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ABSTRACT

We formulate alignment of multiple and partially overlapping au-

dio sequences in a probabilistic framework. We define and compare

four generative models for time varying features extracted from au-

dio clips that are recorded independently and asynchronously. We

are able to handle missing data and multiple clips where no clip is

covering the entire material. We define proper scoring functions for

each model and the matching is achieved with a sequential align-

ment algorithm. The simulation results on real data suggest that the

approach is able to handle difficult ambiguous scenarios or partial

matchings.

Index Terms— Audio alignment, Audio matching, Maximum

likelihood, Probabilistic Model

1. INTRODUCTION

Audio alignment is often regarded as an identification problem

where an unknown audio segment is matched to a large audio

database. There exist robust audio fingerprinting methodologies

that achieve high matching performances under very noisy con-

ditions [1],[2],[3]. In this paper, we focus on multiple alignment

problem, where we view audio matching from a different perspec-

tive. Imagine that there are several microphones that record an au-

dio scene but the microphones are not synchronized. Each micro-

phone starts and stops recording at different times independent of

each other. Hence, two recorded audio clips may or may not over-

lap. The aim is to align these audio clips according to their starting

points on an unknown time line, somewhat like solving a puzzle.

One major difference from the common audio alignment setup is

that there is no clean original source database but only some pos-

sibly noisy observations of the source and none of the audio clips

have to cover the entire timeline.

Our motivation in dealing with multiple audio matching prob-

lem is that we wish to use the precisely aligned recordings in

source separation, restoration or remastering frameworks where the

sources are highly fragmented. Such a scenario might occur for ex-

ample in a concert hall during a performance. Assume that some of

the audience record their favorite parts of the concert with record-

ing devices of varying quality. These audio clips each of which

are recorded from a different perspective would also have different

amplitude levels and noise. A possible application might be collect-

ing these unsynchronized audio recordings on a website and try to
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produce a full recording of the performance by precisely aligning

these sources on the generic time line. A similar approach exists

in genetics that is called shotgun sequencing where the long DNA

strands are assembled from shorter sequences [4]. Another visual

analogy for our approach is image stitching [5] where multiple im-

ages taken from slightly different perspective are assembled into a

full panoramic view.

In principle, the problem can be approached using deterministic

methods such as correlation and template matching. However there

are also certain limitations. First of all, the computational cost in

these methods is quite high in audio applications. Most of the audio

matching applications work pairwise even when they are matching

multiple clips. Assuming there are K number of clips, one needs

to apply pairwise matching on the order of O(K2) which can be

prohibitive. In addition to that, if the audio clips do not overlap or

some of the data is missing in one of the audio clips, it is not always

clear how to apply simple correlation or template matching ideas.

An obvious way to reduce computational complexity and the num-

ber of data is working on a feature space instead of working directly

on audio data. Energy of the signal over short time windows [1], lo-

cal chroma energy distributions [2] and positive spectral difference

[3],[6] are the features that are widely used in the audio matching

framework. Even when working with features, the problem can be

still challenging when there are multiple shorter recordings and not

a ’ground truth timeline’.

We propose a model based approach and define four genera-

tive models for different audio features. The modelling approach is

flexible in a way that any feature vector is appropriate (e.g., non-

negative, real, binary, discrete levels). Proper scoring functions are

derived from each model. When there are only two sources, eval-

uating the scoring function for all possible alignments, including

partial and non-matchings, is feasible. The framework extends di-

rectly to multiple sequences but exact scoring becomes intractable.

Here, we propose a sequential alignment algorithm for matching

multiple clips on a common time-line.

