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http://www-sigproc.eng.cam.ac.uk/ ˜ atc27/papers/cemgil-bu-pres.pdf

Cemgil Introduction to Numerical Bayesian Methods. 7-8 Eylül 2006, İstanbul, Türkiye 1



Outline, Day 1

• Introduction, Bayes’ Theorem,

• Probability models, Bayesian Networks and Factor graphs

• Applications

• Deterministic Inference Techniques

– Variational Methods: Variational Bayes, EM, ICM

• Stochastic (Sampling Based) Methods

– Markov Chain Monte Carlo (MCMC)
∗ Gibbs Sampler
∗ Simulated Annealing
∗ Iterative Improvement
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Outline, Day 2

• Time Series models

– Hidden Markov Models, Kalman Filter Models
– Switching State Space models, Changepoint models
– Nonlinear Dynamical Systems

• Applications

• Exact inference in time series models

– Filtering
– Smoothing

• Online Approximate Inference

– Importance Sampling
– Sequential Monte Carlo, Particle Filtering

• Yetsin artık bu kadar
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Bayes’ Theorem [4, 6]

Thomas Bayes (1702-1761)

What you know about a parameter θ after the data D arrive is
what you knew before about θ and what the data D told you.

p(θ|D) =
p(D|θ)p(θ)

p(D)

Posterior =
Likelihood× Prior

Evidence
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Bayes’ Theorem

• This rather simple looking formula has surprisingly many applications

p(θ|D) =
p(D|θ)p(θ)

p(D)

– Medical Diagnosis (Symptoms/Diseases)
– Computer Vision (Pixels/Object)
– Speech Recognition (Signal/Phoneme)
– Music Transcription (Audio/Score)
– Robotics/Navigation (Sensor Reading/Position)
– Finance (Past Price/Future Price)
– . . .
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An application of Bayes’ Theorem: “Parameter Estimation”

Given two fair dice with outcomes λ and y,

D = λ + y

What is λ when D = 9 ?
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An application of Bayes’ Theorem: “Parameter Estimation”

D = λ + y = 9

D = λ + y y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 2 3 4 5 6 7
λ = 2 3 4 5 6 7 8
λ = 3 4 5 6 7 8 9
λ = 4 5 6 7 8 9 10
λ = 5 6 7 8 9 10 11
λ = 6 7 8 9 10 11 12

Bayes theorem “upgrades” p(λ) into p(λ|D).

But you have to provide an observation model: p(D|λ)
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An application of Bayes’ Theorem: “Parameter Estimation”

Formally we write

p(λ) = C(λ; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(y) = C(y; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(D|λ, y) = δ(D − (λ + y))

p(λ|D) =
1

p(D)
× p(D|λ, y)× p(y)p(λ)

=
1

Evidence
× Likelihood× Prior

Kronecker delta function denoting a degenerate (deterministic) distribution δ(x) =

�
1 x = 0
0 x 6= 0
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Prior

p(y)p(λ)

p(y)× p(λ) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 1/36 1/36 1/36 1/36 1/36 1/36
λ = 2 1/36 1/36 1/36 1/36 1/36 1/36
λ = 3 1/36 1/36 1/36 1/36 1/36 1/36
λ = 4 1/36 1/36 1/36 1/36 1/36 1/36
λ = 5 1/36 1/36 1/36 1/36 1/36 1/36
λ = 6 1/36 1/36 1/36 1/36 1/36 1/36
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Likelihood

p(D = 9|λ, y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1

λ = 4 0 0 0 0 1 0
λ = 5 0 0 0 1 0 0
λ = 6 0 0 1 0 0 0
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Likelihood × Prior

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1/36

λ = 4 0 0 0 0 1/36 0
λ = 5 0 0 0 1/36 0 0
λ = 6 0 0 1/36 0 0 0
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Posterior

p(λ, y|D = 9) =
1

p(D)
p(D = 9|λ, y)p(λ)p(y)

p(D = 9|λ, y) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0
λ = 3 0 0 0 0 0 1/4
λ = 4 0 0 0 0 1/4 0
λ = 5 0 0 0 1/4 0 0
λ = 6 0 0 1/4 0 0 0

p(D = 9) =

X

λ,y

p(D = 9|λ, y)p(λ)p(y) = 0 + 0 + · · ·+ 1/36 + 1/36 + 1/36 + 1/36 + 0 + · · ·+ 0 = 1/9

1/4 = (1/36)/(1/9)
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Marginal Posterior

p(λ|D) =
∑

y

1

p(D)
p(D|λ, y)p(λ)p(y)

p(λ|D = 9) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0 0
λ = 3 1/4 0 0 0 0 0 1/4
λ = 4 1/4 0 0 0 0 1/4 0
λ = 5 1/4 0 0 0 1/4 0 0
λ = 6 1/4 0 0 1/4 0 0 0
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The “proportional to” notation

p(λ|D) ∝
∑

y

p(D|λ, y)p(λ)p(y)

p(λ|D = 9) y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 0 0 0 0 0 0 0
λ = 2 0 0 0 0 0 0 0
λ = 3 1/36 0 0 0 0 0 1/36

λ = 4 1/36 0 0 0 0 1/36 0
λ = 5 1/36 0 0 0 1/36 0 0
λ = 6 1/36 0 0 1/36 0 0 0
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Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes λ1, λ2, . . . , λn,

D =
n∑

i=1

λi

How many dice are there when D = 9 ?

Assume that any number n is equally likely
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Another application of Bayes’ Theorem: “Model Selection”

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(n|D = 9) =
p(D = 9|n)p(n)

p(D)
∝ p(D = 9|n)

p(D|n = 1) =
∑

λ1

p(D|λ1)p(λ1)

p(D|n = 2) =
∑

λ1

∑

λ2

p(D|λ1, λ2)p(λ1)p(λ2)

. . .

p(D|n = n′) =
∑

λ1,...,λn′

p(D|λ1, . . . , λn′)

n′∏

i=1

p(λi)
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p(D|n) =
∑

λ
p(D|λ, n)p(λ|n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

p(
D

|n
=

1)

D

0

0.2

p(
D

|n
=

2)

0

0.2

p(
D

|n
=

3)

0

0.2

p(
D

|n
=

4)
0

0.2

p(
D

|n
=

5)
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Another application of Bayes’ Theorem: “Model Selection”

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

n = Number of Dice

p(
n|

D
 =

 9
)

• Complex models are more flexible but they spread their probability mass

• Bayesian inference inherently prefers “simpler models” – Occam’s razor

• Computational burden: We need to sum over all parameters λ
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Tutorial’ımız Bitmiştir, İlginize teşekkürler
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Probability Models

+

Inference Algorithms

=

Bayesian Numerical Methods
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Formal Languages for specification of Probability Models an d
Inference Algorithms

• Directed Graphical Models, Directed Acyclic Graphs (DAG), Bayesian
Networks

• Undirected Graphs, Markov Networks, Random Fields

• Factor Graphs
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Conditional Independence
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Discrete conditional probability tables

• Assume all xi are discrete with |xi| = k. If N is large, a naive table
representation is HUGE: kN entries

Example: p(x1, x2, x3) with |xi| = 4

Each cell is a positive number s.t.
∑

x1,x2,x3
p(x1, x2, x3) = 1
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Independence Assumption == Complete Factorization

• Assume p(x1, x2, . . . , xN) =
∏

k p(xk).

p(x1) × p(x2) × p(x3) = p(x1, x2, x3)

We need to store 4× 3 numbers instead of 43 !

• However, complete independence may be too restrictive.
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An alternative Factorization

p(x1, x2) × p(x3) = p(x1, x2, x3)

• We need to store 42 + 4 numbers instead of 43.

