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Outline

Goal: Provide motivating examples to the theory of Markov chains
(that Sumeet Singh has covered)

• Bayesian Inference, Probability models and Graphical model
notation

• The Gibbs sampler

• Metropolis-Hastings, MCMC Transition Kernels,

• Sketch of convergence results

• Simulated annealing and iterative improvement
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Bayes’ Theorem

Thomas Bayes (1702-1761)

“What you know about a parameter λ after the data D arrive is
what you knew before about λ and what the data D told you1.”

p(λ|D) =
p(D|λ)p(λ)

p(D)

Posterior =
Likelihood × Prior

Evidence

1(Janes 2003 (ed. by Bretthorst); MacKay 2003)
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An application of Bayes’ Theorem: “Source Separation”

Given two fair dice with outcomes λ and y,

D = λ+ y

What is λ when D = 9 ?
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“Burocratical” derivation

Formally we write

p(λ) = C(λ; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(y) = C(y; [ 1/6 1/6 1/6 1/6 1/6 1/6 ])

p(D|λ, y) = δ(D − (λ+ y))

Kronecker delta function denoting a degenerate (deterministic) distribution δ(x) =

{
1 x = 0
0 x 6= 0

p(λ, y|D) =
1

p(D)
× p(D|λ, y) × p(y)p(λ)

Posterior =
1

Evidence
× Likelihood × Prior

p(λ|D) =
∑

y

p(λ, y|D) Posterior Marginal
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An application of Bayes’ Theorem: “Source Separation”

D = λ+ y = 9

D = λ+ y y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

λ = 1 2 3 4 5 6 7
λ = 2 3 4 5 6 7 8
λ = 3 4 5 6 7 8 9
λ = 4 5 6 7 8 9 10
λ = 5 6 7 8 9 10 11
λ = 6 7 8 9 10 11 12

Bayes theorem “upgrades” p(λ) into p(λ|D).

But you have to provide an observation model: p(D|λ)

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 5



Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes λ1, λ2, . . . , λn,

D =
n∑

i=1

λi

How many dice are there when D = 9 ?

Assume that any number n is equally likely
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Another application of Bayes’ Theorem: “Model Selection”

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(n|D = 9) =
p(D = 9|n)p(n)

p(D)
∝ p(D = 9|n)

p(D|n = 1) =
∑

λ1

p(D|λ1)p(λ1)

p(D|n = 2) =
∑

λ1

∑

λ2

p(D|λ1, λ2)p(λ1)p(λ2)

. . .

p(D|n = n′) =
∑

λ1,...,λn′

p(D|λ1, . . . , λn′)
n′∏

i=1

p(λi)
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p(D|n) =
∑

λ
p(D|λ, n)p(λ|n)
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0
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Another application of Bayes’ Theorem: “Model Selection”

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

n = Number of Dice

p(
n|

D
 =

 9
)

• Complex models are more flexible but they spread their probability
mass

• Bayesian inference inherently prefers “simpler models” – Occam’s
razor

• Computational burden: We need to sum over all parameters λ
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Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

〈f(x)〉 =

∫

X

dxp(x)f(x) 〈f(x)〉 =
∑

x∈X

p(x)f(x)

• modes of functions under probability distributions: Optimization

x∗ = argmax
x∈X

p(x)f(x)

• any “mix” of the above: e.g.,

x∗ = argmax
x∈X

p(x) = argmax
x∈X

∫

Z

dzp(z)p(x|z)
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Directed Acyclic Graphical (DAG) Models
and

Factor Graphs

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 11



DAG Example: Two dice

p(λ) p(y)

λ y

D

p(D|λ, y)

p(D, λ, y) = p(D|λ, y)p(λ)p(y)
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DAG with observations

p(λ) p(y)

λ y

D

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y)
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Factor graphs (Kschischang et. al.)

• A bipartite graph. A powerful graphical representation of the inference problem

– Factor nodes : Black squares. Factor potentials (local functions) defining
the posterior.

– Variable nodes : White Nodes. Define collections of random variables
– Edges : denote membership. A variable node is connected to a factor node

if a member variable is an argument of the local function.

p(λ) p(y)

λ y

p(D = 9|λ, y)

φD(λ, y) = p(D = 9|λ, y)p(λ)p(y) = φ1(λ, y)φ2(λ)φ3(y)
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Probability Models
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Example: AR(1) model

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

xk = Axk−1 + ǫk k = 1 . . .K

ǫk is i.i.d., zero mean and normal with variance R.

