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ABSTRACT

In this paper, we develop a class of probability models that are po-
tentially useful for various music applications such as polyphonic
transcription, source separation, restoration or denoising. This
class unifies and extends several models such as sinusoidal and
harmonic models, additive synthesis model, Gabor regression and
probabilistic phase vocoder. We overcome computational intractabil-
ity issues by introducing structured variational (mean-field) ap-
proximations that lead to efficient local message passing algorithms.

1. INTRODUCTION

When excited, vast majority of physical systems (human vocal
tract, many acoustical musical instruments e.t.c.) respond with
quasi-periodic oscillations. Hence, in short time scales, the en-
ergy of signals from these sources is concentrated to a few narrow
frequency bands. In modelling music or speech, this property is
exploited extensively and it is a well established practice to model
audio as a superposition of sinusoidals. This provides a compact
representation of the audio waveform using a few amplitude and
phase coefficients. However, since the frequency content of music
or speech changes over time, the analysis needs to be applied to
subsequent short (and possibly overlapping) time frames. This is,
of course, the underlying principle behind many well known meth-
ods such as short time Fourier transform (STFT) analysis, phase
vocoder [1, 2], the sinusoidal model [3], or various harmonic-plus-
noise models [4, 5, 6, 7].

However, in many applications, the most “interesting” regions
of an audio signal are transient regions associated withchange-
pointssuch as onsets or offsets, yet it is exactly these points where
the stationarity assumptions of a sinusoidal model are violated.
Correct characterisation of changepoints is important in various
applications: in transcription we wish to estimate note onsets, off-
set or frequency modulations precisely, in coding or time scaling
unfaithful reconstruction of attacks introduces annoying percep-
tual artifacts such as “flanging” or “phasiness”, e.t.c [2].

In this paper, we approach signal analysis from a Bayesian
perspective. Central to our approach is a probabilistic hierarchical
(three layer) signal model. The bottom layerp(x|s) describes how
the audio signalx is generated from a latent dynamical process
with state variables. The intermediate layer, denoted byp(s|θ),
is non-stationary and its dynamics is governed by a sequence of
unknown parametersθ. The basic idea is to view the parametersθ
as describing the characteristics of a hidden “excitation” sequence
that drives the dynamical process. In signal analysis, we wish to
estimateθ (possibly using some prior knowledge encoded by a top
layer processp(θ)). As a general inference problem, the posterior

distribution is given by the Bayes’ rule

p(θ|x) =
1

p(x)

∫
dsp(x|s)p(s|θ)p(θ) (1)

In the next section, we introduce this model class, that we name as
dynamic harmonic model(DHM). An attractive property of DHM
is that transient signal characteristics, onsets or frequency fluctua-
tions can be estimated to sample precision, if desired. Moreover,
this class unifies and extends several models such as sinusoidal and
harmonic models[8, 9], additive synthesis model, Gabor regression
[10] and probabilistic phase vocoder[11].

Our purpose in this paper is twofold: First, we introduce DHM
using the language of directed graphical models as a generic model
for harmonic signal modelling. Our second aim is to illustrate in-
ference methods based on variational (structured mean-field type)
approximations [12, 13, 14]. We will describe the method as an it-
erative local message passing algorithm on a factor graph[15]. Our
focus here is to describe a particular variational inference schema
on DHM and to demonstrate effectiveness.

2. MODEL

Consider a single channel audio signalx = (x0, . . . , xt, . . . , xT−1)
>.

The harmonic model represents the signal as

x|s ∼ N (x; Cs, R) (2)

The symbolN (x; µ, Σ) denotes a Gaussian distribution onx, with
meanµ and covariance matrixΣ. In particular, we takeR = σRI,
whereI is the identity matrix.C is aT × 2W matrix

Cs ≡




C0
0 . . . CW−1

0

... Cν
t

...
C0

T−1 . . . CW−1
T−1







s0

...
sW−1




with time (row) indext = 0, . . . , T − 1 and frequency (column)
indexν = 0, . . . , W − 1. The block entries are defined by

Cν
t ≡ (

cos(tνθ) sin(tνθ)
)

xt =
∑

ν

Cν
t sν

whereθ = 2π∆f is the angular frequency,∆f = Fs/L is the
frequency resolution withFs being the sampling frequency and
L ≥ W . Note whenσR = 0, T = W = L, thenC is equivalent
(up to normalisation) to the inverse Fourier transform matrix and
s are alternating real and imaginary parts of Fourier coefficients.
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By slight abuse of notation, we will refer toν’th coefficient bysν ,
keeping in mind that it is actually not a scalar but a2× 1 vector1.

