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Abstract. In modelling nonstationary sources, one possible strategy is
to define a latent process of strictly positive variables to model varia-
tions in second order statistics of the underlying process. This can be
achieved, for example, by passing a Gaussian process through a positive
nonlinearity or defining a discrete state Markov chain where each state
encodes a certain regime. However, models with such constructs turn out
to be either not very flexible or non-conjugate, making inference some-
what harder. In this paper, we introduce a conjugate (inverse-) gamma
Markov Random field model that allows random fluctuations on vari-
ances which are useful as priors for nonstationary time-frequency energy
distributions. The main idea is to introduce auxiliary variables such that
full conditional distributions and sufficient statistics are readily available
as closed form expressions. This allows straightforward implementation
of a Gibbs sampler or a variational algorithm. We illustrate our approach
on denoising and single channel source separation.

1 Introduction
In the Bayesian framework, various signal estimation problems can be cast into
posterior inference problems. For example, source separation [6, 5, 9, 11, 3, 2], can
be stated as

p(s|x) =
1

Zx

∫
dΘodΘsp(x|s, Θo)p(s|Θs)p(Θo)p(Θs) (1)

where s ≡ s1:K,1:N and x ≡ x1:K,1:M . Here, the task is to infer N source signals
sk,n given M observed signals xk,m where n = 1 . . . N , m = 1 . . .M at each index
k where k = 1 . . . K. Here, k typically denotes time or a time-frequency atom in a
linear transform domain. In Eq.(1), the (possibly degenerate, deterministic) con-
ditional distribution p(x|s, Θo) specifies the observation model where Θo denotes
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the collection of mixing parameters such as the mixing matrix, observation noise
variance, etc. The prior term p(s|Θs), the source model, describes the statistical
properties of the sources via their own prior parameters Θs. The normalisa-
tion term Zx = p(x) is the marginal probability (evidence) of the data under
the model and plays a key role for model order selection (such as determining
the number of sources) [8]. The hierarchical model is completed by postulating
hyper-priors over the nuisance parameters Θs and Θo. Estimates of the sources
can be obtained from posterior features such as marginal maximum-a-posteriori
(MMAP) or minimum-mean-square-error (MMSE) estimate3

s∗ = argmax
s

p(s|x) 〈s〉p(s|x) =
∫

sp(s|x)ds

Unfortunately, exact calculation of these quantities is intractable for almost
all relevant observation and source models, even under conditionally Gaussian
and independence assumptions. Hence, approximate numerical integration tech-
niques have to be employed.

In applications, the key object is often the source model p(s|Θs). Indeed,
many popular signal estimation algorithms can be obtained by choosing a par-
ticular source prior and applying Bayes rule. If the sources have some known
structure, one can design more realistic prior models to improve the estimates.
In this paper, we explore generic source models that explicitly model nonsta-
tionarity.

Perhaps the prototypical example of a nonstationary process is one where the
conditional variance is slowly changing in time. In finance literature, such mod-
els are known as stochastic volatility models and are important to characterise
non-stationary behaviour observed in financial markets [12]. In spatial statistics,
similar constructions are needed in 2-D where one is interested in changing in-
tensity over a region [15]. In audio processing, the energy content of a signal is
typically time-varying hence it is natural to model audio with a process with a
time varying power spectral density on a time frequency plane [10, 14, 4].

In the sequel, we introduce an alternative model that is useful for modelling a
random walk on variances. The main idea is to introduce auxiliary variables such
that full conditional distributions and sufficient statistics are readily available as
closed form expressions. This allows straightforward implementation of a Gibbs
sampler or a variational algorithm. Consequently we extend the model to 2-D
random fields, which is useful for modelling nonstationary time-frequency energy
distributions or intensity functions that need to be strictly positive. We illustrate
our approach on various denoising and source separation scenarios.

2 Model
The inverse Gamma distribution with shape parameter a and scale parameter
z is defined as

IG(v; a, z) ≡ exp((a + 1) log v−1 − z−1v−1 + a log z−1 − log Γ (a))
3 Here, and elsewhere the notation 〈f(x)〉p(x) will denote the expectation of the func-

tion f(x) under the distribution p(x), i.e. 〈f(x)〉p ≡
R

dxf(x)p(x).



