
Bayesian Real-time Adaptation for Interactive Performance Systems

Ali Taylan Cemgil and Bert Kappen
SNN, University of Nijmegen, The Netherlands

email:
�
taylan,bert � @mbfys.kun.nl

Abstract

We introduce Bayesian online learning for real time param-
eter adaptation on a tempo tracking task. We employ a vari-
ational extension of the Expectation Maximization algorithm
for online parameter estimation. Simulation results on a real
dataset indicate that online adaptation has the potential of
capturing performer specific features in realtime.

1 Introduction

An interactive music performance system (IMPS) (Rowe,
1993) is a computer program that “listens” to the actions of a
performer and generates responses in real-time. IMPS appli-
cations include (but are not limited to) automatic accompani-
ment or improvisation. One important goal is to design a ro-
bust IMPS that performs well for a broad set of performance
conditions, e.g. different genres, styles, tempo e.t.c. Due to
the diversity of the domain, this objective is rather difficult to
achieve with rule-based approaches (Bresin, 2000).

Machine learning techniques provide particularly useful
alternatives to rule-based systems. One powerful machine
learning strategy is statistical modeling, i.e. to devise a prob-
abilistic model with adjustable parameters. Then, optimal pa-
rameters are estimated by maximization of the likelihood on
a representative dataset. In the context of interactive perfor-
mance systems, model parameters are adapted to a particular
performance situation or stylistic features of a specific com-
poser/performer (Vercoe and Puckette, 1985; Thom, 2000;
Raphael, 1999).

Usually training is accomplished off-line, i.e. there is
an initial training phase when model parameters are adapted.
Consequently, during the normal mode of operation parame-
ters remain fixed. The fundamental problem with this conven-
tional learning scenario is the difficulty in collecting a data set
that represents all performance conditions one would be inter-
ested in. On the other hand, a model trained on a specialized
data set might perform in a rather unexpected or unsatisfac-
tory way on a novel domain.

Moreover using a large and inhomogeneous dataset may
not necessarily result in “better” parameter estimates. In prac-
tice it is often possible to capture different stylistic aspects
of an individual performer within a relatively simple model

class. However, optimal parameters for different performers
can be significantly different. Hence, a single set of parame-
ters optimized for the entire dataset may lead to unsatisfactory
performance. Additionally, for an individual performer, opti-
mal parameters can change among different performances or
even “drift away” during a particular performance situation.
Therefore it is desirable to have a built in online adaptation
schema that updates parameters during normal mode of oper-
ation.

2 Bayesian Parameter Estimation

In this section we introduce the key concepts of Bayesian pa-
rameter estimation on a probabilistic tempo tracking model.
A tempo tracker can be considered as the backbone of any
IMPS so robustness is of primary importance.

2.1 A generative model for tempo fluctuations

Consider the following recursion������ �	��
���
���� ���������� ������� (1)
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is a rotation matrix that, when premultiplied, rotates a vec-
tor by � degrees counterclockwise. Consequently, all points" � 
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, when viewed as a function of & , is a perfect sinusoidal
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to generate a regular beat with fluctuating
tempo as * � 
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, where * � is the time when the & ’th
onset occurs.

Note that the above model is an entirely deterministic
model for tempo fluctuations. In reality, we expect some ran-
dom deviations so we introduce noise terms�2���� �	� 
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where
45�

and
79�

are zero mean normal random variables with
covariance matrices � and � respectively. We will denote
the multivariate gaussian distribution with mean � and co-
variance matrix � with � 
 � $ � � . Moreover, if � is assumed
to vary, we will denote it by � � . In this example we assume
that � 
�� , i.e.

���
is directly observed.

Given � , Equation 2 defines implicitly a probability dis-
tribution � 
	��
 ��� over possible tempo trajectories. Moreover
due to Gaussian noise and linear state transition assumptions,
the distribution � 
	��
 ��� is also (a big) Gaussian.

In Figure 1, we plot two � sequences sampled from the
model in Eq. 2. The sequences are drawn from a constant-� and from a varying- � model respectively. The constant- �
model has � 
���
 � . In the varying- � model, � is interpo-
lated linearly from ��
 � to ��
 � . As expected, the samples have
different characteristics. The constant- � sequence � const has
roughly the same period throughout whereas the varying- �
sequence � vary is “chirp-like”, i.e. its frequency is increasing
with & .
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Figure 1: Typical “tempo curves” � sampled from Eq.2 with
� 
���
 ����� . Left, constant � 
���
 � , Right, � � is interpolated
linearly from ��
 � to ��
 � in ��� steps.