2. PROPOSED MODEL

In this section, we introduce our probabilistic model for the multiple

alignment problem with a toy example given in Figure 1. The fea-

tures are the time varying energy coefficients in one sub-band. The

main idea of the model is that properly aligned feature sequences

are noisy realizations or functions of a common but unobserved fea-

ture sequence, if a full length recording of the audio scene would be

available. We denote this hidden feature vector with λ1:T . Here

τ = 1 . . . T is a global time frame index. When considering a sin-
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Figure 1: Model Illustration via a toy example. λ is hidden, x1, x2

and x3 are observed

gle sub-band, λτ is a scalar. There are three clips observed in the

Figure 1 and xk denotes the feature vector of the k’th clip. The

length of the feature vector of the k’th clip is denoted as Nk. In

this example, T = 14, N1 = 5, N2 = 7, and N3 = 6. Here n
is a local time frame index and the spectrum coefficient of the k’th

clip at local time n is denoted by xk,n. Again, if we would consider

several sub-bands, xk,n would be a vector. The alignment variable

for the k’th clip is denoted as rk. The second recording is aligned at

global time τ = 6 therefore r2 = 6. In this scenario, the clips over-

lap with each other at several points. To be specific, x1,4, x2,0 and

x3,2 coincide at global time τ = 6 and It can be observed from the

figure that each of these coefficient values are close to each other

since they are observations of a common source λ6. Following this

idea, a template generative model is defined as;

λ1:T ∼ p(λ1:T )

rk ∼ p(rk) =

T−Nk+1
∏

τ=1

π
[rk=τ ]
k,τ

xk,n ∼ p(xk,n|rk, λ1:T ) =
T
∏

τ=1

p(xk,n|rk, λτ )
[n=τ−rk]

where [·] is the indicator function which is equal to one if the ex-

pression inside is true. The alignment variable rk is chosen to

be distributed with a generic distribution where the alignment of

the k’th clip is at time τ is represented with the probability πk,τ .

In this paper, we assume that each rk is uniformly distributed.

The hidden coefficients λτ are assumed to be a-priori independent

(p(λ1:T ) =
∏T

τ=1 p(λτ )). Here, the [n = τ − rk] expression in

the observation model indicates that xk,n is conditioned on λτ only

if τ = rk + n which means the n’th coefficient of the k’th source

is aligned to time τ . The graphical model is shown in Figure 2.

It includes an extra index f which denotes the sub-band number.

However in the rest of the paper, the f index is omitted to ease the

representations.

It is important to mention that the goal is not to estimate the

hidden features λ1:T but to find the most likely alignment of the

clips denoted as r∗1:K . This is the prime mode of the joint condi-

tional probability p(r1:K |x1:K,0:Nk−1). Assuming there is no prior

information about the true alignment of the sources, one can use the

marginal likelihood p(x1:K,0:Nk−1|r1:K) instead of the posterior

Figure 2: Graphical Model

xk,n,fλτ rk

τ = 1 : T n = 0 : Nk − 1
k = 1 : K

f = 1 : F

probability:

p(x1:K,0:Nk−1|r1:K) =

∫

dλ1:T

K
∏

k=1

Nk−1
∏

n=0

p(xk,n|rk, λ1:T )
T
∏

τ=1

p(λτ )

Note that, λτ are independent from each other and xk,n are condi-

tionally independent given λ1:T and r1:K . It is important to mention

that the choices of prior and likelihood distributions are conjugate

pairs for all models is essential for the derivation of the computation

of the exact marginal likelihood. Then by maximizing the loglikeli-

hood

LK(r1:K) = log p(x1:K,0:Nk−1|r1:K)

the optimum alignment is achieved as,

r∗1:K = argmax
r1:K

LK(r1:K)

We can interpret this formulation also from a Bayesian model selec-

tion perspective [7]. Each configuration of r1:K correspond to an

alternative alignment, and we are comparing different alignments

after integrating out the model parameters to find the ’model’ that

describes the data best.