Here, Γ is the gamma (generalised factorial) function. The sufficient statistics of
the inverse-Gamma distribution are given by

〈
v−1

〉
IG = az and

〈
log v−1

〉
IG =

Ψ(a)−log z−1 where Ψ is the digamma function defined as Ψ(a) ≡ d log Γ (a)/da.
The inverse gamma distribution is the conjugate prior for the variance v of a
Gaussian distributionN (s; µ, v) ≡ exp

(−(s− µ)2v−1/2 + log v−1/2− log(2π)/2
)
.

When the prior p(v) is inverse Gamma, the posterior distribution p(v|s) can be
represented as an inverse Gamma distribution since the logarithm of a Gaussian
is a polynomial in v−1 and log v−1. Similarly, the Gamma distribution with shape
parameter a and scale parameter z is defined as

G(λ; a, z) ≡ exp((a− 1) log λ− z−1λ + a log z−1 − log Γ (a))

The sufficient statistics of the Gamma distribution are given by 〈λ〉G = az and
〈log λ〉G = Ψ(a) − log z−1. Gamma distribution is the conjugate prior for the
precision parameter (inverse variance) of a Gaussian distribution as well as for
the intensity parameter λ of a Poisson distribution

c ∼ PO(c; λ) ≡ e−λλc/c! = exp (c log λ− λ− log Γ (c + 1))

We will exploit this property to estimate intensity functions of non-homogeneous
Poisson processes.

2.1 Markov Chain Models

It is possible to define a Markov chain on inverse Gamma random variables
in a straightforward way by vk|vk−1 ∼ IG(vk; a, vk−1/a). The full conditional
distribution p(vk|vk−1, vk+1) is conjugate, i.e. it is also inverse Gamma. However,
by this construction it is not possible to attain positive correlation between vk

and vk−1. Positive correlations can be obtained by conditioning on the reciprocal
of vk−1 and defining p(vk|vk−1) = IG(vk; a, (vk−1a)−1); however in this case the
full conditional distribution p(vk|vk−1, vk+1) becomes non-conjugate since it has
vk, 1/vk and log vk terms. The basic idea is to introduce latent auxiliary variables
zk between vk and vk−1 such that when zk are integrated out we restore positive
correlation between vk and vk−1 while retaining conjugacy. We define an Inverse
Gamma-Markov chain (IGMC) for k = 1 . . .K as follows

z1 ∼ IG(z1; az, bz/az) vk|zk ∼ IG(vk; a, zk/a) zk+1|vk ∼ IG(zk+1; az, vk/az)

Here, zk are auxiliary variables that ensure the full conditionals

p(vk|zk, zk+1) ∝ exp
(
(a + az − 1) log v−1

k − (az−1
k + azz

−1
k+1)v

−1
k

)
(2)

and p(zk|vk, vk−1) are inverse Gamma. By integrating out over the auxiliary
variable zk we obtain the effective transition kernel of the Markov chain, where
it can be easily shown that

p(vk|vk−1) =
∫

dzkp(vk|zk)p(zk|vk−1) =
∫

dzkIG(vk; a, zk/a)IG(zk; az, vk−1/az)

=
Γ (a + az)
Γ (az)Γ (a)

(azv
−1
k−1)

az (av−1
k )a

(azv
−1
k−1 + av−1

k )(az+a)
v−1

k (3)



This distribution, which in our knowledge does not have a designated name, is
a scale mixture of inverse Gamma distributions where the scaling function is
also inverse Gamma. The transition kernel p(vk|vk−1) has positive correlation
for various shape parameters az and a. The absolute value of az and a control
the strength of the correlation and the ratio az/a controls the skewness. For
az/a < 1 ( az/a > 1), the probability mass is shifted towards the interval
vk < vk−1 ( vk > vk−1) hence, typical trajectories from a IGMC will exhibit
a systematic negative (positive) drift. Using an exactly analogous construction,
we define a Gamma-Markov chain (GMC) as z1 ∼ G(z1; az, (bzaz)−1), λk|zk ∼
G(λk; aλ, (zkaλ)−1), zk+1|λk ∼ G(zk+1; az, (λkaz)−1). The effective transition
kernel has a very similar expression as in Eq.3.

