MCMC methods for Bayesian Inference

A. Taylan Cemgil

Signal Processing and Communications Lab.

Department of Engineering

5R1 Stochastic Processes March 06, 2008

Outline

Goal: Provide motivating examples to the theory of Markov chains (that Sumeet Singh has covered)

- Bayesian Inference, Probability models and Graphical model notation
- The Gibbs sampler
- Metropolis-Hastings, MCMC Transition Kernels,
- Sketch of convergence results
- Simulated annealing and iterative improvement

Bayes' Theorem

Thomas Bayes (1702-1761)

"What you know about a parameter λ after the data \mathcal{D} arrive is what you knew before about λ and what the data \mathcal{D} told you¹."

$$p(\lambda|\mathcal{D}) = \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})}$$

Posterior =
$$\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$$

¹(Janes 2003 (ed. by Bretthorst); MacKay 2003)

An application of Bayes' Theorem: "Source Separation"

Given two fair dice with outcomes λ and y,

$$\mathcal{D} = \lambda + y$$

What is λ when $\mathcal{D} = 9$?

"Burocratical" derivation

Formally we write

Kronecker delta function denoting a degenerate (deterministic) distribution $\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$

$$p(\lambda, y | \mathcal{D}) = \frac{1}{p(\mathcal{D})} \times p(\mathcal{D} | \lambda, y) \times p(y) p(\lambda)$$

Posterior = $\frac{1}{\text{Evidence}} \times \text{Likelihood} \times \text{Prior}$
$$p(\lambda | \mathcal{D}) = \sum_{y} p(\lambda, y | \mathcal{D}) \text{Posterior Marginal}$$

An application of Bayes' Theorem: "Source Separation"

$$\mathcal{D} = \lambda + y = 9$$

$\mathcal{D} = \lambda + y$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	2	3	4	5	6	7
$\lambda = 2$	3	4	5	6	7	8
$\lambda = 3$	4	5	6	7	8	9
$\lambda = 4$	5	6	7	8	9	10
$\lambda = 5$	6	7	8	9	10	11
$\lambda = 6$	7	8	9	10	11	12

Bayes theorem "upgrades" $p(\lambda)$ into $p(\lambda|\mathcal{D})$.

But you have to provide an observation model: $p(\mathcal{D}|\lambda)$

Another application of Bayes' Theorem: "Model Selection"

Given an unknown number of fair dice with outcomes $\lambda_1, \lambda_2, \ldots, \lambda_n$,

$$D = \sum_{i=1}^{n} \lambda_i$$

How many dice are there when $\mathcal{D} = 9$?

Assume that any number n is equally likely

Another application of Bayes' Theorem: "Model Selection"

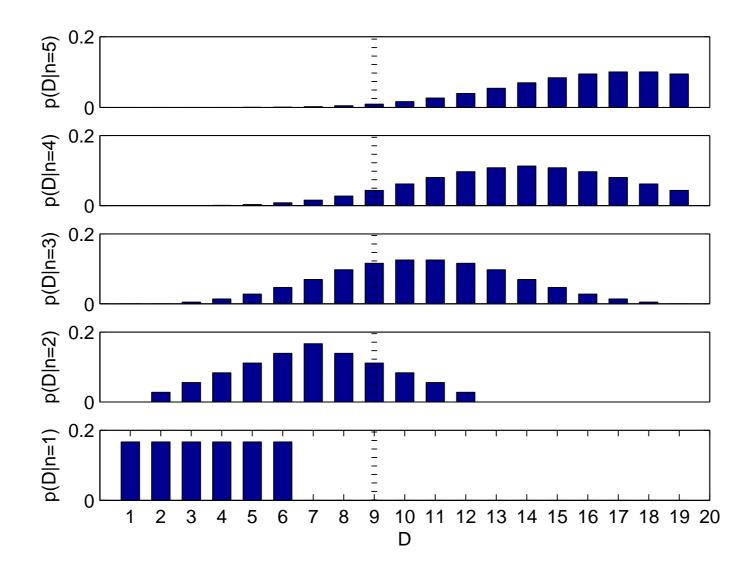
Given all *n* are equally likely (i.e., p(n) is flat), we calculate (formally)

$$p(n|\mathcal{D}=9) = \frac{p(\mathcal{D}=9|n)p(n)}{p(\mathcal{D})} \propto p(\mathcal{D}=9|n)$$

