal distribution ¢, possibly using the
available observations y; .., I.e.

K
q(z1:x|y1:x) = q(x0) H q(Tk|T1:8-1Y1:8)
k=1
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Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight
function W (xg.) = W) admits recursive computation

¢($0:k) :P(yklmk)p(xklmk—l) </5($0:/<—1) (12)
q(zo:k|y1:k) q(Tr|To:k—1Y1:k) ¢(To:k—1|Y1:k—1)

p(yk|k)p(Tk|TE—1)
Q(xk‘x():k—laylzk)

Wi

Wi-1 = ugjoe—1Wik-1 (13)

Suppose we had an approximation to the posterior (in the sense (f(z)), ~ > _; W,Ei_)lf(x&_l))

S(ror—1) ~ »_ W 6 (@og—1 — 250 1)
x,(j) ~ q(xk]a:(()?f_l, Y1:k) Extend trajectory
W,gi) = u,gj{):k_lwk_l Update weight
laor) ~ D W d(zo — )
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Example

e Prior as the proposal density

Q($k|$o;k—1,y1:k) = p($k|$k—1)

e The weight is given by

x,(f) ~ p(xk]x,(ﬁl) Extend trajectory
W,ﬁ“ — u;j{):k_lwk_l Update weight

(4) (7),..(3)
p(yk\x )p(flf \x _ ) i i i
= EoE TR = plyelay )WY,

p<xl(;)‘xl(;zl)

e However, this schema will not work, since we blindly sample from the prior. But
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Example (cont.)

e Perhaps surprisingly, interleaving importance sampling steps with (occasional)
resampling steps makes the approach work quite well !!

x,(f) ~ p(xk|aﬁ,(fll) Extend trajectory
W,gi) = p(yk|x,(:))W]§? Update weight
W =w\) 2z, Normalize (Z;, = Zi/ W)

N
xé‘f,l)new ~ Z W(i)(S(x():k — :17(()236) Resample j=1...N
1=1

e This results in a new representation as

1 - .
B(x) ~ > Zid(wor = TG pew)
J

%ZL — x((){l)c,new ngi) N Zk/N
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Optimal proposal distribution

e The algorithm in the previous example is known as Bootstrap particle filter or
Sequential Importance Sampling/Resampling (SIS/SIR).

e Can we come up with a better proposal in a sequential setting?

— We are not allowed to move previous sampling points :c%_l (because In
many applications we can’t even store them)

— Better in the sense of minimizing the variance of weight function Wy(x).
(remember the optimality story in Eq.(10) and set f(xz) = 1).

e The answer turns out to be the filtering distribution

q<$k|371:k—17 yl:k) = p(mkz!mk—h yk) (14)
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Optimal proposal distribution (cont.)

e The weight is given by

x,(j) ~ (a:k|a?,(< ‘) 1 Yk) Extend trajectory
W = ,g?o,{ Y Update weight
o sl ><“>\x§21> plyslzi) )
Uklo:k—1 = ) X
play 2 o) el )

_ p(yr, 7|z} )(yklﬂigfll): p(yilz? )
p(x](g)7y ’xl(fzzl)
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A Generic Particle Filter

1. Generation : |
Compute the proposal distribution q(a:k|:céf3€_1, Y1:k)-
Generate offspringsfors =1... N

il(;) ~ Q($k|$((;3€_l, yl:k)

2. Evaluate importance weights

NOMNSFIOINC)
Wkgz) P (Y| * )P( 1T W(7,_) 20
~ (i) (4) k—1 0:k
Q(CUk ‘xo;k_laylzkz)
3. Resampling (optional but recommended)
Normalize weigts Wi =w )z,
. N ~ . .
Resample ) o ~ > WS (won — x())
1=1
Reset Tk Tk new
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Summary of what we have (hopefully) covered

e Deterministic

— Variational Bayes, Mean field
— EXxpectation/Maximization (EM), Iterative Conditional Modes (ICM)

e Stochastic

— Markov Chain Monte Carlo
— Importance Sampling,
— Particle filtering
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Summary of what we have not covered

e Exact Inference (Belief Propagation, Junction Tree ...)

e Deterministic

— Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented
Particle Filter

— Structured Mean field

— Loopy Belief Propagation, Expectation Propagation, Generalized Belief
Propagation

— Fractional Belief propagation, Bound Propagation, <your favorite name>
Propagation

— Graph cuts ...

e Stochastic

— Unscented Particle Filter, Nonparametric Belief Propagation
— Annealed Importance Sampling, Adaptive Importance Sampling
— Hybrid Monte Carlo, Exact sampling, Coupling from the past
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Variational or Sampling ?

e Possible criteria

— How accurate

— How fast

— How easy to learn

— How easy to code /test/maintain

When all you own is a hammer, every problem looks like a nail
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Variational or Sampling ?

e Depends upon application domain. My personal impression is:

— Sampling dominated
« Bayesian statistics, Scientific data analysis
Finance/auditing
Operations research
Genetics
Tracking
— Variational dominated
x Communications/error correcting codes
— Mixed territory
«x Machine Learning, Robotics
x Computer Vision
+x Human-Computer Interaction
X
X

S
S
S
S

Speech/audio/multimedia analysis/information retrieval
Statistical Signal processing
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Further Reading

Variational tutorials and overviews

e Tommi Jaakkola. Tutorial on variational approximation methods. (2000).
http://people.csail.mt.edu/tonm /papers/Jaa-var-tutorial.ps
e Frey and Jojic [2]

e Wainwright and Jordan [7]

MCMC and SMC tutorials and overviews

e Andrieu, de Freitas, Doucet, Jordan. An Introduction to MCMC for Machine Learning, 2001
e Andrieu. Monte Carlo Methods for Absolute beginners, 2004

e Doucet, Godsill, Andrieu. "On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering”, Statistics and Computing, vol. 10, no. 3, pp. 197-208, 2000

The “in Practice” Books

e Gilks, Richardson, Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman Hall, 1996
e Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001
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