Estimation problem :

Given x0, . . . , xK, determine coefficient A and variance R (both scalars).
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AR(1) model, Generative Model notation

A ∼ N (A; 0, P )

R ∼ IG(R; ν, β/ν)

xk|xk−1, A,R ∼ N (xk;Axk−1, R) x0 = x̂0

A R

x0 x1 . . . xk−1 xk . . . xK

Observed variables are shown with double circles
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Example, Univariate Gaussian

The Gaussian distribution with mean m and covariance S has the form

N (x;m,S) = (2πS)−1/2 exp{−
1

2
(x−m)2/S}

= exp{−
1

2
(x2 +m2 − 2xm)/S −

1

2
log(2πS)}

= exp

{
m

S
x−

1

2S
x2 −

(
1

2
log(2πS) +

1

2S
m2

)}

= exp{

(
m/S
−1

2/S

)⊤

︸ ︷︷ ︸
θ

(
x
x2

)

︸ ︷︷ ︸

ψ(x)

−c(θ)}

Hence by matching coefficients we have

exp
{
−1

2Kx
2 + hx+ g

}
⇔ S = K−1 m = K−1h

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 18



Example, Gaussian
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The Multivariate Gaussian Distribution

µ is the mean and P is the covariance:

N (s;µ, P ) = |2πP |−1/2 exp

(

−
1

2
(s− µ)TP−1(s− µ)

)

= exp

(

−
1

2
sTP−1s+ µTP−1s−

1

2
µTP−1µ−

1

2
|2πP |

)

logN (s;µ, P ) = −
1

2
sTP−1s+ µTP−1s+ const

= −
1

2
TrP−1ssT + µTP−1s+ const

=+ −
1

2
TrP−1ssT + µTP−1s

Notation: log f(x) =+ g(x) ⇐⇒ f(x) ∝ exp(g(x)) ⇐⇒ ∃c ∈ R : f(x) = c exp(g(x))

log p(s) =+ −
1

2
TrKssT + h⊤s ⇒ p(s) = N (s;K−1h,K−1)
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Example, Inverse Gamma

The inverse Gamma distribution with shape a and scale b

IG(r; a, b) =
1

Γ(a)

r−(a+1)

ba
exp(−

1

br
)

= exp

(

−(a+ 1) log r −
1

br
− log Γ(a) − a log b

)

= exp

((
−(a+ 1)
−1/b

)⊤(
log r
1/r

)

− log Γ(a) − a log b

)

Hence by matching coefficients, we have

exp

{

α log r + β
1

r
+ c

}

⇔ a = −α− 1 b = −1/β
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Example, Inverse Gamma

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a=1  b=1

a=1 b=0.5

a=2 b=1
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Basic Distributions : Exponential Family

• Following distributions are used often as elementary building blocks:

– Gaussian
– Gamma, Inverse Gamma, (Exponential, Chi-square, Wishart)
– Dirichlet
– Discrete (Categorical), Bernoulli, multinomial

• All of those distributions can be written as

p(x|θ) = exp{θ⊤ψ(x) − c(θ)}

c(θ) = log

∫

Xn
dx exp(θ⊤ψ(x)) log-partition function

θ canonical parameters

ψ(x) sufficient statistics
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Conjugate priors: Posterior is in the same family as the prio r.

Example: posterior inference for the variance R of a zero mean Gaussian.

p(x|R) = N (x; 0, R)

p(R) = IG(R; a, b)

p(R|x) ∝ p(R)p(x|R)

∝ exp

(

−(a+ 1) logR − (1/b)
1

R

)

exp

(

−(x2/2)
1

R
−

1

2
logR

)

= exp

((
−(a+ 1 + 1

2)
−(1/b+ x2/2)

)⊤(
logR
1/R

))

∝ IG(R; a+
1

2
,

2

x2 + 2/b
)

Like the prior, this is an inverse-Gamma distribution.
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Conjugate priors: Posterior is in the same family as the prio r.

Example: posterior inference of variance R from x1, . . . , xN .