• Still some variables are independent from rest. It is possible to introduce
conditional independence relations to design “richer” distributions.
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Conditional Independence

• Two sets of variables A and B are conditionally independent given a third set
C if

p(A,B|C) = p(A|C)p(B|C)

• This is equivalent to

p(A|BC) = p(A|C)
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Exercise

x2 = 1 x2 = 2
x1 = 1 0.6 0.1
x1 = 2 0.2 0.1

1. Find the following quantities

• Marginals: p(x1), p(x2)
• Conditionals: p(x1|x2), p(x2|x1)
• Posterior: p(x1, x2 = 2), p(x1|x2 = 2)
• Evidence p(x2 = 2)
• p({})

2. Are x1 and x2 independent ? If not, construct a new probability table where x1

and x2 are independent but still have the same marginals.

3. Construct a new probability table p(x1, x3) such that p(x2, x3|x1) =
p(x2|x1)p(x3|x1) but p(x3) = [0.5 0.5]. Do you have any freedom in choosing
the new table ?
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DAG Example: Two dice

Given two fair dice with outcomes λ and y where D = λ + y...

p(λ) p(y)

λ y

D

p(D|λ, y)

p(D, λ, y) = p(D|λ, y)p(λ)p(y)
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DAG with observations

Given two fair dice with outcomes λ and y when D = λ + y = 9

p(λ) p(y)

λ y

D

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y)
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Directed Graphical models

• Each random variable is associated with a node in the graph,

• We draw an arrow from xj → xi each parent node xj ∈ parent(xi),

p(x1, . . . , xN) =

N∏

i=1

p(xi|parent(xi))

• Every joint probability distribution over finite number of variables can be written
in this form, but this is not necessarily the minimal representation,

• Describes in a compact way how data is “generated”,

• Technically, missing links denote conditional independence relations between
variables. This turns out to be very important in developing efficient inference
algorithms.
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Graphical Models

• Graphical models represent joint distributions compactly using a set of local
variables

• Each variable corresponds to a node in the graph

• The edges tell us qualitatively about the factorization of the joint probability

• There are functions at the nodes that tell us the quantitative details of the
factors
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Directed Graphical Models

• Consider directed acyclic graphs over N variables

• Each node xi has a (possibly empty) set of parents denoted by pa(xi)

• Each node has a function p(xi|pa(xi)).

• The joint probability is given by

p(x1, x2, . . . , xN) =
∏

i

p(xi|pa(xi))

• Factorization in terms of local functions
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Examples

p(x1) × p(x2|x1) × p(x3|x1) = p(x1, x2, x3)

x1 x2 x3
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Examples

Model Structure factorization

Full x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

Markov(2) x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x2, x3)

Markov(1) x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

x1 x2 x3 x4 p(x1)p(x2|x1)p(x3|x1)p(x4)

Factorized x1 x2 x3 x4 p(x1)p(x2)p(x3)p(x4)

Removing edges eliminates a term from the conditional probability factors.
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Examples

Dataset (From Sayood): All four letter English words (2149) of a Sun-Sparc spell
checker.
(abbe, abed, abel, abet, able, ... zion, zone, zoom, zorn)

Model Structure Random Samples

Full x1 x2 x3 x4 tabu, else, duly, crib, bohr, seal, tome, free, bern

Markov(1) x1 x2 x3 x4 miro , jaid, saun, trol, bale, liro, pibo, brox, heth

Factorized x1 x2 x3 x4 yiij, ekmy, vguo, addn, ecmi, miui, bhin, hnri, roia, azfa
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Estimated model p(xk|xk−1) for the four letter words dataset

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S TUV W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P QR S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M NO P Q R S T U V W X Y Z

A B C DE F G H I J K L M N O P Q R S T U V W X Y Z
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Factor graphs
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Factor graph for two dice example [5]

p(λ) p(y)

λ y

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y) = φ1(λ, y)φ2(λ)φ3(y)

• A bipartite graph. A powerful graphical representation of the inference problem
– Factor nodes : Black squares. Factor potentials (local functions) defining the posterior.
– Variable nodes : White Circles.
– Edges : denote membership. A variable is connected to a factor if it is an argument of the

local function.
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Exercise

• For the following Graphical models, write down the factors of the joint
distribution and plot the corresponding factor graphs.

Full x1 x2 x3 x4 Markov(1) x1 x2 x3 x4

HMM

h1 h2 h3 h4x1 x2 x3 x4 MIX

hx1 x2 x3 x4

IFA

h1 h2x1 x2 x3 x4 Factorized x1 x2 x3 x4
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Example: AR(1) model

xk = Axk−1 + ǫk k = 1 . . .K

ǫk is i.i.d., zero mean and normal with variance R.

Estimation problem :

Given x0, . . . , xK, determine coefficient A and variance R (both scalars).

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5
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AR(1) model, Generative Model notation

A ∼ N (A; 0, P )

R ∼ IG(R; ν, β/ν)

xk|xk−1, A, R ∼ N (xk; Axk−1, R) x0 = x̂0

A R

x0 x1 . . . xk−1 xk . . . xK

Gaussian : N (x; µ, V ) ≡ |2πV |−
1
2 exp(−1

2(x− µ)2/V )

Inverse-Gamma distribution: IG(x; a, b) ≡ Γ(a)−1b−ax−(a+1) exp(−1/(bx)) x ≥ 0

Observed variables are shown with double circles
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AR(1) Model. Bayesian Posterior Inference

p(A, R|x0, x1, . . . , xK) ∝ p(x1, . . . , xK|x0, A, R)p(A,R)

Posterior ∝ Likelihood× Prior

Using the Markovian (conditional independence) structure we have

p(A, R|x0, x1, . . . , xK) ∝

(
K∏

k=1

p(xk|xk−1, A,R)

)

p(A)p(R)

A R

x0 x1 . . . xk−1 xk . . . xK
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Numerical Example

Suppose K = 1,

A R

x0 x1

A R

x0 x1

By Bayes’ Theorem and the structure of AR(1) model

p(A, R|x0, x1) ∝ p(x1|x0, A, R)p(A)p(R)

= N (x1; Ax0, R)N (A; 0, P )IG(R; ν, β/ν)
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Numerical Example, the prior p(A,R)

Equiprobability contour of p(A)p(R)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

A ∼ N (A; 0, 1.2) R ∼ IG(R; 0.4, 250)

Suppose: x0 = 1 x1 = −6 x1 ∼ N (x1; Ax0, R)
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Numerical Example, the posterior p(A,R|x)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

Note the bimodal posterior with x0 = 1, x1 = −6

• A ≈ −6⇔ low noise variance R.
• A ≈ 0⇔ high noise variance R.
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Remarks

• The maximum likelihood solution (or any other point estimate) is not always
representative about the solution

• (Unfortunately), exact posterior inference is only possible for few special cases

• Even very simple models can lead easily to complicated posterior distributions

• A-priori independent variables often become dependent a-posteriori (“Explaining
away”)

• Ambiguous data usually leads to a multimodal posterior, each mode
corresponding to one possible explanation

• The complexity of an inference problem depends, among others, upon the
particular “parameter regime” and observed data sequence
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Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

〈f(x)〉 =

∫

X

dxp(x)f(x)

• modes of functions under probability distributions: Optimization

x∗ = argmax
x∈X

p(x)f(x)

• any “mix” of the above: e.g.,

x∗ = argmax
x∈X

p(x) = argmax
x∈X

∫

Z

dzp(z)p(x|z)
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Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

• What to solve : Model Construction

– Both an Art and Science
– Highly domain specific

• How to solve : Inference Algorithm

– (In principle) Mechanical
– Generic

“An approximate solution of the exact problem is often more useful than the exact
solution of an approximate problem”,

J. W. Tukey (1915-2000).
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Attributes of Probabilistic Inference

• Exact↔ Approximate

• Deterministic ↔ Stochastic

• Online ↔ Offline

• Centralized ↔ Distributed

This talk focuses on the bold ones
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Deterministic Inference

Mean Field – Variational Bayes
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Toy Model : “One sample source separation (OSSS)”

s1

p(s1)

s2

p(s2)

x

p(x|s1, s2)

This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)

s1 ∼ p(s1) = N (s1; µ1, P1)

s2 ∼ p(s2) = N (s2; µ2, P2)

x|s1, s2 ∼ p(x|s1, s2) = N (x; s1 + s2, R)
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The Gaussian Distribution

µ is the mean and P is the covariance:

N (s; µ, P ) = |2πP |−1/2 exp

(

−
1

2
(s− µ)TP−1(s− µ)

)

= exp

(

−
1

2
sTP−1s + µTP−1s−

1

2
µTP−1µ−

1

2
|2πP |

)

logN (s; µ, P ) = −
1

2
sTP−1s + µTP−1s + const

= −
1

2
TrP−1ssT + µTP−1s + const

=+ −
1

2
TrP−1ssT + µTP−1s

Notation: log f(x) =+ g(x)⇐⇒ f(x) ∝ exp(g(x)) ⇐⇒ ∃c ∈ R : f(x) = c exp(g(x))
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OSSS example

Suppose, we observe x = x̂.

