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Outline

• Time Series Models and Inference

• Importance Sampling

• Resampling

• Putting it all together, Sequential Monte Carlo
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Time series models and Inference, Terminology

In signal processing, applied physics, machine learning many phenomena are
modelled by dynamical models

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

• x are the latent states

• y are the observations

• In a full Bayesian setting, x includes unknown model parameters
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Online Inference, Terminology

• Filtering: p(xk|y1:k)

– Distribution of current state given all past information
– Realtime/Online/Sequential Processing

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Potentially confusing misnomer:

– More general than “digital filtering” (convolution) in DSP – but
algoritmically related for some models (KFM)
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Online Inference, Terminology

• Prediction p(yk:K, xk:K|y1:k−1)

– evaluation of possible future outcomes; like filtering without
observations

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Tracking, Restoration
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Offline Inference, Terminology
• Smoothing p(x0:K|y1:K),

Most likely trajectory – Viterbi path arg maxx0:K
p(x0:K|y1:K)

better estimate of past states, essential for learning

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

• Interpolation p(yk, xk|y1:k−1, yk+1:K)
fill in lost observations given past and future

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Deterministic Linear Dynamical Systems

• The latent variables sk and observations yk are continuous

• The transition and observations models are linear

• Examples

– A deterministic dynamical system with two state variables
– Particle moving on the real line,

sk =

(
phase
period

)

k

=

(
1 1

0 1

)

sk−1 = Ask−1

yk = phasek =
(

1 0
)
sk = Csk
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Kalman Filter Models, Stochastic Dynamical Systems

• We allow random (unknown) accelerations and observation error

sk =

(
1 1

0 1

)

sk−1 + ǫk

= Ask−1 + ǫk

yk =
(

1 0
)
sk + νk

= Csk + νk
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Tracking

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

• In generative model notation

sk ∼ N (sk;Ask−1, Q)

yk ∼ N (yk;Csk, R)

• Tracking = estimating the latent state of the system = Kalman filtering
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α1|1 = p(y1|x1)p(x1)
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α2|1 =
∫

dx1p(x2|x1)p(y1|x1)p(x1) ∝ p(x2|y1)
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α2|2 = p(y2|x2)p(x2|y1)
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α5|5 ∝ p(x5|y1:5)
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Nonlinear/Non-Gaussian Dynamical Systems

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

• What happens when the transition and/or observation model are non-Gaussian

• Apart from a handful of happy cases, the filtering density is not available in
closed form or costs a lot of memory to represent exactly

⇒ Need efficient and flexible numeric integration techniques
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Nonlinear Dynamical System Example

• Noisy Sinusoidal with frequency modulation

∆k ∼ N (∆k;∆k−1, Q)

φk = φk−1 + ∆k

yk ∼ N (yk; sin(φk), R)
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Example:
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Dynamical Sytems with switching

• Complicated processes can be modeled by using simple processes with
occasional regime switches

– Piecewise constant
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−5

0
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10

15
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Segmentation and Changepoint detection
– Piecewise linear

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

10

15

• Used for tracking, segmentation, changepoint detection ...

– What is the true state of the process given noisy data ?
– Where are the changepoints ?
– How many changepoints ?
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Example: Conditionally Gaussian Changepoint Model

rk ∼ p(rk|rk−1) Changepoint flags ∈ {new, reg}

θk ∼ [rk = reg] f(θk|θk−1)
︸ ︷︷ ︸

Transition

+[rk = new] π(θk)
︸ ︷︷ ︸

Reinitialization

Latent State

yk ∼ p(yk|θk) Observations

r1 r2 r3 r4 r5

θ0 θ1 θ2 θ3 θ4 θ5

y1 y2 y3 y4 y5
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Example: Piecewise constant signal

0 10 20 30 40 50 60 70 80 90 100
−5

0
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θ0 ∼ N (µ, P )

rk|rk−1 ∼ p(rk|rk−1)

θk|θk−1, rk ∼ [rk = 0]δ(θk − θk−1)
︸ ︷︷ ︸

reg

+ [rk = 1]N (m, V )
︸ ︷︷ ︸

new

yk|θk ∼ N (θk, R)
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Switching State space model
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θk ∼ N (θk;Ark
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)

yk ∼ N (yk; Cθk, R) Observations
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Exact Inference in switching state space models

• In general, exact inference is intractable (NP hard)