Example 1, Nonstationary Gaussian Process: We define a non-station-
ary Gaussian process {yk}k=1,2,... by drawing the variances {vk}k=1,2,... from an
IGMC and drawing yk|vk ∼ N (yk; 0, vk) In Figure 1(a)-top, we show a realisa-
tion of v1:K from the IGMC, labelled as “true” and generate y1:K conditionally
Figure 1(a)-bottom. Given a realisation y1:K , we can estimated the posterior
variance 〈vk|y1:K〉. In this case, inference is carried out with variational Bayes
as will be detailed in section 3.

Example 2, Nonhomogeneous Poisson Process: We partition an in-
terval I on the real line into small disjoint regions Rk of area L such that
I = ∪K

k=1Rk. We assume that the unknown intensity function of the process
is piecewise constant and has the value λk on region Rk. The intensity func-
tion {λk}k=1,2,... is drawn according to a GMC. The number points in Rk,
given the intensity function, is denoted by the Poisson random variable ck|λk ∼
PO(ck; λkL) To generate a realisation from the Poisson process, we can uni-
formly draw ck points in each region Rk. In Figure 1(b), we show a realisation
from the model. Given the number of events in each region Rk, we can estimate
the value of the intensity function on Rk by calculating 〈λk|c1:K〉.
2.2 (Inverse) Gamma Markov Random Fields – (I)GMRF

We have defined the IGMC and GMC in the previous section using conditional
distributions. An alternative but equivalent factorisation, that encodes the same
distribution but corresponds to

p(z,v) ∝ ψ(b−1
z , azz

−1
1 )

∏

k

φ(v−1
k ; a + az)φ(z−1

k ; a + az)ψ(az−1
k , v−1

k )ψ(azv
−1
k , z−1

k+1)

where we specify singleton potentials φ and pairwise potentials ψ as

φ(ξ; α) = exp((α + 1) log ξ) ψ(ξ, η) = exp(−ξη)

Generalising this to a general undirected graph with vertex set V and undirected
edge set E , we define an IGMRF on ξ = {ξi}i∈V by a set of connection weights
a = {ai,j}(i,j)∈E for i, j ∈ V and i 6= j

p(ξ;a) =
1

Za

∏

i∈V
φ(ξ−1

i ;
∑

j

ai,j)
∏

(i,j)∈E
ψ(ξ−1

i , (ai,j/2)ξ−1
j ) ≡ 1

Za
p∗a(ξ) (4)
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Fig. 1. Synthetic examples generated from the model. The thick line shows the result of
the variational inference(a) Non-stationary Gaussian Process. (a-Top) a typical draw of
v1:K from the IGMC bz = 1, a = az = 100. (a-Bottom) Draw from the Gaussian process
y1:K given v1:K . (b) Non-homogeneous Poisson Process. (b-Top) a typical draw from
the GMC with bz = 10, a = az = 100 and frame length µ(Rk) = L = 0.001. (b-Bottom)
Number of events in each Rk.

where φ and ψ are defined above. A GMRF is defined similarly by the potentials
φ(ξi;

∑
j ai,j) and ψ(ξi, (ai,j/2)ξj) but with φ(ξ;α) = exp((α− 1) log ξ).

3 Inference

Exact inference in random fields is in general intractable and various numeri-
cal methods have been developed, based on sampling (Monte Carlo-stochastic)
or analytic approximation (Variational-deterministic). Here, we focus on a par-
ticularly simple variational algorithm (mean field - variational Bayes [1, 13]) –
but application of Monte Carlo methods, such as the Gibbs sampler [7] is algo-
rithmically very similar[2]. Variational methods have been applied extensively,
notably in machine learning for inference in large models. While lacking the-
oretical guarantees of Monte Carlo approaches, variational methods have been
viable alternatives in several practical situations where only a fixed amount of
CPU budget is available.