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

• By Bayes’ theorem, the posterior is given by:

P ≡ p(s1, s2|x = x̂) =
1

Zx̂
p(x = x̂|s1, s2)p(s1)p(s2) ≡

1

Zx̂
φ(s1, s2)

• The function φ(s1, s2) is proportional to the exact posterior. (Zx̂ ≡ p(x = x̂))
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OSSS example, cont.

log p(s1) = µT
1 P−1

1 s1 −
1

2
sT
1 P−1

1 s1 + const

log p(s2) = µT
2 P−1

2 s2 −
1

2
sT
2 P−1

2 s2 + const

log p(x|s1, s2) = x̂TR−1(s1 + s2)−
1

2
(s1 + s2)

TR−1(s1 + s2) + const

log φ(s1, s2) = log p(x = x̂|s1, s2) + log p(s1) + log p(s2)

=+
(
µT

1 P−1
1 + x̂TR−1

)
s1 +

(
µT

2 P−1
2 + x̂TR−1

)
s2

−
1

2
Tr
(
P−1

1 + R−1
)
s1s

T
1 − sT

1 R−1s2
︸ ︷︷ ︸

(∗)

−
1

2
Tr
(
P−1

2 + R−1
)
s2s

T
2

• The (*) term is the cross correlation term that makes s1 and s2 a-posteriori
dependent.
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OSSS example, cont.

Completing the square

log φ(s1, s2) =+

(
P−1

1 µ1 + R−1x̂
P−1

2 µ2 + R−1x̂

)⊤(
s1

s2

)

−
1

2

(
s1

s2

)⊤(
P−1

1 + R−1 R−1

R−1 P−1
2 + R−1

)(
s1

s2

)

Remember: logN (s; m, Σ) =+ (Σ
−1

m)
⊤
s−

1

2
s
⊤
Σ
−1

s

Σ =

�

P−1
1 + R−1 R−1

R−1 P−1
2 + R−1

�−1

m = Σ

�
P−1

1 µ1 + R−1x̂

P−1
2 µ2 + R−1x̂

�
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution Q.

P =
1

Zx
p(x = x̂|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

q(s1) = N (s1; m1, S1) q(s2) = N (s2;m2, S2)

A “measure of fit” between distributions is the KL divergence
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Kullback-Leibler (KL) Divergence

• A “quasi-distance” between two distributions P = p(x) and Q = q(x).

KL(P||Q) ≡

∫

X

dxp(x) log
p(x)

q(x)
= 〈logP〉P − 〈logQ〉P

• Unlike a metric, (in general) it is not symmetric,

KL(P||Q) 6= KL(Q||P)

• But it is non-negative (by Jensen’s Inequality)

KL(P||Q) = −

∫

X

dxp(x) log
q(x)

p(x)

≥ − log

∫

X

dxp(x)
q(x)

p(x)
= − log

∫

X

dxq(x) = − log 1 = 0

Cemgil Introduction to Numerical Bayesian Methods. 7-8 Eylül 2006, İstanbul, Türkiye 57



OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

q(s1) = N (s1; m1, S1) q(s2) = N (s2;m2, S2)

The mi and Sj are the variational parameters to be optimized to minimize

KL(Q||P) = 〈logQ〉Q −

〈

log
1

Zx
φ(s1, s2)

︸ ︷︷ ︸
=P

〉

Q

(1)
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The form of the mean field solution

0 ≤ 〈log q(s1)q(s2)〉q(s1)q(s2)
+ log Zx − 〈log φ(s1, s2)〉q(s1)q(s2)

log Zx ≥ 〈log φ(s1, s2)〉q(s1)q(s2)
− 〈log q(s1)q(s2)〉q(s1)q(s2)

≡ −F (p; q) + H(q) (2)

Here, F is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence ≥ −Energy + Entropy

Note r.h.s. is a lower bound [7]. The mean field equations monotonically
increase this bound. Good for assessing convergence and debugging computer
code.
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Details of derivation

• Define the Lagrangian

Λ =
Z

ds1q(s1) log q(s1) +

Z

ds2q(s2) log q(s2) + log Zx −

Z

ds1ds2q(s1)q(s2) log φ(s1, s2)

+λ1(1−

Z
ds1q(s1)) + λ2(1−

Z

ds2q(s2)) (3)

• Calculate the functional derivatives w.r.t. q(s1) and set to zero

δ

δq(s1)
Λ = log q(s1) + 1− 〈log φ(s1, s2)〉q(s2) − λ1

• Solve for q(s1),

log q(s1) = λ1 − 1 + 〈log φ(s1, s2)〉q(s2)

q(s1) = exp(λ1 − 1) exp(〈log φ(s1, s2)〉q(s2)) (4)

• Use the fact that

1 =

Z

ds1q(s1) = exp(λ1 − 1)
Z

ds1 exp(〈log φ(s1, s2)〉q(s2))

λ1 = 1− log

Z

ds1 exp(〈log φ(s1, s2)〉q(s2))
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The form of the solution

• No direct analytical solution

• We obtain fixed point equations in closed form

q(s1) ∝ exp(〈log φ(s1, s2)〉q(s2)
)

q(s2) ∝ exp(〈log φ(s1, s2)〉q(s1)
)

Note the nice symmetry
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OSSS: Factor Graph

p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

• A graphical representation of the inference problem

– Factor nodes : Black squares. Factor potentials (local functions) defining
the posterior P.

– Variable nodes : Circles. Think of them as “factors” of the approximating
distribution Q. (Caution – non standard interpretation!)

– Edges : denote membership. A variable is connected to a factor if it is a
variable of the local function.
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Fixed Point Iteration for OSSS

p(s1) p(s2)

s1q(s1) s2 q(s2)

p(x = x̂|s1, s2)

log q(s1) ← log p(s1) + 〈log p(x = x̂|s1, s2)〉q(s2)

log q(s2) ← log p(s2) + 〈log p(x = x̂|s1, s2)〉q(s1)

Cemgil Introduction to Numerical Bayesian Methods. 7-8 Eylül 2006, İstanbul, Türkiye 63



Fixed Point Iteration for the Gaussian Case

log q(s1) ← −
1

2
Tr
(
P−1

1 + R−1
)
s1s
⊤
1 − s⊤1 R−1 〈s2〉q(s2)︸ ︷︷ ︸

=m2

+
(
µ⊤1 P−1

1 + x̂⊤R−1
)
s1

log q(s2) ← −〈s1〉
⊤
q(s1)︸ ︷︷ ︸

=m⊤1

R−1s2 −
1

2
Tr
(
P−1

2 + R−1
)
s2s
⊤
2 +

(
µ⊤2 P−1

2 + x̂⊤R−1
)
s2

Remember q(s) = N (s; m, S)

log q(s) =+ −
1

2
TrKss⊤ + h⊤s

⇓

S = K−1 m = K−1h
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Fixed Point Equations for the Gaussian Case

• Covariances are obtained directly

S1 =
(
P−1

1 + R−1
)−1

S2 =
(
P−1

2 + R−1
)−1

• To compute the means, we should iterate:

m1 = S1

(
P−1

1 µ1 + R−1 (x̂−m2)
)

m2 = S2

(
P−1

2 µ2 + R−1 (x̂−m1)
)

• Intuitive algorithm:

– Substract from the observation x̂ the prediction of the other factors of Q.
– Compute a fit to this residual (e.g. “fit” m2 to x̂−m1).