– Conditional Gaussians are not closed under marginalization

⇒ Unlike HMM’s or KFM’s, summing over rk does not simplify the filtering
density

⇒ Number of Gaussian kernels to represent exact filtering density
p(rk, θk|y1:k) increases exponentially

−7.90366.6343

0.76292

−10.3422

−10.1982−2.393

−2.7957

−0.4593
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Sequential Monte Carlo - Particle Filtering

• We try to approximate the so-called filtering density with a set of
points/Gaussians ≡ particles

• Algorithms are intuitively similar to randomised search algorithms but are
best understood in terms of sequential importance sampling and resampling
techniques
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Importance Sampling
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Importance Sampling (IS)

Consider a probability distribution with (possibly unknown) normalisation constant

p(x) =
1

Z
φ(x) Z =

∫

dxφ(x).

IS: Estimate expectations (or features) of p(x) by a weighted sample

〈f(x)〉p(x) =

∫

dxf(x)p(x)

〈f(x)〉p(x) ≈
N∑

i=1

w̃(i)f(x(i))
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Importance Sampling (cont.)

• Change of measure with weight function W (x) ≡ φ(x)/q(x)

〈f(x)〉p(x) =
1

Z

∫

dxf(x)
φ(x)

q(x)
q(x) =

1

Z

〈

f(x)
φ(x)

q(x)

〉

q(x)

≡
1

Z
〈f(x)W (x)〉q(x)

• If Z is unknown, as is often the case in Bayesian inference

Z =

∫

dxφ(x) =

∫

dx
φ(x)

q(x)
q(x) = 〈W (x)〉q(x)

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)
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Importance Sampling (cont.)

• Draw i = 1, . . . N independent samples from q

x
(i)
∼ q(x)

• We calculate the importance weights

W
(i)

= W (x
(i)

) = φ(x
(i)

)/q(x
(i)

)

• Approximate the normalizing constant

Z = 〈W (x)〉q(x) ≈

NX
i=1

W
(i)

• Desired expectation is approximated by

〈f(x)〉p(x) =
〈f(x)W (x)〉q(x)

〈W (x)〉q(x)

≈

PN
i=1 W (i)f(x(i))PN

i=1 W (i)
≡

NX
i=1

w̃(i)f(x(i))

Here w̃(i) = W (i)/

PN
j=1 W (j) are normalized importance weights.
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Importance Sampling (cont.)
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Resampling

• Importance sampling computes an approximation with weighted delta functions

p(x) ≈
∑

i

W̃ (i)δ(x− x(i))

• In this representation, most of W̃ (i) will be very close to zero and the representation may be
dominated by few large weights.

• Resampling samples a set of new “particles”

x(j)
new ∼

X
i

W̃ (i)δ(x− x(i))

p(x) ≈
1

N
X

j

δ(x− x
(j)
new)

• Since we sample from a degenerate distribution, particle locations stay unchanged. We merely
dublicate (, triplicate, ...) or discard particles according to their weight.

• This process is also named “selection”, “survival of the fittest”, e.t.c., in various fields (Genetic
algorithms, AI..).
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Resampling
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

• Prior as the proposal. q(x) = p(x)

W (x) =
p(y|x)p(x)

p(x)
= p(y|x)
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Examples of Proposal Distributions

x y p(x|y) ∝ p(y|x)p(x)

• Likelihood as the proposal. q(x) = p(y|x)/
∫

dxp(y|x) = p(y|x)/c(y)

W (x) =
p(y|x)p(x)

p(y|x)/c(y)
= p(x)c(y) ∝ p(x)

• Interesting when sensors are very accurate and dim(y)≫ dim(x).

Since there are many proposals, is there a “best” proposal distribution?
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Optimal Proposal Distribution

x y p(x|y) ∝ p(y|x)p(x)

Task: Estimate 〈f(x)〉p(x|y)

• IS constructs the estimator I(f) = 〈f(x)W (x)〉q(x)

• Minimize the variance of the estimator
〈

(f(x)W (x)− 〈f(x)W (x)〉)2
〉

q(x)
=

〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)W (x)〉2q(x)(1)

=
〈
f2(x)W 2(x)

〉

q(x)
− 〈f(x)〉2p(x) (2)

=
〈
f2(x)W 2(x)

〉

q(x)
− I2(f) (3)

• Minimize the first term since only it depends upon q
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Optimal Proposal Distribution

• (By Jensen’s inequality) The first term is lower bounded:

〈
f2(x)W 2(x)

〉

q(x)
≥ 〈|f(x)|W (x)〉2q(x) =

(∫

|f(x)| p(x|y)dx

)2

• We well look for a distribution q∗ that attains this lower bound. Take

q∗(x) =
|f(x)|p(x|y)

∫
|f(x′)|p(x′|y)dx′
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Optimal Proposal Distribution (cont.)