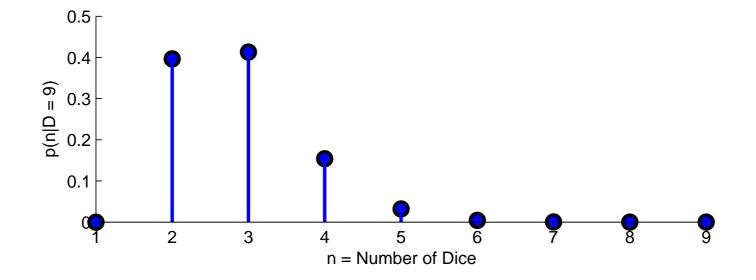
$$p(\mathcal{D}|n=1) = \sum_{\lambda_1} p(\mathcal{D}|\lambda_1) p(\lambda_1)$$

$$p(\mathcal{D}|n=2) = \sum_{\lambda_1} \sum_{\lambda_2} p(\mathcal{D}|\lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2)$$
...
$$p(\mathcal{D}|n=n') = \sum_{\lambda_1, \dots, \lambda_{n'}} p(\mathcal{D}|\lambda_1, \dots, \lambda_{n'}) \prod_{i=1}^{n'} p(\lambda_i)$$

 $p(\mathcal{D}|n) = \sum_{\lambda} p(\mathcal{D}|\lambda, n) p(\lambda|n)$



Another application of Bayes' Theorem: "Model Selection"



- Complex models are more flexible but they spread their probability mass
- Bayesian inference inherently prefers "simpler models" Occam's razor
- Computational burden: We need to sum over all parameters λ

Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

$$\langle f(x) \rangle = \int_{\mathcal{X}} dx p(x) f(x) \qquad \langle f(x) \rangle = \sum_{x \in \mathcal{X}} p(x) f(x)$$

• modes of functions under probability distributions: Optimization

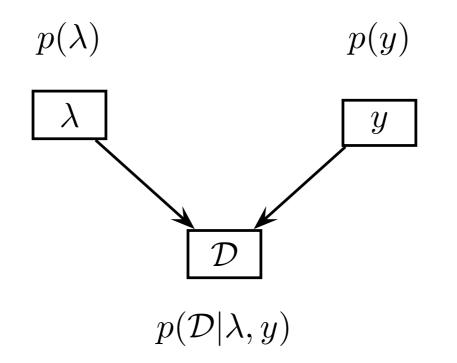
$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} p(x) f(x)$$

• any "mix" of the above: e.g.,

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} p(x) = \operatorname*{argmax}_{x \in \mathcal{X}} \int_{\mathcal{Z}} dz p(z) p(x|z)$$

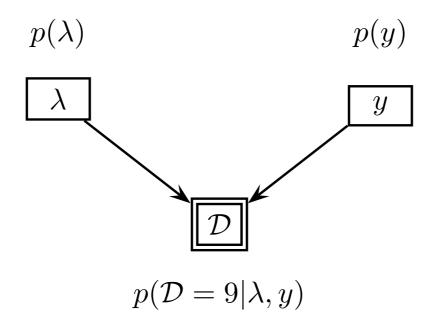
Directed Acyclic Graphical (DAG) Models and Factor Graphs

DAG Example: Two dice



$$p(\mathcal{D}, \lambda, y) = p(\mathcal{D}|\lambda, y)p(\lambda)p(y)$$

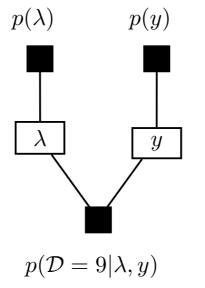
DAG with observations



$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

Factor graphs (Kschischang et. al.)

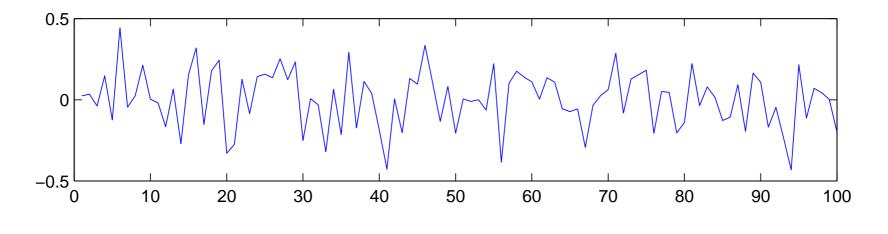
- A bipartite graph. A powerful graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior.
 - Variable nodes: White Nodes. Define collections of random variables
 - Edges: denote membership. A variable node is connected to a factor node if a member variable is an argument of the local function.