Note that this model is quite generic and can be used for a variety

of feature sets. In the sequel, we will propose for generative models

for positive, non-negative, real and binary features. Each model fol-

lows the template model but with different choices of prior (p(λτ ))
and likelihood (p(xk,n|rk, λτ )) distributions which are listed in Ta-

ble 1. Through out the paper, IG,G,N ,B,BE ,Dir and M repre-

sent inverse gamma, gamma, Gaussian, beta, Bernoulli, Dirichlet

and Multinomial distributions respectively. This list is by no means

exhaustive; we could choose other conjugate pairs as well (such as

Poisson-Gamma or Gaussian-Gaussian).

Gamma observation model: The first model is useful for positive

features such as factors obtained from non-negative matrix decom-

position or time varying spectral energy. In this paper, we investi-

gate two feature sets for this model. The feature set 1a is directly

defined as the energy in sub-bands. The feature set 1b is defined as

positive spectral difference [6]. We choose a gamma distribution for

modelling positive random variables and inverse gamma as a conju-

gate prior for the hidden sequence. Here, the mean and the variance

Table 1: Prior and likelihood distributions for each model
Models p(λτ ) p(xk,n|rk, λτ )

Model 1 IG(λτ ;αλ, βλ) G(xk,n;α,
α
λτ

)

Model 2 IG(λτ ;αλ, βλ) N (xk,n; 0, λτ )
Model 3 B(λτ ;αλ, βλ) BE(xk,n;λτ )
Model 4 Dir(λ1:Q,τ ;α1:Q) M(x1:Q,k,n; 1, λ1:Q,τ )
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of xk,n coefficient are λτ and λ2
τ/α respectively. Therefore α be-

haves as a control parameter and adjusts how much xk,n deviates

from λτ .

Gaussian variance observation model: In the second model, the ob-

servations are real, but the hidden sequence is assumed to be posi-

tive, and corresponds to the variance of the observations. We define

the feature set 2 as the difference of the spectral energy between

consecutive windows in sub-bands. Here, there is no control pa-

rameter, λτ directly determines how much xk,n deviates from zero.

Bernoulli observation model: In the third model, the observations

are binary and are drawn from a Bernoulli distribution. The hid-

den sequence is defined as the parameter of the Bernoulli dis-

tribution and assumed to be beta distributed. Here, the feature

set 3 is chosen as the thresholded spectral energy coefficients.

Multinomial observation model: The fourth model is an extended

version of the model 3 where there are more than just two distinct

levels. This model is useful when the features are categorical. Ac-

cordingly, the feature set 4 is chosen as the quantized spectral en-

ergy coefficients with Q levels. Note that the multinomial distri-

bution has the number of trial parameter as 1. Then the x1:Q,n,k

is a vector for which only one element of the vector is active and

the rest of the elements are equal to zero. As an example, if there

are Q = 3 levels and the second level is selected, the vector is,

x1:Q,n,k = {0, 1, 0}.

Since the rk are discrete, the search domain is finite and by

computing the score for each possible alignment r1:K , it is straight-

forward to obtain the most possible alignment r∗1:K . However, for

large K, searching the entire space for each possible alignment is

clearly intractable due to the astronomical state space size. Our pre-

liminary experiments with batch methods such as the Gibbs sam-

pler, even when enhanced with different annealing schemata such

as gradually decreasing the α parameter has not proven very effec-

tive. The likelihood surface is very rough, therefore, we resort here

to an intuitive sequential greedy algorithm.

3. SEQUENTIAL ALIGNMENT ALGORITHM

Our algorithm proceeds sequentially where sequences are selected

in some random order. We fix the position of the first sequence,

i.e., fix r∗1 = 0, and the alignment of the second sequence r2
is computed relative to first sequence. For each possible value

of r2, the log-likelihood L2(r
∗

1 , r̂2) is computed and the maxi-

mum is chosen as r∗2 . We proceed in a greedy fashion where

for k = 2 . . .K the alignment of the k’th sequence rk, the log-

likelihood Lk(r
∗

1:k−1, rk) is computed for each possible value of

rk and the one that maximizes the likelihood is chosen as r∗k.