The main idea in variational Bayes is to approximate a target distribution
P ≡ p∗(ξ)/Z (such as the IGMRF defined in Eq.(4)) with a simple distribution
Q. The variational distribution Q is chosen such that its expectations can be
obtained easily, preferably in closed form. One such distribution is a factorised
one Q(ξ) =

∏
i∈V Qi(ξi). An intuitive interpretation of mean field method is

minimising the KL divergence with respect to (the parameters of) Q where
KL(Q||P) = 〈logQ〉Q − 〈log p∗/Za〉Q. Using non-negativity of KL, one can ob-
tain a lower bound on log-normalisation constant

log Za ≥ 〈log p∗〉Q − 〈logQ〉Q (5)

The maximisation of this lower bound is equivalent to finding the “nearest” Q
to P in terms of KL divergence. Whilst the solution is in general not available in
closed form, it can be easily shown, e.g. see [13], that each factorQi of the optimal



(a) (b) (c) (d)

Fig. 2. Various IGMRF topologies as priors for time frequency energy distributions.
White nodes (placed always on a rectangular grid) correspond to vν,τ where the ver-
tical and horizontal axis corresponds to the frequency band index ν and time index
τ respectively. Gray nodes correspond to the auxiliary variables z. (a)-(d) vertical,

horizontal, band, grid.

approximating distribution should satisfy the following fixed point equation

Qi ∝ exp
(
〈log p∗〉Q−i

)
(6)

where Q−i ≡ Q/Qi, that is the joint distribution of all factors excluding Qi.
Hence, the mean field approach leads to a set of (deterministic) fixed point
equations that need to be iterated until convergence. For a MRF, this fixed
point expression is efficient to evaluate since it depends only on the neighbouring
variables j ∈ N (i). Finally, for conjugate models the factors are available in
closed form; for example IGMRF leads to the factors Q(t)

i (ξi) = IG(ξi; α
(t)
i , β

(t)
i )

with

α
(t)
i = θα,i +

∑

j∈N (i)

ai,j β−1
i

(t)
= θβ,i +

∑

j∈N (i)

ai,j

〈
ξ−1
j

〉
Q(t−1)

j

Here, θα,i and θβ,i denote the data contributions when a IGMRF is used as a
prior where some of the ξ are observed via a conjugate observation model. For
example, in the conditionally Gaussian observation model of section 2 we have
θα,i = 1/2 and θβ,i = y2

i /2. Similarly, the Poisson model with a GMRF prior
has θα,i = ci and θβ,i = L.

3.1 Simulation Experiments

In Figure 1, we show the results of variational inference for two synthetic exam-
ples. In the following, we will illustrate the IGMRF model used as a prior for
time-frequency energy distributions of nonstationary sources.

Linear time-frequency representations decompose a signal y(t) as a linear
decomposition of form y(t) =

∑
(ν,τ) s(ν,τ)fν,τ (t) where s(ν,τ) is the expansion

coefficient corresponding to the basis function fν,τ (t). Somewhat succinctly we
can write y = F s, where the collection of basis functions is denoted by a matrix
F where each column corresponds to a particular fν,τ . The well known Gabor
representation or modified cosine transform (MDCT) have this form and can be
computed using fast transforms where τ corresponds to time and ν corresponds
to frequency. In the sequel, we will impose a conditionally Gaussian prior on
transform coefficients N (s(ν,τ); 0, v(ν,τ)) where the covariance structure will be
drawn from a IGMRF.



Denoising: In the first experiment, we illustrate the denoising performance
of 4 MRF topologies on a set of 5 audio clips (speech, piano, guitar, perc1,
perc2) in 3 different noise conditions low, medium, high. We transform each
clip via MDCT to strue

(ν,τ) and add independent white Gaussian noise with vari-
ance r ∼ IG(r; ar, br) to obtain x(ν,τ). Note that since MDCT is an orthonormal
linear transform, we could have added noise in time domain and the noise charac-
teristics would have remained unaltered. As inference engine, we use variational
Bayes. The task of the inference algorithm is to infer the latent source coefficients
s(ν,τ) by integrating out the noise variance r and the IGMRF variables ξ. The
optimisation of MRF parameters a is carried out by the Newton method where
we maximise the lower bound in Eq.5. We assume homogeneous MRF structure
where the coupling values are the same throughout the network 4. The signal to
noise ratio of reconstructions and inference results are given in Figure 3-(a). The
SNR results do not show big variations across topologies, with the grid model
consistently providing good reconstruction, especially in high and medium noise
conditions. We note that SNR may not be the best metric to measure perceptual
quality and the reader is invited to listen to the audio examples provided online
at http://www.cmpe.boun.edu.tr/∼dikmen/ICA07/. In informal subjective lis-
tening tests, we perceive a somewhat better reconstruction quality with the grid
topology.