This model is a constrained version of the Kalman filter
introduced in (Cemgil et al., 2001). In the current model, the
beat is not explicitely modeled and the state transition matrix� is constrained to be a rotation matrix with only one param-
eter. The last constraint is imposed to simplify the discussion
and will be removed later.

2.2 Learning

Learning is the reverse problem of generating samples from
a given model: we are given sequences and wish to estimate
model parameters. In the following we wish to estimate a
constant- � model (we assume that � is known). The Bayesian
formulation of the problem is

� 
���
 � � 
 � 
	��
 ��� � 
����
� 
	� � (4)

Posterior 
 Likelihood � Prior
Evidence

(5)

The prior term � 
���� reflects our knowledge about the parame-
ter � before we observe any data. In this example we take the

prior � 
���� as uniform on � � $ ��� . The likelihood term � 
	��
 ���
is a measure of how well a given � predicts the data. Since
in this toy example � is just a scalar, we can plot the like-
lihood by evaluating it at several points on � � $ ��� . Note that
each different � corresponds to a different Kalman filter. The
likelihood at each � is computed by running standard Kalman
filtering recursion.

The resulting likelihood functions for both sequences are
plotted in Figure 2. Note that the likelihood function is
not a probability distribution of � since it is not normal-
ized. The required normalization constant, the evidence, is
given � 
	� �	
��! )� � 
	��
 ��� � 
���� . The evidence plays a key
role in Bayesian inference: it gives the likelihood that the
model has generated the observed data by summing (inte-
grating) individual parameter likelihoods over all possible pa-
rameter settings. The likelihood � 
	��
 ��� answers the ques-
tion “what is the likelihood that the particular � has generated
the data (given the model)” whereas the evidence answers the
“global” question “what is the likelihood that the data comes
from a constant � model”. In this example the log-evidence is- �"
 ��� and �$#%
 &'� respectively: It is about �"� orders of magni-
tude less likely that � vary comes from a constant � model.
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Figure 2: The likelihood functions (left-up) (*),+ const - .0/ and (right-
up) (*),+ vary - .0/ . Since the prior is flat, the posterior is proportional to
the likelihood upto a normalization constant. Under each likelihood,
the error signal 1�2�354628794 pred2 is shown for a Kalman filter with . 3:�; <

. The error signal for + vary has higher magnitude and exhibits
correlations that indicate the fact that the filter is unable to capture
the structure in the signal.

The posterior distribution � 
���
 � � reflects our entire
knowledge about the parameter � after we observe the data.
In this respect the full Bayesian parameter estimation is the
general case of maximum likelihood (ML) or maximum a-



posteriori (MAP) estimation, where one is interested into just
a single parameter that maximizes � 
	��
 ��� or � 
	��
 ��� � 
���� re-
spectively. In other words, ML and MAP estimation can be
viewed as ways of summarizing or approximating the under-
lying posterior distribution � 
���
 � � by a point estimate.

However, the computation of the exact posterior distribu-
tion is usually intractable and one has to reside to approxi-
mation techniques. One such approximation method is varia-
tional approximation. In the context of the current example,
we approximate the exact parameter posterior � 
���
 � � by a
Gaussian � 
 ��� $ ��� � and estimate both the mean ��� parame-
ter and the variance ��� . As can be seen in Figure 2, a Gaus-
sian approximation would be quite reasonable.

2.3 Variational Expectation Maximization

The well known Expectation Maximization (EM) algorithm
for ML parameter estimation includes two steps that are it-
erated. In the E step the sufficient statistics (e.g. the sam-
ple mean and covariance) of the unobserved variables is esti-
mated by fixing the parameters. Consequently, in the M step,
the estimated statistics are fixed and the maximum likely pa-
rameter is computed. See Bishop (1995) for an introduction
to EM.

The variational-EM (VEM) can be considered as an ex-
tension to EM where both E and M steps are “symmetric”: In
the VE step the sufficient statistics (e.g. the sample mean and
covariance) of the unobserved variables is estimated by fixing
the parameters. Consequently, in the VM step, the estimated
statistics are fixed and the sufficient statistics of parameters is
computed. Luckily, it turns out that the resulting variational
algorithms have very little additional computation cost com-
pared to ML version (Ghahramani and Beal, 2000).

3 Bayesian Online Adaptation

The example in the previous section demonstrated that if the
signal characteristics are changing or parameters are not well
tuned (consider the fact that the posterior in Fig. 2 is quite
peaked) the predictions can be quite bad.