R

x1 x2 . . . xN xN+1

p(R|x) ∝ p(R)
N∏

i=1

p(xi|R)

∝ exp

(

−(a+ 1) logR− (1/b)
1

R

)

exp

(

−

(

1

2

∑

i

x
2
i

)

1

R
−
N

2
logR

)

= exp

((
−(a + 1 + N

2 )

−(1/b + 1
2

∑

i x
2
i )

)⊤ (
logR

1/R

))

∝ IG(R; a+
N

2
,

2
∑

i x
2
i + 2/b

)

Sufficient statistics are additive

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 25



Inverse Gamma,
∑

i x
2
i = 10 N = 10

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Σ
i
 x

i
2 = 10    N = 10
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Inverse Gamma,
∑

i x
2
i = 100 N = 100

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Σ
i
 x

i
2 = 100    N = 100
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Inverse Gamma,
∑

i x
2
i = 1000 N = 1000

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Σ
i
 x

i
2 = 1000    N = 1000
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Example: AR(1) model

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

xk = Axk−1 + ǫk k = 1 . . .K

ǫk is i.i.d., zero mean and normal with variance R.

Estimation problem :

Given x0, . . . , xK, determine coefficient A and variance R (both scalars).
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AR(1) model, Generative Model notation

A ∼ N (A; 0, P )

R ∼ IG(R; ν, β/ν)

xk|xk−1, A,R ∼ N (xk;Axk−1, R) x0 = x̂0

A R

x0 x1 . . . xk−1 xk . . . xK

Gaussian : N (x;µ, V ) ≡ |2πV |−
1
2 exp(−1

2(x− µ)2/V )

Inverse-Gamma distribution: IG(x; a, b) ≡ Γ(a)−1b−ax−(a+1) exp(−1/(bx)) x ≥ 0

Observed variables are shown with double circles
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AR(1) Model. Bayesian Posterior Inference

p(A,R|x0, x1, . . . , xK) ∝ p(x1, . . . , xK|x0, A,R)p(A,R)

Posterior ∝ Likelihood × Prior

Using the Markovian (conditional independence) structure we have

p(A,R|x0, x1, . . . , xK) ∝

(
K∏

k=1

p(xk|xk−1, A,R)

)

p(A)p(R)

A R

x0 x1 . . . xk−1 xk . . . xK
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Numerical Example

Suppose K = 1,

A R

x0 x1

A R

x0 x1

By Bayes’ Theorem and the structure of AR(1) model

p(A,R|x0, x1) ∝ p(x1|x0, A,R)p(A)p(R)

= N (x1;Ax0, R)N (A; 0, P )IG(R; ν, β/ν)
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Numerical Example

p(A,R|x0, x1) ∝ p(x1|x0, A,R)p(A)p(R)

= N (x1;Ax0, R)N (A; 0, P )IG(R; ν, β/ν)

∝ exp

(

−
1

2

x2
1

R
+ x0x1

A

R
−

1

2

x2
0A

2

R
−

1

2
log 2πR

)

exp

(

−
1

2

A2

P

)

exp

(

−(ν + 1) logR−
ν

β

1

R

)

This posterior has a nonstandard form

exp

(

α1
1

R
+ α2

A

R
+ α3

A2

R
+ α4 logR+ α5A

2

)
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Numerical Example, the prior p(A,R)

Equiprobability contour of p(A)p(R)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

A ∼ N (A; 0, 1.2) R ∼ IG(R; 0.4, 250)

Suppose: x0 = 1 x1 = −6 x1 ∼ N (x1;Ax0, R)
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Numerical Example, the posterior p(A,R|x)

A

R

−8 −6 −4 −2 0 2 4 6
10

−4

10
−2

10
0

10
2

10
4

Note the bimodal posterior with x0 = 1, x1 = −6

• A ≈ −6 ⇔ low noise variance R.
• A ≈ 0 ⇔ high noise variance R.
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Remarks

• Even very simple models can lead easily to complicated posterior
distributions

• Ambiguous data usually leads to a multimodal posterior, each
mode corresponding to one possible explanation

• A-priori independent variables often become dependent a-
posteriori (“Explaining away”)

• (Unfortunately), exact posterior inference is only possible for few
special cases

⇒ We need numerical approximate inference methods
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Approximate Inference

• Markov Chain Monte Carlo, Gibbs sampler

It turns out that the Gibbs sampler can be viewed as a message passing algorithm
on a factor graph

• Lets focus on a simpler graph to illustrate these algorithms

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)
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Toy Model : “One sample source separation”

s1

p(s1)

s2

p(s2)

x

p(x|s1, s2)