Source Separation: In the second experiment, we illustrate the viability of
the approach on a single channel separation task with j = 1 . . . J sources. At each
time-frequency location k ≡ (ν, τ), the generative model is vj ∼ IGMRFj , sk,j ∼
N (sk; 0; vk,j), xk =

∑J
j=1 sk,j In this scenario, the reconstruction equations have

a particularly simple form. Given the variance estimate Vk,j = 〈1/vk,j〉−1 at k,
we define a positive quantity, which we shall name as responsibility also know as
filter factors, κk,j = Vk,j/(

∑
j′ Vk,j′), where by construction 0 < κj for all j and∑

j κj ≤ 1. It turns out that the sufficient statistics can be compactly written as

〈sk,j〉 = κk,jxk

〈
s2

k,j

〉
= Vk,j(1− κk,j) + κ2

k,jx
2
k

We illustrate this approach to separate a piano sound into its constituent com-
ponents. We assume that J = 2 components are generated independently by two
IGMRF models with vertical and horizontal topology. In figure 3-(b), we observe
that the model is able to separate transients and harmonic components.

3.2 Discussion

We have introduced a conjugate gamma Markov random field model for mod-
elling nonstationary sources. The conjugacy makes it possible to design fast infer-
ence algorithms in a straightforward way. The simple MRF topologies considered
here are quite generic, yet provide good results without any hand tuned parame-
ters. One can envision more structured models with a larger set of parameters to

4 In (a) (vertical), each white node is connected to two gray nodes with anorth

or asouth and in (b) (horizontal) with awest or aeast. The grid topology (d) has
couplings in four directions and in (c) (band), we use a single a.
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Fig. 3. (a) Signal-to-Noise ratio results for reconstructions obtained from the audio
clips in low, medium,high noise conditions. (b) Single channel Source Separation ex-
ample, left to right, log-MDCT coefficients of the original signal and reconstruction
with horizontal and vertical IGMRF models.

capture physical reality, certainly for acoustical signals. We are currently inves-
tigating further applications such as restoration, transcription or tracking time
varying intensity functions.

References

1. H. Attias. Independent factor analysis. Neural Computation, 11(4):803–851, 1999.
2. A. T. Cemgil, C. Fevotte, and S. J. Godsill. Variational and Stochastic Inference

for Bayesian Source Separation. Digital Signal Processing, in Print, 2007.
3. A. Cichocki and S. I. Amari. Adaptive Blind Signal and Image Processing: Learning

Algorithms and Applications. Wiley, revised version edition, April 2003.
4. C. Févotte, L. Daudet, S. J. Godsill, and B. Torrésani. Sparse regression with

structured priors: Application to audio denoising. In Proc. ICASSP, Toulouse,
France, May 2006.

5. Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analy-
sis. John Wiley & Sons, New York, NY, 2001.

6. K. H. Knuth. Bayesian source separation and localization. In SPIE’98: Bayesian
Inference for Inverse Problems, pages 147–158, San diego, Jul. 1998.

7. J. S. Liu. Monte Carlo strategies in scientific computing. Springer, 2004.
8. D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, 2003.
9. J. Miskin and D. Mackay. Ensemble learning for blind source separation. In S. J.

Roberts and R. M. Everson, editors, Independent Component Analysis, pages 209–
233. Cambridge University Press, 2001.

10. M. Reyes-Gomez, N. Jojic, and D. Ellis. Deformable spectrograms. In AI and
Statistics Conference, Barbados, 2005.

11. D. B. Rowe. A Bayesian approach to blind source separation. Journal of Interdis-
ciplinary Mathematics, 5(1):49–76, 2002.

12. N. Shepard, editor. Stochastic Volatility, Selected Readings. Oxford University
Press, 2005.

13. M. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Technical Report 649, Department of Statistics, UC Berkeley,
September 2003.

14. P. J. Wolfe, S. J. Godsill, and W.J. Ng. Bayesian variable selection and regularisa-
tion for time-frequency surface estimation. Journal of the Royal Statistical Society,
2004.

15. R. L. Wolpert and K. Ickstadt. Poisson/gamma random field models for spatial
statistics. Biometrica, 1998.