• Equivalent to Gauss-Seidel, an iterative method for solving linear systems of
equations.
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OSSS example, cont.

s
1

s 2

prior 

exact posterior 

factorized MF 
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Direct Link to Expectation-Maximisation (EM) [3]

Suppose we choose one of the distributions degenerate, i.e.

q̃(s2) = δ(s2 − m̃)

where m̃ corresponds to the “location parameter” of q̃(s2). We need to find the
closest degenerate distribution to the actual mean field solution q(s2), hence we
take one more KL and minimize

m̃ = argmin
ξ

KL(δ(s2 − ξ)||q(s2))

It can be shown that this leads exactly to the EM fixed point iterations.
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Iterated Conditional Modes (ICM) [1, 2]

If we choose both distributions degenerate, i.e.

q̃(s1) = δ(s1 − m̃1)

q̃(s2) = δ(s2 − m̃2)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface
φ(s1, s2).

m̃1 = argmax
s1

φ(s1, s2 = m̃2)

m̃2 = argmax
s2

φ(s1 = m̃1, s2)
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
in terms of fixed points.

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

A
R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.
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Structured Mean Field
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Main Idea

• Identify tractable substructures to construct richer approximating distributions

• Tradeoff between approximation quality and computation time

The OSSS model is too simple; a richer approximation Q(s1, s2) would be
equivalent to the exact posterior.
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Bayesian Variable Selection

C(r1; π) C(rW ; π)

r1 . . . rW

N (s1; µ(r1), Σ(r1)) s1 . . . sW N (sW ; µ(rW ), Σ(rW ))

x

N (x; Cs1:W , R)

• Generalized Linear Model – Column’s of C are the basis vectors

• The exact posterior is a mixture of 2W Gaussians

• When W is large, computation of posterior features becomes intractable.
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Generative model

ri ∼ C(ri;π)

si|ri ∼ N (si;µ(ri),Σ(ri))

x|s1:W ∼ N (x;Cs1:W , R)

C ≡ [ C1 . . . Ci . . . CW ]

r1 . . . rW

s1 . . . sW

x

p(x, s1:W , r1:W ) = p(x|s1:W , r1:W )
W∏

i=1

p(si|ri)p(ri)
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Example 1: Variable selection in Polynomial Regression

Given {tj, x(tj)}j=1...J , what is the order N of the polynomial?

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(t) =
N∑

i=0

si+1t
i + ǫ(t)
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Ex1: Regression

t =
(

t1 t2 . . . tJ
)⊤

C ≡
(

t
0

t
1 . . . t

W−1
)

ri ∼ C(ri; 0.5, 0.5) ri ∈ {on, off}

si|ri ∼ N (si; 0, Σ(ri))

x|s1:W ∼ N (x; Cs1:W , R)

Σ(ri = on)≫ Σ(ri = off)
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Ex1: Regression

To find the “active” basis functions we need to calculate

r∗1:W ≡ argmax
r1:W

p(r1:W |x) = argmax
r1:W

∫

ds1:Wp(x|s1:W )p(s1:W |r1:W )p(r1:W )

Then, the reconstruction is given by

x̂(t) =

〈
W−1∑

i=0

si+1t
i

〉

p(s1:W |x,r∗1:W )

=
W−1∑

i=0

〈si+1〉p(si+1|x,r∗
1:W

) ti
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Ex1: Regression

i

0

1

2

3

4

−10

0

10

20

30

p(
x,

 r
1:

W
)

All on Configurations All off
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Ex1: Regression

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
data
true
approx
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Factor graph

log φ(r1:W , s1:W ) =
WX
i=1

(log π(ri))

+

WX
i=1

�
−

1

2
s
⊤
i Σ(ri)

−1
si + µ(ri)

⊤
Σ(ri)

−1
si

−
1

2
µ(ri)

⊤
Σ(ri)

−1
µ(ri)−

1

2
log |2πΣ(ri)|

�

−
1

2
x
⊤R−1

x + s⊤1:W C⊤R−1
x−

1

2
s⊤1:W C⊤R−1Cs1:W −

1

2
log |2πR|

. . .

r1 . . . rW

. . .

s1 . . . sW
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Approximating Distributions

. . .

r1 . . . rW

. . .

s1 . . . sW

. . .

r1 . . . rW

. . .

s1:W

. . .

r1, s1 . . . rW , sW

Q1 =
∏W

i=1Q(si)Q(ri) Q2 = Q(s1:W )
∏W

i=1Q(ri) Q3 =
∏W

i=1Q(si, ri)
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Update Equations, Q1 =
∏W

i=1Q(si)Q(ri)

logQ(ri) =+ log π(ri)−
1

2
(〈si〉 − µ(ri))

⊤Σ(ri)
−1(〈si〉 − µ(ri))

. . .

r1 . . . rW

. . .

s1 . . . sW

logQ(si) =
+

�D

Σ(ri)
−1

µ(ri)

E
+ C

⊤
i R

−1
(x− C¬i〈s¬i〉)

�⊤
si −

1

2
s
⊤
i

�D

Σ(ri)
−1

E

+ C
⊤
i R

−1
Ci

�

si

C¬i ≡

�

C1 . . . Ci−1 Ci+1 . . . CW

�
s¬i ≡

�

s⊤1 . . . s⊤i−1 s⊤i+1 . . . s⊤W

�⊤
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Update Equations: Q2 = Q(s1:W )
∏W

i=1Q(ri)

logQ(ri) =+ log π(ri)−
1

2
(〈si〉 − µ(ri))

⊤Σ(ri)
−1(〈si〉 − µ(ri))

. . .

r1 . . . rW

. . .

s1:W

logQ(s1:W ) =+

�D

Σ(r)
−1

µ(r)

E
+ C

⊤
R
−1

x

�⊤
s1:W −

1

2
s
⊤
1:W

�D

Σ(r)
−1

E

+ C
⊤
R
−1

C

�

s1:W

Σ(r)−1 ≡

0B� Σ(r1)−1

. . .

Σ(rW )−1

1CA µ(r) ≡

0B� µ(r1)
...

µ(rW )

1CA
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Update Equations: Q3 =
∏W

i=1Q(ri, si)

Left as an exercise to the interested reader...

. . .

r1, s1 . . . rW , sW
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Convergence Issues
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OSSS example, Slow Convergence

s
1

s 2

prior 

exact posterior 

factorized MF 
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Annealing, Bridging, Relaxation, Tempering

Main idea:

• If the original target P is too complex, relax it.

• First solve a simple version Pτ1. Call the solution mτ1

• Make the problem little bit harder Pτ1 → Pτ2, and improve the solution mτ1 →
mτ2.

• While Pτ1 → Pτ2, . . . ,→ PT = P, we hope to get better and better solutions.

The sequence τ1, τ2, . . . , τT is called annealing schedule if

Pτi ∝ Pτi
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OSSS example: Annealing, Bridging, ...

• Remember the cross term (∗) of the posterior:

· · · − s⊤1 R−1s2
︸ ︷︷ ︸

(∗)

. . .

• When the noise variance is low, the coupling is strong.

• If we choose a decreasing sequence of noise covariances

Rτ1 > Rτ2 > · · · > RτT
= R

we increase correlations gradually.
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OSSS example: Annealing, Bridging, ...

s
1

s 2

prior 

exact posterior 

factorized MF 

R
1
 

R
2
 

Rτ 
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Stochastic Inference
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Deterministic versus Stochastic

Let θ denote the parameter vector of Q.