We observe that the success of the sequential algorithm depends

on the success of the alignments of first few sequences. Since the

sequences are aligned sequentially, if the first few sequences are

not matched correctly, the remaining sequences can not be aligned

correctly. Our key idea to overcome this problem is to randomize

the ordering of the sequences in the alignment procedure. If k’th

sequence do not overlap with the previous sequences or a very small

overlap occurs, the alignment rk is treated as unreliable and the

ordering of the sequences is changed such that the non-overlapping

source is put to the end of a queue. Misalignments are typically

prevented by re-ordering or permuting sequences when there is no

overlap or a small overlap.

Initial ordering also plays a crucial role in the success of the

algorithm. Some permutations may lead to more successful align-

ments. Clearly, it is not feasible to apply the algorithm to each of the

Algorithm 1 Sequential Alignment Method

Initialize:
for i = 1 to Max # of trials do

Choose a permutation of 1 . . .K as σi,
Permute sequences as xk ← xσi(k)

for all k

R
(i)
1 = 0, k = 2

while k ≤ K do

r∗
k
= argmaxrk Lk(R

(i)
1:k−1, rk)

if Number of overlapping samples > ǫ then

R
(i)
1:k ← (R

(i)
1:k−1, r

∗

k
), k = k + 1

else

Move to back, σi ← [σi(−k), σi(k)],
Repermute xκ ← xσi(κ)

for all κ ≥ k

end if

end while

end for

Winner = argmaxi LK(R
(i)
1:K), r∗1:K = R

(Winner)
1:K

K! permutations. Therefore the algorithm is applied for P random

permutations of the sequences and among the resulting alignments,

the one that maximizes the log-likelihood is chosen to be the esti-

mated alignment. We also make sure that we include ’promising’

permutations such as when the sequences are sorted decreasing ac-

cording to their length as longer sequences tend to be matched more

reliably. The pseudocode of the sequential matching algorithm is

given in Algorithm 1.

4. SIMULATION RESULTS AND DISCUSSION

In this part, we discuss several aspects of the proposed model and

whether the sequential algorithm is appropriate for the alignment

problem. The questions investigated are: how much the model

fits to the data, which features represent the audio data better and

which features are more immune to noise and volume variations.

Experiments are conducted with both synthetic data and real data.

The synthetic data is generated from the models with various hyper-

parameter sets. Pairwise matching results suggest that the approach

is successful as long as the parameters are set to their true values.

The real data simulations are formed in the following way: A stereo

music file of length 2 minutes that is recorded at 8KHz sampling

rate is short time Fourier transformed with 25 ms non-overlapping

windows. K = 8 sources are formed at each experiment with

minimum length of 2 seconds and maximum length of 1 minute.

The sources are formed equally from the right and left channels (4

sources from each channel). Each source is multiplied with a vol-

ume variable m1
k which is in the range 0.5 < m1

k < 1. The starting

points (r1:K ) and the lengths of the sources (N1:K ) and the volume

variables are chosen randomly at each experiment. A stereo bar

ambiance recording is divided into clips following the same align-

ments and lengths and added to the original signal as a structured

noise. Noise sources are also multiplied with a volume variable

m2
k which is set randomly in 2 different ranges to simulate different

SNR cases. In experiments, two different music signals are used

with the same structured noise.

The spectrum is divided into sub-bands according to bark scale

band edges up to 3150Hz. For the feature sets 1a and 4, four

sub-bands are used with band edges [200 − 400], [400 − 920],
[920 − 1720] and [1720 − 3150] Hz. The squares of the coeffi-

cients are summed through frequency index in one band. The ob-

tained matrices of size 4×Nk are used as feature set 1a. Then the
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Figure 3: Sources and features illustration
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coefficients are non-uniformly quantized with µ-law into Q = 6
levels and 6 × 4 × Nk size matrices are used as feature set 4. For