The above interpretation highlights the well-known fact that
we can view Fourier analysis (or any basis expansion) as a particu-
lar instance of thegeneralised linear model[16]. Note that, this is
astaticinterpretation, whilst suitable for fast transformations, does
not reflect the fact that data is arriving online. One observation is
that we can define the model for arbitrary frame lengths. LetN be
the length of a frame in samples and define a frame indexk such
thatk = 0 . . . T/N − 1. We denote

xk ≡ (xkN , . . . , x(k+1)N−1)

The alternative (and arguably physically more realistic)dynamic
state-spaceinterpretation hinges on the well known trigonometric
identity (which is more familiar in complex arithmetic asej(t+N)θ =
ejNθejtθ)

(
cos((t + N)θ)
sin((t + N)θ)

)
= B(Nθ)

(
cos(tθ)
sin(tθ)

)

whereB(·) is a Givens rotations matrix.

B(ω) ≡
(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)

Using this identity, we see that the basis matrix can be “generated”
by the recursion

Cν
t+N = Cν

t B(Nνθ)>

Multiplying both sides bysν , we obtain fort = 0, . . . , N − 1

Cν
t+Nsν = Cν

t B(Nνθ)>sν

We now definesν
k ≡ B(Nkνθ)>sν . According to this definition,

we can represent each framexk by the recursion

sν
k = B(Nνθ)>sν

k−1 ν = 0 . . . W − 1

xk =
∑

ν

Cν
0:N−1s

ν
k ≡ C0:W−1

0:N−1 sk

Where the notationC0:W−1
0:N−1 denotes the firstN rows of the basis

matrix andsk ≡ (s0
k
>

, . . . , sν
k
>, . . . , sW−1

k

>
)>. This means that

by rotatingsν appropriately, i.e., by phase correction, we can just
use the firstN samples of each basis vector to representx. For
example, in the extreme case, whenN = 1,

sν
k = B(νθ)>sν

k−1 ν = 0 . . . W − 1

xk = xk =
(

1 0 . . . 1 0
)
sk

for k = 0, . . . , T − 1. Here, all information about the signal is
conveyed in the latent dynamical process and the (overcomplete)
basisC becomes trivial. Using this idea, we can “interpolate” be-
tween dynamic and static interpretations. Of course, mathemati-
cally speaking, we haven’t really gained anything and in the noise-
less case, all formulations for any frame lengthN are equivalent.
However, the dynamical system perspective opens up interesting
possibilities to extend the basic model in a way that is not apparent
in the static formulation.

1One could avoid this technicality by describing the model using com-
plex Gaussian distributions, but this approach precludes certain generalisa-
tions.

3. DYNAMIC HARMONIC MODEL

Dynamic Harmonic model is a generative model that describes
how the audio signalx is generated from a latent process with
state variablesk, for k = 0, . . . , T/N − 1. Each elementsν

k of sk

follows its independent piecewise linear dynamics and is subject
to non-stationary Gaussian noise as:

sν
k|Aν

k, Qν
k ∼ N (sν

k; Aν
ksν

k−1, Q
ν
k)

Here, transition matrixAν
k and noise covariance matrixQν

k are
2× 2. Thek’th frame is generated by

xk|sk ∼ N (xk;Csk, R)

where observation noise covariance is isotropic withR = σRI.
For brevity, we denote the observation matrixC ≡ C0:W−1

0:N−1 ,
Ak ≡ diag(A0

k, . . . , AW−1
k ) andQk ≡ diag(Q0

k, . . . , QW−1
k ).

The prior structure on the transition matrices and noises is taken as
a hidden Markov model with discrete latent staterk ∈ {0, 1, . . . , |r|−
1} where|r| denotes number of distinct states:

rν
k |rν

k−1 ∼ M(rν
k ; π0(rk−1), . . . , π|r|−1(rk−1))

Aν
k|rν

k ∼ N (Aν
k; Θ(rν

k), Σ(rν
k))

Qν
k|rν

k ∼ IG(Qν
k;a(rν

k),b(rν
k))