$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y) = \phi_1(\lambda, y)\phi_2(\lambda)\phi_3(y)$$

Probability Models

Example: AR(1) model



 $x_k = Ax_{k-1} + \epsilon_k \qquad \qquad k = 1 \dots K$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

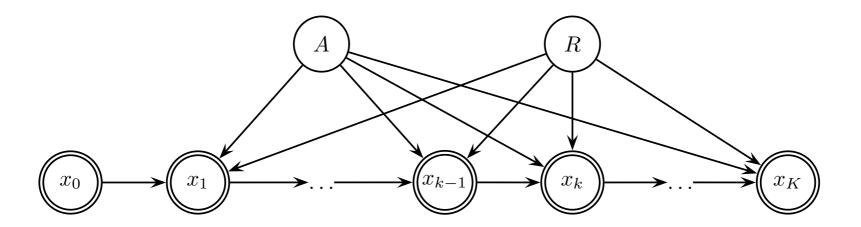
Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \beta/\nu)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; A x_{k-1}, R) \qquad x_0 = \hat{x}_0$$



Observed variables are shown with double circles

Example, Univariate Gaussian

The Gaussian distribution with mean m and covariance S has the form

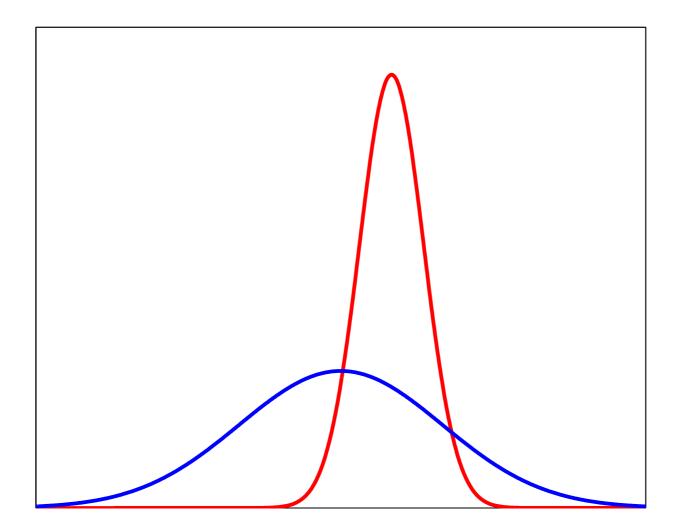
$$\mathcal{N}(x;m,S) = (2\pi S)^{-1/2} \exp\{-\frac{1}{2}(x-m)^2/S\}$$

= $\exp\{-\frac{1}{2}(x^2+m^2-2xm)/S - \frac{1}{2}\log(2\pi S)\}$
= $\exp\{\frac{m}{S}x - \frac{1}{2S}x^2 - \left(\frac{1}{2}\log(2\pi S) + \frac{1}{2S}m^2\right)\}$
= $\exp\{\underbrace{\left(\frac{m/S}{-\frac{1}{2}/S}\right)^{\top}}_{\theta}\underbrace{\left(\frac{x}{x^2}\right)}_{\psi(x)} - c(\theta)\}$

Hence by matching coefficients we have

$$\exp\left\{-\frac{1}{2}Kx^2 + hx + g\right\} \Leftrightarrow S = K^{-1} \quad m = K^{-1}h$$

Example, Gaussian



The Multivariate Gaussian Distribution

 μ is the mean and P is the covariance:

$$\begin{split} \mathcal{N}(s;\mu,P) &= |2\pi P|^{-1/2} \exp\left(-\frac{1}{2}(s-\mu)^T P^{-1}(s-\mu)\right) \\ &= \exp\left(-\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s - \frac{1}{2}\mu^T P^{-1}\mu - \frac{1}{2}|2\pi P|\right) \\ \log \mathcal{N}(s;\mu,P) &= -\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s + \text{ const} \\ &= -\frac{1}{2}\operatorname{\mathbf{Tr}} P^{-1}ss^T + \mu^T P^{-1}s + \text{ const} \\ &=^+ -\frac{1}{2}\operatorname{\mathbf{Tr}} P^{-1}ss^T + \mu^T P^{-1}s \end{split}$$

Notation: $\log f(x) =^+ g(x) \iff f(x) \propto \exp(g(x)) \iff \exists c \in \mathbb{R} : f(x) = c \exp(g(x))$

$$\log p(s) =^{+} -\frac{1}{2}\operatorname{Tr} Kss^{T} + h^{\top}s \implies p(s) = \mathcal{N}(s; K^{-1}h, K^{-1})$$