This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)

s1 ∼ p(s1) = N (s1;µ1, P1)

s2 ∼ p(s2) = N (s2;µ2, P2)

x|s1, s2 ∼ p(x|s1, s2) = N (x; s1 + s2, R)
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Toy example

Suppose, we observe x = x̂.

s1

p(s1)

s2

p(s2)

x

p(x = x̂|s1, s2)

• By Bayes’ theorem, the posterior is given by:

P ≡ p(s1, s2|x = x̂) =
1

Zx̂
p(x = x̂|s1, s2)p(s1)p(s2) ≡

1

Zx̂
φ(s1, s2)

• The function φ(s1, s2) is proportional to the exact posterior. (Zx̂ ≡ p(x = x̂))
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Toy example, cont.

log p(s1) = µT1 P
−1
1 s1 −

1

2
sT1 P

−1
1 s1 + const

log p(s2) = µT2 P
−1
2 s2 −

1

2
sT2 P

−1
2 s2 + const

log p(x|s1, s2) = x̂TR−1(s1 + s2) −
1

2
(s1 + s2)

TR−1(s1 + s2) + const

log φ(s1, s2) = log p(x = x̂|s1, s2) + log p(s1) + log p(s2)

=+
(
µT1 P

−1
1 + x̂TR−1

)
s1 +

(
µT2 P

−1
2 + x̂TR−1

)
s2

−
1

2
Tr
(
P−1

1 +R−1
)
s1s

T
1 − sT1R

−1s2
︸ ︷︷ ︸

(∗)

−
1

2
Tr
(
P−1

2 +R−1
)
s2s

T
2

• The (*) term is the cross correlation term that makes s1 and s2 a-posteriori
dependent.
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Toy example, cont.

Completing the square

log φ(s1, s2) =+

(
P−1

1 µ1 +R−1x̂
P−1

2 µ2 +R−1x̂

)⊤(
s1
s2

)

−
1

2

(
s1
s2

)⊤(
P−1

1 +R−1 R−1

R−1 P−1
2 +R−1

)(
s1
s2

)

Remember: logN (s;m,Σ) =+ (Σ
−1
m)

⊤
s−

1

2
s
⊤
Σ

−1
s

Σ =

(
P−1

1 + R−1 R−1

R−1 P−1
2 + R−1

)−1

m = Σ

(
P−1

1 µ1 + R−1x̂

P−1
2 µ2 + R−1x̂

)
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Gibbs sampler

• We define the following iterative schema to generate a Markov Chain

s
(t+1)
1 ∼ p(s1|s

(t)
2 , x = x̂) ∝ φ(s1, s

(t)
2 )

s
(t+1)
2 ∼ p(s2|s

(t+1)
1 , x = x̂) ∝ φ(s

(t+1)
1 , s2)

• The desired posterior P is the stationary distribution of T (why? – later...).

• A remarkable fact is that we can estimate any desired expectation by ergodic
averages

〈f(s)〉P ≈
1

t− t0

t∑

n=t0

f(s(n))

• Consecutive samples s(t) are dependent but we can “pretend” as if they are
independent!
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Gibbs Sampling

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)

s1
(t+1) ∼ N (s1;m1(s

(t)
2 ), S1)
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Gibbs Sampling

p(s1) p(s2)

s1 s2

p(x = x̂|s1, s2)

s2
(t+1) ∼ N (s2;m2(s

(t+1)
1 ), S2)
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Gibbs Sampling

s
1

s 2
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Gibbs Sampling, t = 20

s
1

s 2
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Gibbs Sampling, t = 100

s
1

s 2
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Gibbs Sampling, t = 250

s
1

s 2
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Finding the full conditionals

s1
(t+1) ∼ p(s1|s

(t)
2 , x = x̂) ∝ φ(s1, s

(t)
2 )

Eliminate terms that don’t depend on s1

log φ(s1, s
(t)
2 ) = log p(x = x̂|s1, s

(t)
2 ) + log p(s1) + log p(s

(t)
2 )

=+ µ⊤
1 P

−1
1 s1 −

1

2
s1

⊤P−1
1 s1

︸ ︷︷ ︸

log p(s1)

+ x̂⊤R−1(s1 + s
(t)
2 ) −

1

2
(s1 + s

(t)
2 )⊤R−1(s1 + s

(t)
2 )

︸ ︷︷ ︸

p(x=x̂|s1,s
(t)
2 )

=+
(

µ
⊤
1 P

−1
1 + (x̂− s

(t)
2 )