• Given the fixed point equation F and an initial parameter θ(0), the inference
algorithm is simply

θ(t+1) ← F (θ(t))

For OSSS θ = (m1,m2)
⊤ (S1, S2 were constant, so we exclude them). The update

equations were

m
(t+1)
1 ← F1(m

(t)
2 )

m
(t+1)
2 ← F2(m

(t+1)
1 )

This is a deterministic dynamical system in the parameter space.
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OSSS: Fixed Point iteration for m1

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

m
1
(t)  (Next)

m
1(t

−
1)

 (
P

re
vi

ou
s)

m
1
(t) ← f(m

1
(t−1))

m
1
(t) = m

1
(t−1)
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Stochastic Inference

Stochastic inference is similar, but everything happens directly in the configuration
space (= domain) of variables s.

• Given a transition kernel T (=a collection of probability distributions conditioned
on each s) and an initial configuration s

(0)

s
(t+1) ∼ T (s|s(t)) t = 1, . . . ,∞

• This is a stochastic dynamical system in the configuration space.

• A remarkable fact is that we can estimate any desired expectation by ergodic
averages

〈f(s)〉P ≈
1

t− t0

t∑

n=t0

f(s(n))

• Consecutive samples s
(t) are dependent but we can “pretend” as if they are

independent!
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Looking ahead...

• For OSSS, the configuration space is s = (s1, s2)
⊤.

• A possible transition kernel T is specified by

s
(t+1)
1 ∼ p(s1|s

(t)
2 , x = x̂) ∝ φ(s1, s

(t)
2 )

s
(t+1)
2 ∼ p(s2|s

(t+1)
1 , x = x̂) ∝ φ(s

(t+1)
1 , s2)

• This algorithm, that samples from above conditional marginals is a particular
instance of the Gibbs sampler .

• The desired posterior P is the stationary distribution of T (why? – later...).

• Note the algorithmic similarity to ICM. In Gibbs, we make a random move
instead of directly going to the conditional mode.
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Gibbs Sampling

s
1

s 2
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Gibbs Sampling, t = 20

s
1

s 2
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Gibbs Sampling, t = 100

s
1

s 2
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Gibbs Sampling, t = 250

s
1

s 2
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Gibbs Sampling, Slow convergence

s
1

s 2
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Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel T (s′|s) with the stationary distribution
P = φ(s)/Zx ≡ π(s) for any initial distribution r(s).

π(s) = T∞r(s) (5)

• Sample s
(0) ∼ r(s)

• For t = 1 . . .∞, Sample s
(t) ∼ T (s|s(t−1))

• Estimate any desired expectation by the average

〈f(s)〉π(s) ≈
1

t− t0

t∑

n=t0

f(s(n))

where t0 is a preset burn-in period.

But how to construct T and verify that π(s) is indeed its stationary distribution ?
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Equilibrium condition = Detailed Balance

T (s|s′)π(s′) = T (s′|s)π(s)

If detailed balance is satisfied then π(s) is a stationary distribution

π(s) =

∫

ds′T (s|s′)π(s′)

If the configuration space is discrete, we have

π(s) =
∑

s′

T (s|s′)π(s′)

π = Tπ

π has to be a (right) eigenvector of T .
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Conditions on T

• Irreducibility (probabilisic connectedness): Every state s′ can be reached from
every s

T (s′|s) =

(
1 0
0 1

)

is not irreducible

• Aperiodicity : Cycling around is not allowed

T (s′|s) =

(
0 1
1 0

)

is not aperiodic

Surprisingly, it is easy to construct a transition kernel with these properties by
following the recipe provided by Metropolis (1953) and Hastings (1970).
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Metropolis-Hastings Kernel

• We choose an arbitrary proposal distribution q(s′|s) (that satisfies mild
regularity conditions).
(When q is symmetric, i.e., q(s′|s) = q(s|s′), we have a Metropolis algorithm.)

• We define the acceptance probability of a jump from s to s′ as

a(s→ s′) ≡ min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
}

1
0

1

a(
s=

1 
→

 s
’)

5
0

1

a(
s=

5 
→

 s
’)

s’

1 5
0

50

100

φ(
s’

)
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Acceptance Probability a(s→ s′)
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s
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Basic MCMC algorithm: Metropolis-Hastings

1. Initialize: s(0) ∼ r(s)

2. For t = 1, 2, . . .

• Propose:

s′ ∼ q(s′|s(t−1))

• Evaluate Proposal: u ∼ Uniform[0, 1]

s(t) :=







s′ u < a(s(t−1)→ s′) Accept

s(t−1) otherwise Reject
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Transition Kernel of the Metropolis Algorithm

T (s′|s) = q(s′|s)a(s→ s′)
︸ ︷︷ ︸

Accept

+ δ(s′ − s)

∫

ds′q(s′|s)(1− a(s→ s′))
︸ ︷︷ ︸

Reject

s

s’

σ2 = 10
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20

Only Accept part for visual convenience
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Various Kernels with the same stationary distribution
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q(s′|s) = N (s′; s, σ2)
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Cascades and Mixtures of Transition Kernels

Let T1 and T2 have the same stationary distribution p(s).

Then:

Tc = T1T2

Tm = νT1 + (1− ν)T2 0 ≤ ν ≤ 1

are also transition kernels with stationary distribution p(s).

This opens up many possibilities to “tailor” application specific algorithms.

For example let

T1 : global proposal (allows large “jumps”)
T2 : local proposal (investigates locally)

We can use Tm and adjust ν as a function of rejection rate.
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Optimization : Simulated Annealing and Iterative Improvem ent

For optimization, (e.g. to find a MAP solution)

s∗ = arg max
s∈S

π(s)

The MCMC sampler may not visit s∗.

Simulated Annealing : We define the target distribution as

π(s)τi

where τi is an annealing schedule. For example,

τ1 = 0.1, . . . , τN = 10, τN+1 =∞ . . .

Iterative Improvement (greedy search) is a special case of SA

τ1 = τ2 = · · · = τN =∞
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Acceptance probabilities a(s→ s′) at different τ
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Time series models with latent variables
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Online Inference, Terminology

In signal processing and machine learning many phenomena can be modelled by
dynamical state space models (SSM)

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

Here, x is the latent state and y are observations. In a Bayesian setting, x can also include
unknown model parameters. This model is very generic and includes as special cases:

• Linear Dynamical Systems (Kalman Filter models)
• (Time varying) AR, ARMA, MA models
• Hidden Markov Models, Switching state space models
• Dynamic Bayesian networks, Nonlinear Stochastic Dynamical Systems
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Online Inference, Terminology

• Filtering p(xk|y1:k)
belief state—distribution of current state given all past information

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Prediction p(yk:K, xk:K|y1:k−1)
evaluation of possible future outcomes; like filtering without observations

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Online Inference, Terminology
• Smoothing p(x0:K|y1:K),

Most likely trajectory – Viterbi path arg maxx0:K
p(x0:K|y1:K)

better estimate of past states, essential for learning

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Interpolation p(yk, xk|y1:k−1, yk+1:K)
fill in lost observations given past and future

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Goals and uses of Probabilistic Models

• Finding some interesting (hidden) structure
Clustering
Dimensionality Reduction

• Finding a compact representation for data = Data Compression

• Outlier Detection

• Prediction

• Classification

• Optimal Decision (given a loss function)
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Why are Hidden Variable models Useful ?

Example: Highschool grades (inspired by J. Whittaker)
Consider the grades that students get from 7 different subjects:
Maths, Physics, Chemistry, History, Sports, Literature, E nglish .
We wish to tell some interesting story about data.

P

M

C

S

H

L

E

(a) “Visible” Model: Subjects contain related
material or require similar abilities.

Q

P M C S H L E

(b) Hidden Variable Model: Students have some
hidden interests, e.g. Science, Languages, Art.
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Mixture Models

Q

P M C S H L E

Hidden Visible Model
Discrete Discrete Discrete Mixture
Discrete Gaussian Mixture of Gaussians (MOG)
Gaussian Gaussian Factor Analysis (Constrained Gaussian)
Gaussian Discrete Clipped Gaussian
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Factorized (Distributed) Representations

Q
1

Q
2

P  M  C  S  H  L  E  

Discrete Factors

• Possible to code O(2q) states, however intractable for large q.