The symbolsM, N andIG denotemultinomial, (matrix valued)
Gaussianand inverse-gammadistributions respectively and defi-
nitions are given at the appendix. The graphical model is shown
in Figure 1. In this paper, we will demonstrate DHM with the
following parametrisation:

rk ∈ {off, onset, on, offset}
Θ(rν

k) = ρ(r)B(νθ)>

whereρ(r) is a scalar with0 = ρ(onset) ≤ ρ(offset) = ρ(off) <
ρ(on) ≤ 1. The interpretation is that the oscillations are damped
more during “off” state and less in “on” state. We letΣ(rν

k) = 0
to ensureAk is a fixed rotation matrix. Only the following state
transitions have nonzero probability

πon = p(on→ on) = 1− p(on→ offset)

πoff = p(off → off) = 1− p(off → onset)

1 = p(offset→ off) = p(onset→ on)

The transition noise is constrained to be isotropicQν
k = σν

kI with

σν
k |rν

k ∼ IG(σν
k ; a(rν

k), b(rν
k))

The parametersa andb should be chosen such that the expected
transition noise precision〈1/σν

k〉IG is small whenrν
k = onset

and very large whenrν
k 6= onset. This mechanism models the

scenario where the state variablesν
k is reinitialised during an onset

by injecting a random amount of energy and otherwise follows
an almost deterministic dynamics. In Figure 2, we demonstrate a
typical sample from the model.

4. INFERENCE

To solve the problem in (1) exactly, we need to first infer the pos-
terior distribution

p(s, θ|x) =
1

Zx
p(x|s)p(s|θ)p(θ) ≡ 1

Zx
φ(s, θ) ≡ P (3)
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Figure 1: Graphical model for the DHM. The rectangle denotes a
plate,W copies of the nodes inside.

wheres = {sν
k}, θ = {(Aν

k, Qν
k)} for all pairs (k, ν). Here,

Zx = p(x) is a normalising constant (also known as the evidence
or data likelihood). The parameter posterior is obtained by the
marginalp(θ|x) =

∫
dsp(s, θ|x). However, exact evaluation of

the posterior distribution in (3) is intractable due to couplings be-
tweenθ ands, so we will resort to approximations.

4.1. Structured Mean Field

One possible approximation method, that leads to a practical opti-
misation procedure isstructured mean field, also known asvaria-
tional Bayes, see [12, 13, 14] and references herein. In the partic-
ular case of (1), mean field boils down to approximating the exact
posteriorP in (3) with a simple distributionQ in such a way that
the integrand in (1) becomes tractable. An intuitive interpretation
of mean field is minimising the KL divergence with respect to (the
parameters of)Q where

KL(Q||P) = 〈logQ〉Q −
〈

log
1

Zx
φ(s, θ)

〉

Q
(4)

Here,〈f(x)〉p(x) ≡
∫

dxp(x)f(x) denotes the expectation off
w.r.t. p. Using non-negativity of KL [17] we obtain a lower bound
on the evidencelog Zx ≥ 〈log φ(s, θ)〉Q−〈logQ〉Q where max-
imising this lower bound is equivalent to finding the “nearest”Q
to P in terms of KL. In this paper, we choose the approximating
distributionQ of form

Q ≡ Qs

W−1∏
ν=0

Qν
r

K−1∏

k=1

Qν
A,kQν

Q,k

=

K−1∏

k=1

(
q(sk|sk−1)

W−1∏
ν=0

q(rν
k |rν

k−1)q(A
ν
k)q(Qν

k)

)
(5)

Although a closed form solution forQ still can not be found, it can
be easily shown, e.g. see [18], that each factorQa of the optimal
approximating distribution should satisfy the following fixed point
equation

Qa ∝ exp
(
〈log φ(s, θ)〉Q/Qa

)
(6)
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Figure 2: (left) Short Time Fourier Transform log-magnitude of a
signal generated from the model (right) Corresponding indicators
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Figure 3: Factor graph that corresponds to the variational approx-
imation in (5). Solid links correspond to substructures where it
is feasible to carry out exact inference via belief propagation and
dotted links correspond to the links “broken” by the variational
approximation.

whereQ/Qa denotes product of all factors excludingQa. Hence,
the mean field approach leads to a set of fixed point equations that
need to be iterated.