⊤
R

−1
)

s1 −
1

2
Tr
(

P
−1
1 + R

−1
)

s1s1
⊤

p(s1|s
(t)
2 , x = x̂) = N (s1;m1, S1)

S1 =
(
P−1

1 +R−1
)−1

m1(s
(t)
2 ) = S1

(

P−1
1 µ1 +R−1(x̂− s

(t)
2 )
)
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The transition kernel

T (s
(t+1)
1 , s

(t+1)
2 |s

(t)
1 , s

(t)
2 ) = T (s

(t+1)
2 |s

(t+1)
1 , s

(t)
1 , s

(t)
2 )T (s

(t+1)
1 |s

(t)
1 , s

(t)
2 )

= T (s
(t+1)
2 |s

(t+1)
1 )T (s

(t+1)
1 |s

(t)
2 )

= N (s
(t+1)
2 ;m2(s

(t+1)
1 ), S2)N (s

(t+1)
1 ;m1(s

(t)
2 ), S1)

Therefore, the transition kernel is also Gaussian.
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The transition kernel

s
1

s 2

s
1

s 2

But why does the chain converge to the target distribution?

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 51



Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel T (s′|s) with the stationary distribution
P = φ(s)/Zx ≡ π(s) for any initial distribution r(s).

π(s) = T∞r(s) (1)

• Sample s(0) ∼ r(s)

• For t = 1 . . .∞, Sample s(t) ∼ T (s|s(t−1))

• Estimate any desired expectation by the average

〈f(s)〉π(s) ≈
1

t− t0

t∑

n=t0

f(s(n))

where t0 is a preset burn-in period.

But how to construct T and verify that π(s) is indeed its stationary distribution ?

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 52



Proof Technique

• Show that the target distribution is a stationary distribution of the Markov chain

– Verify detailed balance

• Show that the transition kernel T has a unique stationary distribution

– Verify irreducibility and aperiodicity ⇒ unique stationary distribution
∗ Irreducibility (probabilisic connectedness): Every state s′ can be reached

from every s

T (s′|s) =

(
1 0
0 1

)

is not irreducible

∗ Aperiodicity : Cycling around is not allowed

T (s′|s) =

(
0 1
1 0

)

is not aperiodic

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 53



Reminder of Theory of Markov Chains

1 3

2

0.1

0.7

0.2

0.9
0.3

0.8






0.1 0 0.2

0.9 0.7 0.8

0 0.3 0






• Suppose the inital state is 1, we have

p(1) = Tp(0) =





0.1 0 0.2
0.9 0.7 0.8
0 0.3 0









1
0
0



 =





0.1
0.9
0
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Numeric Example

• Continue

p(2) = T





0.1
0.9
0



 =





0.01
0.72
0.27





p(3) = T





0.01
0.72
0.27



 =





0.05
0.73
0.22
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0

0.5

1

t

p(t
)

 

 
p

1

p
2

p
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Convergence to a stationary distribution

Starting from other configurations does not alter the picture

• p(0) =
(

0 1 0
)⊤

0 1 2 3 4 5 6 7 8 9
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t
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)

 

 
p
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p
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• p(0) =
(

0 0 1
)⊤
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0
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p
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p
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p
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Examples: Irreducable chain

1 3

2

0.1

0.7

0.2

0.9
0.3

0.8






0.1 0 0.2

0.9 0.7 0.8

0 0.3 0






• All states communicate ⇒ Chain is said to be irreducable

• All states recurrent
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Examples: Transient states

1 3

2

0.1

0.7

0.9
0.3

1






0.1 0 0

0.9 0.7 1

0 0.3 0






• When the chain leaves state 1, it never returns ⇒ State 1 is transient

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 58



Examples: Reducable chains

1 3

2

1 1

1






1 0 0

0 1 0

0 0 1






• Disconnected subgraphs in state transition diagram ⇒ Chain is reducable

• No unique stationary distribution

Cemgil 5R1 Stochastic Processes, MCMC methods for Bayesian Inference. March 06, 2008 59



Example: Periodic

1 3

2

1

1 1






0 0 1

1 0 0

0 1 0






• All states communicate, but ...