Continuous Factors

• Gaussian Factors⇒ FA, PCA, PPCA ..

• Non Gaussian Factors⇒ ICA, IFA
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Some Applications: Audio Restoration

• During download or transmission, some samples of audio are lost

• Estimate missing samples given clean ones

0 50 100 150 200 250 300 350 400 450 500

0
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Examples: Audio Restoration

p(x¬κ|xκ) ∝

∫

dHp(x¬κ|H)p(xκ|H)p(H)

H ≡ (parameters, hidden states)

H

x¬κ xκ

Missing Observed

0 50 100 150 200 250 300 350 400 450 500

0
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Some Applications: Source Separation
Estimate n hidden signals st from m observed signals xt.

s1
t s2

t . . . sn
t

x1
t . . . xm

t

t = 1 . . . T

a
1 r1 . . . a

m rm

si
t ∼ p(si

t)

xj
t ∼ N (x; ajs1:n

t , rj)
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Time Series models: Introduce Dynamics

S
1

O
1

S
2

O
2

S
3

O
3

S
4

O
4

S O Static Dynamic
Discrete Discrete DM Discrete HMM
Discrete Gaussian MOG Continuous HMM
Gaussian Gaussian FA Linear Dynamical System
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Inference in HMMs

Compute

p(S|O) =
p(O|S)p(S)

p(O)

The crux is to compute p(O).

p(Observations) =
∑

State Seq

p(Observations|State Seq)p(State Seq)

p(O) =
∑

S

p(O|S)p(S)

=
∑

S

∏

t

p(St|St−1)p(Ot|St)

p(S1|S0) = p(S1)
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Inference in HMMs: Forward

p(O) =

X
ST

p(OT |ST )

X

ST−1

p(ST |ST−1)| {z }

αT

p(OT−1|ST−1) · · ·

X

S2

p(S3|S2)

p(O2|S2)

π2z }| {X
S1

p(S2|S1)| {z }
α2

p(O1|S1)

π1z }| {

p(S1)| {z }

α1

S
1

O
1

S
2

O
2

S
3

O
3

S
4

O
4

π
1
 α

1
 π

2
 π

3
 π

4
 α

2
 α

3
α

4
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Inference in HMMs: Backward

p(O) =

X
S1

p(S1)p(O1|S1)

X

S2

p(S2|S1)p(O2|S2)| {z }

β1

. . .

X
ST−1

p(ST−1|ST−2)p(OT−1|ST−1)| {z }

βT−2

X

ST

p(ST |ST−1)p(OT |ST )| {z }

βT−1

111|{z}

βT

S
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O
1

S
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2
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3

S
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O
4

ψ
2
 ψ

3
 ψ

4
 β
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Forward-Backward as an instance of Belief Propagation on a
factor graph
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Four Letter Words

Dataset (From Sayood): All four letter English words (2149) of a Sun-Sparc spell
checker.
(abbe, abed, abel, abet, able, ... zion, zone, zoom, zorn)

Model loglik params random samples
Full −16488 456975 tabu, else, duly, crib, bohr, seal, tome, free, bern

Markov(2) −19216 17575
Markov(1) −22296 675 miro , jaid, saun, trol, bale, liro, pibo, brox, heth

HMM −24351 53 sehe, reah, vefa, tlil, hutu , stec, make , otod, pose

Factorized −25909 25 yiij, ekmy, vguo, addn, ecmi, miui, bhin, hnri, roia, azfa
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HMM captures an interesting structure

A BCD E F GH I J KLMNO P QRST U VW X Y Z

AB C DEF G HI J K L M NOP Q R S TUV W X Y Z

(c) HMM p(c|s)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S TUV W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P QR S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M NO P Q R S T U V W X Y Z

A B C DE F G H I J K L M N O P Q R S T U V W X Y Z

(d) Markov(1) p(ci|ci−1)

• For the HMM, the latent states correspond to vowel/non-vowel

• Clustering
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Linear Dynamical Systems and Kalman Filter
Models
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Partitioned Inverse Equations

K =

(
S D

DT F

)

K−1 =

(
Σ ∆

∆T Φ

)

Φ = (F −DTS−1D)−1

∆ = −S−1DΦ

Σ = S−1(I −D∆T )

p(t, s) = N ([µt, µs]
T ,K)

⇓

p(s|t) = N (µs + DTS−1(t− µt),Φ
−1)
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Factor Analysis

s

t

t = Cs + ω

ω ∼ N (0, R) s ∼ N (µs, P )

⇓

p(t, s) = N (µ, K)

µ =

(
Cµs

µs

)

K =

(
CPCT + R CP

PCT P

)

p(s|t) = N ( µs + PCT (CPCT + R)−1(t− Cµs),

P − PCT (CPCT + R)−1CP )

Cemgil Introduction to Numerical Bayesian Methods. 7-8 Eylül 2006, İstanbul, Türkiye 130



Kalman Filtering

s
i

t
i

s
i+1

t
i+1

P
i|i−1

P
i|i

P
i+1|i P

i+1|i+1

µ
i+1|i+1

µ
i+1|iµ

i|i
µ

i|i−1

ti = Csi + ω

si+1 = Asi + ν

ω ∼ N (0, R) ν ∼ N (0, Q)

s ∼ N (µs, P )

⇓

p(si, si+1|t1:i) = N (µ,K)

µ =

(
µi|i

Aµi|i

)

K =

(
P PAT

AP APAT + Q

)
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Kalman Filtering Equations

p(si|tj . . . , t1) = N (µi|j, Pi|j)

(by Partitioned Inverse Equations)

µi|i = µi|i−1 + Pi|i−1C
T (CPi|i−1C

T + R)−1(t̂− Cµi|i−1)

Pi|i = Pi|i−1 − Pi|i−1C
T (CPi|i−1C

T + R)−1CPi|i−1

(by the parametric form of p(si+1, si))

µi+1|i = Aµi|i

Pi+1|i = APi|iA
T + Q
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Kalman Smoothing

• Computes p(si|t1, . . . tN).

• The state estimates are “more smooth” since all observations are available.

• Analog of forward-backward algorithm in HMM’s.
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Example: Point moving on the line

si ∼ N (si;

(
1 1
0 1

)

si−1, Q)

ti ∼ N (ti;
(

1 0
)
si, R)

run filter demo.m
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Switching State space models - Segmentation -
Changepoint detection
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Segmentation and Changepoint detection

• Data are modelled by using simple processes with occasional regime switches
• Piecewise constant
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• Piecewise linear
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Bayesian Model Selection by Marginal MAP (MMAP)

Integrating out unknown model parameters:

M∗ = argmax
M

p(D|M)p(M) = argmax
M

∫

dθMp(D|θM)p(θM |M)p(M)

where M : Model, D: Data, θM : Model Parameters

• How do we calculate
∫

dθMp(D|θM)p(θM |M) efficiently ?

– When dimensionality of θM varies with M the standard choice is reversible
Jump Markov Chain Monte Carlo (Green 1995)

– It is possible to cast the problem to a fixed dimensional problem by
introducing indicators that “switch on and off” model parameters (e.g. Godsill
1998)
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Conditionally Gaussian Changepoint Model

rk ∼ p(rk|rk−1) Changepoint flags ∈ {new, reg}

θk = [rk = reg] f(θk|θk−1)
︸ ︷︷ ︸

Transition

+[rk = new] π(θk)
︸ ︷︷ ︸

Reinitialization

Latent State

yk ∼ p(yk|θk) Observations

r1 r2 r3 r4 r5

θ0 θ1 θ2 θ3 θ4 θ5

y1 y2 y3 y4 y5
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Sequential Inference Problems

• Filtering p(θk|y1:k) =
∑

r1:k

∫
dθ0:k−1p(y1:k|θ0:k)p(θ0:k|r1:k)p(r1:k)

• Viterbi path (e.g. Raphael 2001)

(r1:k, θ1:k)
∗ = argmax

r1:k,θ1:k

p(y1:k|θ0:k)p(θ0:k|r1:k)p(r1:k)

• Best segmentation (MMAP)

r∗1:k = argmax
r1:k

∫

dθ0:kp(y1:k|θ0:k)p(θ0:k|r1:k)p(r1:k)

– Each configuration of r1:K encodes one of the possible 2K possible models,
i.e., segmentation.