In this section we introduce an online learning mecha-
nism to adapt model parameters. See Figure 3 for a sematic
description of Bayesian online learning. The online formula-
tion of variational Bayesian learning is simple: the parameter
distribution is updated each time new data arrives. In other
words, the previous parameter posterior acts as the prior of
the next step. The parameter distribution is improved based
on recent data by variational EM. Since VEM is guaranteed to
improve the estimate at each step, the new parameter distribu-
tion is calculated as long as computational resources permit.

One additional advantage of keeping a distribution over
the parameters is that the adaptation rate can be easily con-
trolled: after each online update we can slightly increase the

variance of the parameter distribution. In this way one pre-
vents the parameter distribution shrinking to a point estimate
and enables it to drift in time.

p(A | pianist2)

p(A)

p(A | pianist1)

Figure 3: A Schematic representation of online learning. The “big”
ellipse represents a distribution over plausible parameters. The mean
of this distribution corresponds to some average parameter setting,
that is potentially suboptimal for a particular pianist (or performance
situation). In online adaptation, parameter distributions drift to the
“smaller” ellipses and eventually capture the performer specific pa-
rameter distribution.

4 Model

The model introduced in section 2 assumed that the transition
matrix is a rotation matrix and two dimensional. In general �
can be an arbitrary

� � � matrix. In (Cemgil et al., 2001)
we have observed that higher order Kalman filters (

��� ��� )
perform well. In this general case the hidden states of the
Kalman filter correspond to the period and higher order ac-
celeration terms of the tempo tracker. The parameters of a
standard Kalman filter (in this particular case the transition
matrix � ) are fixed. We extend the original model such that
filter parameters are also adapted online. The adaptive model
is shown in Figure 4. Here, ��� denotes the transition matrix
at step 	 . The rectangle denotes a sliding window of 
 steps.
After each new observation, (1) the new hidden state distri-
butions in the sliding window are calculated using the current
parameter distribution, (2) the parameter distribution is up-
dated using the recently obtained hidden states. Step 1 (Ex-
pectation) and 2 (Maximization) are iterated until a prediction
has to be generated. We take a Gaussian distribution on each
row of the state transition matrix � as in (Ghahramani and
Beal, 2000). The prediction is calculated using the improved
parameter estimate. When the new observation arrives, the
window is shifted by one step and the whole procedure is re-
peated.

5 Results and Discussion

We compare the static model and the adaptive model by how
well they predict the next beat in a given performance. The
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Figure 4: Graphical Model of the adaptive tempo tracker.

static filter uses parameters that are optimized for the entire
dataset. The adaptive filter starts from a parameter distribu-
tion that has the same mean as the static distribution and a
broad uncertainty (large variance). As a natural measure for
prediction ability we use the log-likelihood of the next beat
under this prediction, i.e. a quantity directly related to the
prediction error. We found that a window length 
 of around��� steps (4 bars) gives the best results. It has to be noted that
the window size, as well as the initial parameter distribution
are two factors that effect the rate of adaptation.
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Figure 5: Examples of + sequences from the Beatles data set. The
sequences correspond (from above to below) to performances of a
professional classical, amateur classical and professional jazz pi-
anist. The performances have different characteristics. For exam-
ple the classical pianist uses a lot more tempo fluctuation than the
professional jazz pianist. The amateur “rushes”, i.e. constantly ac-
celerates.

For our simulations we have used 108 piano performances
of Michelle by the Beatles. This dataset is introduced in
(Cemgil et al., 2001). See Figure 5 for a few examples of
estimated

�
sequences. In Figure 6 we show the histogram

of the likelihood differences of static and adaptive filters. On
average, adaptation results in better predictions. For some
performances the static filter is slightly better. Here, the adap-
tive filter merely learns some unstructured fluctuations. How-
ever, for the majority of examples the prediction accuracy im-
proves, and sometimes quite significantly. For example the
rightmost 3 performances (where the log-likelihood increases
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Figure 6: Histogram of the log-likelihood differences ��� 3
�����	�	
��%7
��� � ��� 2 � for 108 performances of Michelle. A positive dif-
ference indicates that the adaptive model predicts better.

by more than 50) correspond to the same subject who uses
consistently a lot of tempo variation. Hence, her “personal”
optimal parameters are significantly different than other per-
formers.

These result suggests that online adaptation has the po-
tential to capture structure in expressive performances. More-
over, variational Bayesian techniques seem to be an efficient
and stable way to accomplish this goal in realtime.
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