• Effect of Initial distribution p(s0) on p(st) does not diminish when t→ ∞
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Example: Periodic

There is no stationary distribution

• p(0) =
(

0 0 1
)⊤
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• p(0) =
(

0.3 0.1 0.6
)⊤
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Example: Mixture

1 3

2

ǫ ǫ

ǫ

1 − ǫ

1 − ǫ 1 − ǫ (1 − ǫ)






0 0 1

1 0 0

0 1 0




+ ǫ






1 0 0

0 1 0

0 0 1






• All states communicate, not periodic

• Is there a unique stationary distribution?
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Example: Mixture

• There is a stationary distribution p(∞) =
(

1/3 1/3 1/3
)⊤

• ǫ = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

t

p(t
)

 

 
p

1

p
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p
3

• ǫ = 0.25

0 1 2 3 4 5 6 7 8 9
0
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t
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p

1

p
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p
3

• Convergence rates are different
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Example: Mixture

• There is a stationary distribution p(∞) =
(

1/3 1/3 1/3
)⊤

• ǫ = 0.75

0 1 2 3 4 5 6 7 8 9
0

0.5

1

t

p(t
)

 

 
p

1

p
2

p
3

• ǫ = 0.9
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Example

1 3

2

ǫ1 ǫ3

ǫ2

1 − ǫ3

1 − ǫ1 1 − ǫ2






ǫ1 0 1 − ǫ3
1 − ǫ1 ǫ2 0

0 1 − ǫ2 ǫ3






• Self transition probabilities ǫ1 > ǫ2 > ǫ3 ⇒ p
(∞)
1 > p

(∞)
2 > p

(∞)
3 , but the exact

relationship is not trivial

• How can we find the stationary distribution ? How fast is the convergence ?

• How can we design a chain that will converge to a given target distribution ?
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Stationary Distribution

• We compute an eigendecomposition

T = BΛB−1

Λ = diag(1, λ2, . . . , λK)

• The stationary distribution is given by the limit

lim
t→∞

p(t) = lim
t→∞

Ttp(0)

Tt = BΛB−1BΛ . . .ΛB−1 = BΛtB−1

• It turns out since T is a conditional probability matrix (columns sum up to one),
the eigenvalues satisfy

1 = λ1 ≥ |λ2| ≥ |λ3| ≥ · · · ≤ |λK|
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Stationary Distribution

• If and only if |λ2| < 1

Tt = B







1 0 0
0 λt2 0

. . .
0 λtK






B−1 t→∞

−−−→ B







1 0 0
0 0 0

. . .
0 0






B−1

=







π1

π2
...
πK







(
1 1 . . . 1

)

• Geometric Convergence property, there exist c > 0 s.t.

‖Ttp(0) − π‖var ≤ c|λ2|
t

• However, it is hard to show algebraically that |λ2| < 1. Fortunately, there is a...
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Convergence Theorem (for finite-state Markov Chains)

• Finite State space X = {1, 2, . . . ,K}

• T is irreducable and aperiodic, then there exist 0 < r < 1 and c > 0 s.t.

‖Ttp(0) − π‖var ≤ crt

where π is the invariant distribution

‖P −Q‖var ≡
1

2

∑

s∈X

|P (s) −Q(s)|
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MCMC Equilibrium condition = Detailed Balance

T (s|s′)π(s′) = T (s′|s)π(s)

If detailed balance is satisfied then π(s) is a stationary distribution

π(s) =

∫

ds′T (s|s′)π(s′)

If the configuration space is discrete, we have

π(s) =
∑

s′

T (s|s′)π(s′)

π = Tπ

π has to be a (right) eigenvector of T .
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Metropolis-Hastings Kernel

• We choose an arbitrary proposal distribution q(s′|s) (that satisfies mild
regularity conditions).
(When q is symmetric, i.e., q(s′|s) = q(s|s′), we have a Metropolis algorithm.)

• We define the acceptance probability of a jump from s to s′ as

a(s→ s′) ≡ min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
}

1
0

1

a(
s=

1 
→

 s
’)

5
0

1

a(
s=

5 
→

 s
’)

s’

1 5
0

50

100

φ(
s’

)
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Acceptance Probability a(s→ s′)

s’

s
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Basic MCMC algorithm: Metropolis-Hastings

1. Initialize: s(0) ∼ r(s)

2. For t = 1, 2, . . .

• Propose:

s′ ∼ q(s′|s(t−1))

• Evaluate Proposal: u ∼ Uniform[0, 1]

s(t) :=







s′ u < a(s(t−1) → s′) Accept

s(t−1) otherwise Reject
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Transition Kernel of the Metropolis-Hastings