• The weight function for this particular proposal q∗ is

W∗(x) = p(x|y)/q∗(x) =

∫
|f(x′)|p(x′|y)dx′

|f(x)|

• We show that q∗ attains its lower bound

〈
f2(x)W 2

∗ (x)
〉

q∗(x)
=

〈

f2(x)

(∫
|f(x′)|p(x′|y)dx′

)2

|f(x)|2

〉

q∗(x)

=

(∫

|f(x′)|p(x′|y)dx′
)2

= 〈|f(x)|〉2p(x|y)

= 〈|f(x)|W∗(x)〉2q∗(x)

• ⇒ There are distributions q∗ that are even “better” than the exact posterior!
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A link to alpha divergences

The α-divergence between two distributions is defined as

Dα(p||q) ≡
1

β(1− β)

(

1−

∫

dxp(x)βq(x)1−β

)

where β = (1 + α)/2 and p and q are two probability distributions

• limβ→0 Dα(p||q) = KL(q||p)

• limβ→1 Dα(p||q) = KL(p||q)

• β = 2, (α = 3)

D3(p||q) ≡
1

2

∫

dxp(x)2q(x)−1 −
1

2
=

1

2

〈
W (x)2

〉

q(x)
−

1

2

Best q (in a constrained family) is typically a heavy-tailed approximation to p
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Examples of Proposal Distributions

x1 x2

p(x|y) ∝ p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

y1 y2

Task: Obtain samples from the posterior p(x1:2|y1:2) = 1
Zy

φ(x1:2)

• Prior as the proposal. q(x1:2) = p(x1)p(x2|x1)

W (x1:2) =
φ(x1:2)

q(x1:2)
= p(y1|x1)p(y2|x2)

• We sample from the prior as follows:

x
(i)
1 ∼ p(x1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1|x

(i)
1 )p(y2|x

(i)
2 )
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Examples of Proposal Distributions

φ(x1:2) = p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

• State prediction as the proposal. q(x1:2) = p(x1|y1)p(x2|x1)

W (x1:2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1)
= p(y1)p(y2|x2)

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 ) W (x(i)) = p(y1)p(y2|x

(i)
2 )

• Note that this weight does not depend on x1
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Examples of Proposal Distributions

φ(x1:2) = p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

• Filtering distribution as the proposal. q(x1:2) = p(x1|y1)p(x2|x1, y2)

W (x1:2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1, y2)
= p(y1)p(y2|x1)

• We sample from the proposal and compute the weight

x
(i)
1 ∼ p(x1|y1) x

(i)
2 ∼ p(x2|x1 = x

(i)
1 , y2) W (x(i)) = p(y1)p(y2|x

(i)
1 )

• Note that this weight does not depend on x2
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Examples of Proposal Distributions

φ(x1:2) = p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

• Exact posterior as the proposal. q(x1:2) = p(x1|y1, y2)p(x2|x1, y2)

W (x1:2) =
p(y1|x1)p(x1)p(y2|x2)p(x2|x1)

p(x1|y1)p(x2|x1, y2)
= p(y1)p(y2|y1)

• Note that this weight is constant, i.e.
〈
W (x1:2)

2
〉
− 〈W (x1:2)〉

2 = 0
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Variance reduction

q(x) W (x) = φ(x)/q(x)

p(x1)p(x2|x1) p(y1|x1)p(y2|x2)

p(x1|y1)p(x2|x1) p(y1)p(y2|x2)

p(x1|y1)p(x2|x1, y2) p(y1)p(y2|x1)

p(x1|y1, y2)p(x2|x1, y2) p(y1)p(y2|y1)

Accurate proposals

• gradually decrease the variance

• but take more time to compute
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Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior
p(x0:K|y1:K).

p(x0:K|y1:K) =
1

p(y1:K)
p(y1:K|x0:K)p(x0:K) ≡

1

Zy
φ(x0:K) (4)

Key idea: sequential construction of the proposal distribution q, possibly using the
available observations y1:k, i.e.

q(x0:K|y1:K) = q(x0)
K∏

k=1

q(xk|x1:k−1y1:k)
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Sequential Importance Sampling