• All problems are similar, but MMAP is usually harder because max and
∫

do
not commute
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Exact Inference in switching state space models

• In general, exact inference is intractable (NP hard)

– Conditional Gaussians are not closed under marginalization

⇒ Unlike HMM’s or KFM’s, summing over rk does not simplify the filtering
density

⇒ Number of Gaussian kernels to represent exact filtering density
p(rk, θk|y1:k) increases exponentially

−7.90366.6343

0.76292

−10.3422

−10.1982−2.393

−2.7957

−0.4593
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Exact Inference for Changepoint detection?

• Exact inference is achievable in polynomial time/space

– Intuition: When a changepoint occurs, the old state vector is reinitialized
⇒ Number of Gaussians kernels grows only polynomially (See, e.g., Barry and

Hartigan 1992, Digalakis et. al. 1993, Ò Ruanaidh and Fitzgerald 1996, Gustaffson 2000,
Fearnhead 2003)

r1 = 1 r2 = 0 r3 = 0 r4 = 1 r5 = 0

θ0 θ1 θ2 θ3 θ4 θ5

y1 y2 y3 y4 y5

– The same structure can be exploited for the MMAP problem
⇒ Trajectories r

(i)
1:k which are dominated in terms of conditional evidence

p(y1:k, r
(i)
1:k) can be discarded without destroying optimality
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Example 1: Piecewise constant signal

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

θ0 ∼ N (µ, P )

rk|rk−1 ∼ p(rk|rk−1)

θk|θk−1, rk ∼ [rk = 0]δ(θk − θk−1)
︸ ︷︷ ︸

reg

+ [rk = 1]N (m, V )
︸ ︷︷ ︸

new

yk|θk ∼ N (θk, R)
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Example 2: Audio Signal Analysis

rk|rk−1 ∼ p(rk|rk−1)

θk|θk−1, rk ∼ [rk = 0]N (Aθk−1, Q)
︸ ︷︷ ︸

reg

+ [rk = 1]N (0, S)
︸ ︷︷ ︸

new

yk|θk ∼ N (Cθk, R)

A =







Gω

G2
ω

. . .
GH

ω







Gω = ρk

(
cos(ω) − sin(ω)
sin(ω) cos(ω)

)

0 < ρk < 1 is a damping factor and C =

�

1 0 1 0 . . . 1 0

�
is a projection matrix.
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Audio Signal Analysis

r k
fr
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y

k

k

x k
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Application to music transcription

500 1000 1500 2000 2500 3000 3500

Cemgil et. al. 2006, IEEE TSALP
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Factorial Changepoint model

r0,ν ∼ C(r0,ν; π0,ν)

θ0,ν ∼ N (θ0,ν; µν, Pν)

rk,ν|rk−1,ν ∼ C(rk,ν; πν(rt−1,ν)) Changepoint indicator

θk,ν|θk−1,ν ∼ N (θk,ν; Aν(rk)θk−1,ν, Qν(rk)) Latent state

yk|θk,1:W ∼ N (yk; Ckθk,1:W , R) Observation

rν
0 · · · rν

k · · · rν
K

θ
ν
0 · · · θ

ν
k · · · θ

ν
K

ν = 1 . . . W

yk yK
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Polyphonic Pitch tracking

r k,
ν

k

fr
eq

ue
nc

y

k

k

x k
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Importance Sampling,

Online Inference, Sequential Monte Carlo
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Importance Sampling

Consider a probability distribution with Z =
∫

dxφ(x)

p(x) =
1

Z
φ(x) (6)

Estimate expectations (or features) of p(x) by a weighted sample

〈f(x)〉p(x) =

∫

dxf(x)p(x)

〈f(x)〉p(x) ≈
N∑

i=1

w̃(i)f(x(i)) (7)
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Importance Sampling (cont.)

• Change of measure with weight function W (x) ≡ φ(x)/q(x)

〈f(x)〉p(x) =
1

Z

∫

dxf(x)
φ(x)

q(x)
q(x) =

1

Z

〈

f(x)
φ(x)

q(x)

〉

q(x)

≡
1

Z
〈f(x)W (x)〉q(x)

• If Z is unknown, as is often the case in Bayesian inference

Z =

∫

dxφ(x) =

∫

dx
φ(x)

q(x)
q(x) = 〈W (x)〉q(x)

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)
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Importance Sampling (cont.)

• Draw i = 1, . . . N independent samples from q

x
(i) ∼ q(x)

• We calculate the importance weights

W
(i)

= W (x
(i)

) = φ(x
(i)

)/q(x
(i)

)

• Approximate the normalizing constant

Z = 〈W (x)〉q(x) ≈
NX

i=1

W
(i)

• Desired expectation is approximated by

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)

≈

PN
i=1 W (i)f(x(i))PN

i=1 W (i)
≡

NX
i=1

w̃(i)f(x(i))

Here w̃(i) = W (i)/

PN
j=1 W (j) are normalized importance weights.
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Importance Sampling (cont.)

−10 −5 0 5 10 15 20 25
0

0.1

0.2
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30

−10 −5 0 5 10 15 20 25
0

0.1

0.2

φ(x)
q(x)

W(x)
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Resampling

• Importance sampling computes an approximation with weighted delta functions

p(x) ≈
∑

i

W̃ (i)δ(x− x(i))

• In this representation, most of W̃ (i) will be very close to zero and the representation may be
dominated by few large weights.

• Resampling samples a set of new “particles”

x(j)
new ∼

X
i

W̃ (i)δ(x− x(i))

p(x) ≈
1

N
X

j

δ(x− x
(j)
new)

• Since we sample from a degenerate distribution, particle locations stay unchanged. We merely
dublicate (, triplicate, ...) or discard particles according to their weight.

• This process is also named “selection”, “survival of the fittest”, e.t.c., in various fields (Genetic
algorithms, AI..).
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Resampling

−10 −5 0 5 10 15 20 25
0
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0

1

2

−10 −5 0 5 10 15 20 25
0

0.1

0.2

φ(x)
q(x)

W(x)

x
new

x
(j)
new ∼

∑

i W̃ (i)δ(x− x(i))
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Prior as the proposal. q(x) = p(x)

W (x) =
p(y|x)p(x)

p(x)
= p(y|x)
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

Task: Obtain samples from the posterior p(x|y)

• Likelihood as the proposal. q(x) = p(y|x)/
∫

dxp(y|x) = p(y|x)/c(y)

W (x) =
p(y|x)p(x)

p(y|x)/c(y)
= p(x)c(y) ∝ p(x)

• Interesting when sensors are very accurate and dim(y)≫ dim(x). Idea behind
“Dual-PF” (Thrun et.al.. 2000)

Since there are many proposals, is there a “best” proposal distribution?
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Optimal Proposal Distribution

x y p(x|y) ∝ p(y|x)p(x)

Task: Estimate 〈f(x)〉p(x|y)

• IS constructs the estimator I(f) = 〈f(x)W (x)〉q(x) (where W (x) = p(x|y)/q(x))

• Minimize the variance of the estimator
〈

(f(x)W (x)− 〈f(x)W (x)〉)2
〉

q(x)
=

〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)W (x)〉2q(x)(8)

=
〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)〉2p(x) (9)

=
〈
f2(x)W 2(x)

〉

q(x)
− I2(f) (10)

• Minimize the first term since only it depends upon q
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Optimal Proposal Distribution

• (By Jensen’s inequality) The first term is lower bounded:

〈
f2(x)W 2(x)

〉

q(x)
≥ 〈|f(x)|W (x)〉2q(x) =

(∫

|f(x)| p(x|y)dx

)2

• We well look for a distribution q∗ that attains this lower bound. Take

q∗(x) =
|f(x)|p(x|y)

∫
|f(x′)|p(x′|y)dx′
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Optimal Proposal Distribution (cont.)