T (s′|s) = q(s′|s)a(s→ s′)
︸ ︷︷ ︸

Accept

+ δ(s′ − s)

∫

ds′q(s′|s)(1 − a(s→ s′))
︸ ︷︷ ︸

Reject

s

s’

σ2 = 10

−5 0 5 10 15 20

−5

0

5
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15

20

Only Accept part for visual convenience
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Verification of detailed balance for Metropolis

π(s) =
1

Z
φ(s)

a(s→ s′) = min{1,
π(s′)

π(s)
} = min{1,

φ(s′)

φ(s)
} q(s|s′) = q(s′|s)

T (s′|s)π(s) = q(s′|s)min{1,
φ(s′)

φ(s)
}π(s) {+δ(s− s′)π(s) . . . }

= q(s′|s)min{
φ(s)

Z
,
φ(s′)

φ(s)

φ(s)

Z
}

= q(s′|s)min{
φ(s)

Z
,
φ(s′)

Z
}

= q(s|s′)
φ(s′)

Z
min{

φ(s)/Z

φ(s′)/Z
, 1} = T (s|s′)π(s′)
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Verification of detailed balance for Metropolis-Hastings

π(s) =
1

Z
φ(s)

a(s→ s′) = min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
} = min{1,

q(s|s′)φ(s′)

q(s′|s)φ(s)
}

T (s′|s)π(s) = q(s′|s)min{1,
q(s|s′)φ(s′)

q(s′|s)φ(s)
}
φ(s)

Z

= min{q(s′|s)
φ(s)

Z
,
q(s|s′)φ(s′)

Z
} = T (s|s′)π(s′)
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Verification of detailed balance for Gibbs

• The transition kernel for Gibbs sampler is a product of transition kernels
operating on a single coordinate i.

• The transition kernel for a deterministic scan Gibbs sampler is

T =
∏

i

Ti

π(si, s−i) =
1

Z
φ(si, s−i)

qi(s
′
i, s

′
−i|si, s−i) =

1

Zi
φ(s′i|s−i)δ(s−i − s′−i)
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The acceptance probability is

a(s→ s′) = min{1,
q(s|s′)π(s′)

q(s′|s)π(s)
}

= min{1,
1
Zi
φ(si|s′−i)δ(s−i − s′−i)

1
Zφ(s′i, s

′
−i)

1
Zi
φ(s′i|s−i)δ(s−i − s′−i)

1
Zφ(si, s−i)

}

= min{1,
1
Zi
φ(si|s−i)

1
Zφ(s′i, s−i)

1
Zi
φ(s′i|s−i)

1
Zφ(si, s−i)

}

= min{1,
1
Zi
φ(si|s−i)

1
Zφ(s′i|s−i)φ(s−i)

1
Zi
φ(s′i|s−i)

1
Zφ(si|s−i)φ(s−i)

} = 1

Hence all the moves are accepted by default.
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Cascades and Mixtures of Transition Kernels

Let T1 and T2 have the same stationary distribution p(s).

Then:

Tc = T1T2

Tm = νT1 + (1 − ν)T2 0 ≤ ν ≤ 1

are also transition kernels with stationary distribution p(s).

This opens up many possibilities to “tailor” application specific algorithms.

For example let

T1 : global proposal (allows large “jumps”)
T2 : local proposal (investigates locally)

We can use Tm and adjust ν as a function of rejection rate.
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Various Kernels with the same stationary distribution
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q(s′|s) = N (s′; s, σ2)
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Optimization : Simulated Annealing and Iterative Improvem ent

For optimization, (e.g. to find a MAP solution)

s∗ = arg max
s∈S

π(s)

The MCMC sampler may not visit s∗.

Simulated Annealing : We define the target distribution as

π(s)τi

where τi is an annealing schedule. For example,

τ1 = 0.1, . . . , τN = 10, τN+1 = ∞ . . .

Iterative Improvement (greedy search) is a special case of SA

τ1 = τ2 = · · · = τN = ∞
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Acceptance probabilities a(s→ s′) at different τ
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Summary

• Bayesian Inference,

• Probability models and Graphical model notation

– Directed Graphical models, Factor Graphs

• The Gibbs sampler

• Metropolis-Hastings, MCMC Transition Kernels

• Sketch of convergence results

• Simulated annealing and iterative improvement
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The End

Slides will be available online
http://www-sigproc.eng.cam.ac.uk/ ˜ atc27/papers/5R1/
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