Due to the sequential nature of the model and the proposal, the importance weight
function W (x0:k) ≡Wk admits recursive computation

Wk =
φ(x0:k)

q(x0:k|y1:k)
=

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1y1:k)

φ(x0:k−1)

q(x0:k−1|y1:k−1)
(5)

=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, y1:k)
Wk−1 ≡ uk|0:k−1Wk−1 (6)

Suppose we had an approximation to the posterior (in the sense 〈f(x)〉φ ≈

P

i W
(i)
k−1f(x

(i)
0:k−1))

φ(x0:k−1) ≈
∑

i

W
(i)
k−1δ(x0:k−1 − x

(i)
0:k−1)

x
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

φ(x0:k) ≈
∑

i

W
(i)
k δ(x0:k − x

(i)
0:k)

Cemgil 5R1 Stochastic Processes, Introduction to SMC. March 08, 2007 43



Example

• Prior as the proposal density

q(xk|x0:k−1, y1:k) = p(xk|xk−1)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1Wk−1 Update weight

=
p(yk|x

(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1)

W
(i)
k−1 = p(yk|x

(i)
k )W

(i)
k−1

• However, this schema will not work, since we blindly sample from the prior. But
...
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Example (cont.)
• Perhaps surprisingly, interleaving importance sampling steps with (occasional)

resampling steps makes the approach work quite well !!

x
(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W
(i)
k = p(yk|x

(i)
k )W

(i)
k−1 Update weight

W̃
(i)
k = W

(i)
k /Z̃k Normalize (Z̃k ≡

∑

i′
W

(i′)
k )

x
(j)
0:k,new ∼

N∑

i=1

W̃ (i)δ(x0:k − x
(i)
0:k) Resample j = 1 . . . N

• This results in a new representation as

φ(x) ≈
1

N

∑

j

Z̃kδ(x0:k − x
(j)
0:k,new)

x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Optimal proposal distribution

• The algorithm in the previous example is known as Bootstrap particle filter or
Sequential Importance Sampling/Resampling (SIS/SIR).

• Can we come up with a better proposal in a sequential setting?

– We are not allowed to move previous sampling points x
(i)
1:k−1 (because in

many applications we can’t even store them)

– Better in the sense of minimizing the variance of weight function Wk(x).
(remember the optimality story in Eq.(3) and set f(x) = 1).

• The answer turns out to be the filtering distribution

q(xk|x1:k−1, y1:k) = p(xk|xk−1, yk) (7)
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Optimal proposal distribution (cont.)

• The weight is given by

x
(i)
k ∼ p(xk|x

(i)
k−1, yk) Extend trajectory

W
(i)
k = u

(i)
k|0:k−1W

(i)
k−1 Update weight

u
(i)
k|0:k−1 =

p(yk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1, yk)

×
p(yk|x

(i)
k−1)

p(yk|x
(i)
k−1)

=
p(yk, x

(i)
k |x

(i)
k−1)p(yk|x

(i)
k−1)

p(x
(i)
k , yk|x

(i)
k−1)

= p(yk|x
(i)
k−1)
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A Generic Particle Filter

1. Generation :
Compute the proposal distribution q(xk|x

(i)
0:k−1, y1:k).

Generate offsprings for i = 1 . . . N

x̂
(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k)

2. Evaluate importance weights

W
(i)
k =

p(yk|x̂
(i)
k )p(x̂

(i)
k |x

(i)
k−1)

q(x̂
(i)
k |x

(i)
0:k−1, y1:k)

W
(i)
k−1 x

(i)
0:k = (x̂

(i)
k , x

(i)
0:k−1)

3. Resampling (optional but recommended)

Normalize weigts W̃
(i)
k = W

(i)
k /Z̃k Z̃k ≡

X

j
W

(j)
k

Resample x
(j)
0:k,new ∼

NX
i=1

W̃ (i)δ(x0:k − x
(i)
0:k) j = 1 . . . N

Reset x
(i)
0:k ← x

(j)
0:k,new W

(i)
k ← Z̃k/N
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Particle Filtering
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Summary

• Time Series Models and Inference

– Nonlinear Dynamical systems
– Conditionally Gaussian Switching State Space Models
– Change-point models

• Importance Sampling, Resampling

• Putting it all together, Sequential Monte Carlo
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The End

Slides are online
http://www-sigproc.eng.cam.ac.uk/ ˜ atc27/papers/5R1/smc-tutor.pdf
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