Right hand side of this fixed point iteration can be computed
efficiently sincelog φ(s, θ) is of form

∑
ξ ϕ(ne(ξ)) whereϕ are

the factors (local functions) defined on a small set of variables
denoted byne(ξ) and ξ is an index that runs over factors. The
structure of this expression for the DHM can be conveniently “vi-
sualised” using a factor graph[15] depicted in Figure 3. Here, each
factor potentialϕ(ne(ξ)) is shown as a black node adjacent to
variable nodesa ∈ ne(ξ). Using this notation, we see that (6)
simplifies to

Qa ∝ exp


 ∑

ξ∈ne(a)

〈ϕ(ne(ξ))〉Qne(ξ)/Qa




wherene(a) denotes set of all factors wherea occurs as an argu-
ment. The expectations〈ϕ〉 can be computed easily if all distri-
butions are chosen to be in a conjugate-exponential family [13],
which is the case for the DHM.

The structured mean field for DHM has a particularly intuitive
interpretation: each chain structured distributionQν

r on rν
0:K−1

corresponds to an HMM, and similarly, the chain structureQs on
s0:K−1 corresponds to a Kalman filter model. The observations
of the HMM’s and transition model of the Kalman filter at each
time slice are determined by sufficient statistics ofAν

k andQν
k. In

other words, the approximation boils down to iteratively running a
sequence of Kalman and HMM smoothing algorithms.
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Further computational savings can be obtained by considering
the expressions for individual factors. For example, when frame
lengthN is chosen such thatC is the inverse Fourier transform
matrix andR = σRI

ϕ(sk) = −1

2
TrCT R−1CsksT

k + TrxT
k R−1Csk

= − 1

2σR
Tr sksT

k +
1

σR
Tr(CT x)sk

where the termsCT x can be computed by the FFT. Other savings
(for anyN ) can be obtained forϕ(sk, sk−1,Ak,Qk) whenAk is
a block-diagonal rotation matrix andQk is diagonal. Due to page
limitations, we will report these details in a future technical report.

5. CONCLUSIONS

A very attractive feature of the message passing schema is that
the approximating structures can be freely chosen to trade of ac-
curacy versus computation time. Moreover, computer code can be
modularised and organised in such a way to make distributed and
parallel execution possible. Moreover, by imposing mild restric-
tions on model parameters, inference can be further speeded up by
making use of fast transforms such as the fast Fourier transform.
The convergence properties of resulting iterative algorithms can be
further improved using deterministic annealing procedures.

We have recently applied a particular DHM successfully for
signal restoration tasks[11]. Restoration results can be listened at
http://www-sigproc.eng.cam.ac.uk/∼atc27/em-restore/. In future
work, we will investigate further applications such as polyphonic
transcription or audio source separation and compare variational
inference with stochastic methods (e.g. MCMC).

A. APPENDIX

In this section, we define standard distributions in exponential form.
For each case, we denote the log-partition function (log normaliser)
by ψ(·).
Matrix valued Gaussian: We letX be aMr ×Mc matrix. Then
vecX is aMrMc×1 vector obtained by concatenation of columns
of X. The meanΘ has the same size asX and the covarianceΣ is
MrMc ×MrMc. Then a matrix valued Gaussian

N (X; Θ, Σ) ≡ N (vecX;vecΘ, Σ)

Multinomial: We letπ ≡ (π0, . . . , πi, . . . , π|r|−1) a vector such
thatπi ≥ 0 for all i = 1, . . . , |r|. We denote a multinomial distri-
bution in exponential form as

M(r; π) ≡ exp(

|r|−1∑
i=0

[r = i] log πi − ψ(π))

whereψ(π) = log
∑

j πj and[r = i] is the indicator of the event
thatr = i. Note that the expectation〈[r = i]〉M = π1/

∑
j πj of

the indicator gives simply the probability of the event.
Inverse Gamma:LetΓ(a) denote thegammafunction. We define
digammafunction asΨ(a) ≡ ∂ log Γ(a)/∂a. For x ≥ 0, the
inverse Gamma distribution in exponential form is given as We let
Σ = diag(σ1, . . . , σM ) is a diagonalM×M matrix withσi ≥ 0,
we definea ≡ diag(a1, . . . , aM ) andb ≡ diag(b1, . . . , bM )

IG(Σ;a,b) ≡ exp
(−Tr(I + a) log Σ−Trb−1Σ−1 − ψ

)

ψ = ψ(a,b) ≡ Tr log Γ(a) + Tra log b

〈
Σ−1〉

IG = diag(b1a1, . . . , bMaM ) ≡ ba

〈
log |Σ−1|〉IG =

M∑
j=1

(Ψ(aj) + log bj) = Tr(Ψ(a) + log |b|)

Note thatIG(Σ;a,b) =
∏M

j=1 IG(σj ; aj , bj).
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