the feature set 1b, the positive spectral difference values are squared

and summed through frequency and each observation is represented

with 1×Nk vectors. For the feature sets 2 and 3, 14 critical bands

are used in the range 200Hz and 3150Hz and squared transform

coefficients are summed through frequency in each sub-band. The

first difference between sub-bands are used as feature set 2 where

the observations are represented with 14× (Nk − 1) matrices. For

the feature set 3, obtained 14×Nk matrices are thresholded with a

threshold that preserves %95 of the total energy of the signal. Fig-

ure 3 shows three overlapping sources that are contaminated with

noise and their respective feature sets 1b and 3 with 4 sub-bands.

The estimation of the hyper-parameter set (α, αλ, βλ) for the real

scenario has a key role in the success of the alignment algorithm. In

this work, we use an iterative Newton’s method on the score func-

tions to obtain optimum hyper-parameter sets for each model where

the ground truth for the alignments is assumed to be known.

For evaluation of the alignment performance, we define a func-

tion φ(r̂i, r̂j) that determines whether or not sequences i and j are

mutually correctly aligned. Here, r denotes the ground truth align-

ment variables. Assuming that rtrue
i < rtrue

j , It is defined as;

φ(r̂i, r̂j) =

{

[r̂i +Ni ≤ r̂j + ǫ], rtrue
i +Ni < rtrue

j

[r̂i − r̂j = rtrue
i − rtrue

j ], rtrue
i +Ni ≥ rtrue

j

φ acts like an indicator function that results in ”1” if the alignment

is correct and ”0” if it is false. Sometimes non-overlapping sources

are aligned back-to-back such that only very few samples overlap.

In this case, if the number of overlapping samples are smaller than

ǫ, which is chosen as 5, the alignment is considered to be true. The

alignment performance criteria Ω(r̂1:K), the total alignment score,

is then defined as the number of true pairwise alignments over total

number of pairs:

Ω(r̂1:K) =
2

K(K − 1)

K−1
∑

i=1

K
∑

j=i+1

φ(r̂i, r̂j)

Highest score to be achieved is ”1” where all the sources are aligned

perfectly and lowest score is ”0” where no sources are aligned cor-

Table 2: Experimental Results- Real data simulations
Feature Sets

SNR 1a 1b 2 3 4

High 0.93±0.1 0.97±0.06 0.89±0.1 0.74±0.15 0.65±0.18

Low 0.82±0.19 0.88±0.17 0.81±0.14 0. 67±0.15 0.52±0.12

rectly. The experiments are conducted for high SNR and low SNR

cases. The mean and standard deviation of the performance scores

for each feature set in each SNR case are listed in the Table 2.

The results suggest that the audio data in the alignment prob-

lem can be approached with the models given in Section 2. The se-

quential algorithm is able to find the true alignments in most of the

cases. The feature set 1b (positive spectral difference) has the most

successful scores in both SNR cases which supports the immunity

against noise and volume variations. Thresholded data and spectral

difference works only when there are enough number of sub-bands

which are chosen as all critical bands in the range. The quantized

feature set gives the best results when there are Q = 6 levels and 4

sub-bands. Among the robustness of the alignment, the processing

time is yet another important criteria. One of the advantages of the

model is that instead of pairwise matching of the observations, the

model aligns each observation sequence with a hidden audio con-

tent which reduces the computational burden. Since the processing

time increases with the amount of data to be processed, the feature

sets with higher number of sub-bands require more time. Therefore

the feature set 1b is also the best feature set in the processing time

performance.

5. CONCLUSION

In this work, we proposed a model based approach for the multiple

audio sequence alignment problem and defined 4 generative mod-

els for different feature sets. We derived proper score functions for

each model. The results show that our approach is both fast and

robust against noisy situations and volume variations. We obtain

successful results with the sequential greedy algorithm however we

believe that utilizing more advanced inference methods such as se-

quential Monte Carlo algorithms would increase the performance

both in robustness and processing time.
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