• The weight function for this particular proposal q∗ is

W∗(x) = p(x|y)/q∗(x) =

∫
|f(x′)|p(x′|y)dx′

|f(x)|

• We show that q∗ attains its lower bound

〈
f2(x)W 2

∗ (x)
〉

q∗(x)
=

〈

f2(x)

(∫
|f(x′)|p(x′|y)dx′

)2

|f(x)|2

〉

q∗(x)

=

(∫

|f(x′)|p(x′|y)dx′
)2

= 〈|f(x)|〉2p(x|y)

= 〈|f(x)|W∗(x)〉2q∗(x)

• ⇒ There are distributions q∗ that are even “better” than the exact posterior!

Cemgil Introduction to Numerical Bayesian Methods. 7-8 Eylül 2006, İstanbul, Türkiye 159



Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

Task: Obtain samples from the posterior p(x1:2|y1:2)

• Prior as the proposal. q(x1:2) = p(x1)p(x2|x1)

W (x1, x2) = p(y1|x1)p(y2|x2)

• We sample from the prior as follows:

x
(i)
1 ∼ p(x1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1|x

(i)
1 )p(y2|x

(i)
2 )
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

• State prediction as the proposal. q(x1:2) = p(x1|y1)p(x2|x1)

W (x1, x2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1)
= p(y1)p(y2|x2)

• Note that this proposal does not depend on x1

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1)p(y2|x

(i)
2 )
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

• Filtering distribution as the proposal. q(x1:2) = p(x1|y1)p(x2|x1, y2)

W (x1, x2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1, y2)
= p(y1)p(y2|x1)

• Note that this proposal does not depend on x2

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 , y2) W (x(i)) = p(y1)p(y2|x

(i)
1 )
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Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior
p(x0:K|y1:K).

p(x0:K|y1:K) =
1

p(y1:K)
p(y1:K|x0:K)p(x0:K) ≡

1

Zy
φ(x0:K) (11)

Key idea: sequential construction of the proposal distribution q, possibly using the
available observations y1:k, i.e.

q(x1:K|y1:K) = q(x0)
K∏

k=1

q(xk|x1:k−1y1:k)
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Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight
function W (x0:k) ≡Wk admits recursive computation

Wk =
φ(x0:k)

q(x0:k|y1:k)
=

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1y1:k)

φ(x0:k−1)

q(x0:k−1|y1:k−1)
(12)

=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, y1:k)
Wk−1 ≡ uk|0:k−1Wk−1 (13)

Suppose we had an approximation to the posterior (in the sense 〈f(x)〉φ ≈

P

i W
(i)
k−1f(x

(i)
0:k−1))

φ(x0:k−1) ≈
∑

i

W
(i)
k−1δ(x0:k−1 − x

(i)
0:k−1)

x
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

φ(x0:k) ≈
∑

i

W
(i)
k δ(x0:k − x

(i)
0:k)
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Example

• Prior as the proposal density

q(xk|x0:k−1, y1:k) = p(xk|xk−1)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

=
p(yk|x

(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1)

W
(i)
k−1 = p(yk|x

(i)
k )W

(i)
k−1

• However, this schema will not work, since we blindly sample from the prior. But
...
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Example (cont.)
• Perhaps surprisingly, interleaving importance sampling steps with (occasional)

resampling steps makes the approach work quite well !!

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = p(yk|x

(i)
k )W

(i)
k−1 Update weight

W̃
(i)
k = W

(i)
k /Z̃k Normalize (Z̃k ≡

∑

i′
W

(i′)
k )

x
(j)
0:k,new ∼

N∑

i=1

W̃ (i)δ(x0:k − x
(i)
0:k) Resample j = 1 . . . N

• This results in a new representation as

φ(x) ≈
1

N

∑

j

Z̃kδ(x0:k − x
(j)
0:k,new)

x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Optimal proposal distribution

• The algorithm in the previous example is known as Bootstrap particle filter or
Sequential Importance Sampling/Resampling (SIS/SIR).

• Can we come up with a better proposal in a sequential setting?

– We are not allowed to move previous sampling points x
(i)
1:k−1 (because in

many applications we can’t even store them)

– Better in the sense of minimizing the variance of weight function Wk(x).
(remember the optimality story in Eq.(10) and set f(x) = 1).

• The answer turns out to be the filtering distribution

q(xk|x1:k−1, y1:k) = p(xk|xk−1, yk) (14)
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Optimal proposal distribution (cont.)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1, yk) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1W

(i)
k−1 Update weight

u
(i)
k|0:k−1 =

p(yk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1, yk)

×
p(yk|x

(i)
k−1)

p(yk|x
(i)
k−1)

=
p(yk, x

(i)
k |x

(i)
k−1)p(yk|x

(i)
k−1)

p(x
(i)
k , yk|x

(i)
k−1)

= p(yk|x
(i)
k−1)
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A Generic Particle Filter

1. Generation :
Compute the proposal distribution q(xk|x

(i)
0:k−1, y1:k).

Generate offsprings for i = 1 . . . N

x̂
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k)

2. Evaluate importance weights

W
(i)
k =

p(yk|x̂
(i)
k )p(x̂

(i)
k |x

(i)
k−1)

q(x̂
(i)
k |x

(i)
0:k−1, y1:k)

W
(i)
k−1 x

(i)
0:k = (x̂

(i)
k , x

(i)
0:k−1)

3. Resampling (optional but recommended)

Normalize weigts W̃
(i)
k = W

(i)
k /Z̃k Z̃k ≡

X

j
W

(j)
k

Resample x
(j)
0:k,new ∼

NX
i=1

W̃ (i)δ(x0:k − x
(i)
0:k) j = 1 . . . N

Reset x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Summary of what we have (hopefully) covered

• Deterministic

– Variational Bayes, Mean field
– Expectation/Maximization (EM), Iterative Conditional Modes (ICM)

• Stochastic

– Markov Chain Monte Carlo
– Importance Sampling,
– Particle filtering
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Summary of what we have not covered

• Exact Inference (Belief Propagation, Junction Tree ...)

• Deterministic

– Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented
Particle Filter

– Structured Mean field
– Loopy Belief Propagation, Expectation Propagation, Generalized Belief

Propagation
– Fractional Belief propagation, Bound Propagation, <your favorite name>

Propagation
– Graph cuts ...

• Stochastic

– Unscented Particle Filter, Nonparametric Belief Propagation
– Annealed Importance Sampling, Adaptive Importance Sampling
– Hybrid Monte Carlo, Exact sampling, Coupling from the past
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Variational or Sampling ?

• Possible criteria

– How accu rate
– How fast
– How easy to learn
– How easy to code /test /maintain

When all you own is a hammer, every problem looks like a nail
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Variational or Sampling ?

• Depends upon application domain. My personal impression is:

– Sampling dominated
∗ Bayesian statistics, Scientific data analysis
∗ Finance/auditing
∗ Operations research
∗ Genetics
∗ Tracking

– Variational dominated
∗ Communications/error correcting codes

– Mixed territory
∗ Machine Learning, Robotics
∗ Computer Vision
∗ Human-Computer Interaction
∗ Speech/audio/multimedia analysis/information retrieval
∗ Statistical Signal processing
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Further Reading

Variational tutorials and overviews

• Tommi Jaakkola. Tutorial on variational approximation methods. (2000).
http://people.csail.mit.edu/tommi/papers/Jaa-var-tu torial.ps

• Frey and Jojic [2]

• Wainwright and Jordan [8]

MCMC and SMC tutorials and overviews

• Andrieu, de Freitas, Doucet, Jordan. An Introduction to MCMC for Machine Learning, 2001

• Andrieu. Monte Carlo Methods for Absolute beginners, 2004

• Doucet, Godsill, Andrieu. ”On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering”, Statistics and Computing, vol. 10, no. 3, pp. 197-208, 2000

The “in Practice” Books

• Gilks, Richardson, Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman Hall, 1996

• Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001
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