Example, Inverse Gamma

The inverse Gamma distribution with shape a and scale b

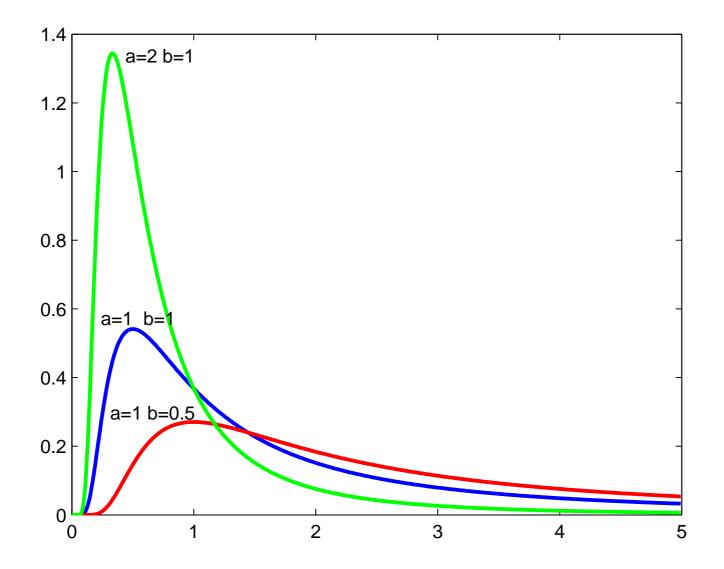
$$\mathcal{IG}(r;a,b) = \frac{1}{\Gamma(a)} \frac{r^{-(a+1)}}{b^a} \exp(-\frac{1}{br})$$

= $\exp\left(-(a+1)\log r - \frac{1}{br} - \log\Gamma(a) - a\log b\right)$
= $\exp\left(\left(\begin{pmatrix} -(a+1)\\ -1/b \end{pmatrix}^\top \begin{pmatrix} \log r\\ 1/r \end{pmatrix} - \log\Gamma(a) - a\log b\right)\right)$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = -\alpha - 1 \qquad b = -1/\beta$$

Example, Inverse Gamma



Basic Distributions : Exponential Family

- Following distributions are used often as elementary building blocks:
 - Gaussian
 - Gamma, Inverse Gamma, (Exponential, Chi-square, Wishart)
 - Dirichlet
 - Discrete (Categorical), Bernoulli, multinomial
- All of those distributions can be written as

$$p(x|\theta) = \exp\{\theta^{\top}\psi(x) - c(\theta)\}$$

$$c(\theta) = \log \int_{\mathcal{X}^n} dx \; \exp(\theta^\top \psi(x)) \; \text{ log-partition function}$$

$$\theta \qquad \qquad \text{canonical parameters}$$

$$\psi(x) \qquad \qquad \text{sufficient statistics}$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance R of a zero mean Gaussian.

$$p(x|R) = \mathcal{N}(x;0,R)$$
$$p(R) = \mathcal{IG}(R;a,b)$$

$$p(R|x) \propto p(R)p(x|R)$$

$$\propto \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right)\exp\left(-(x^2/2)\frac{1}{R} - \frac{1}{2}\log R\right)$$

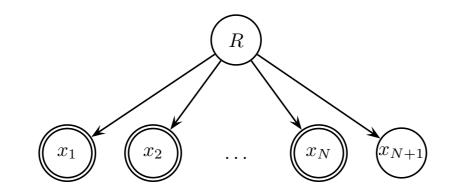
$$= \exp\left(\left(\begin{array}{c} -(a+1+\frac{1}{2})\\ -(1/b+x^2/2)\end{array}\right)^{\top}\left(\begin{array}{c} \log R\\ 1/R\end{array}\right)\right)$$

$$\propto \mathcal{IG}(R; a + \frac{1}{2}, \frac{2}{x^2 + 2/b})$$

Like the prior, this is an inverse-Gamma distribution.

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x_1, \ldots, x_N .

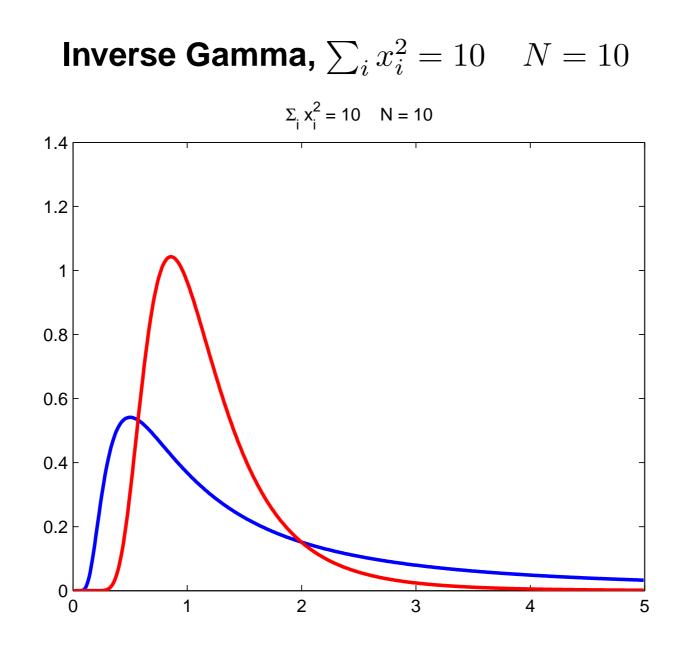


$$p(R|x) \propto p(R) \prod_{i=1}^{N} p(x_i|R)$$

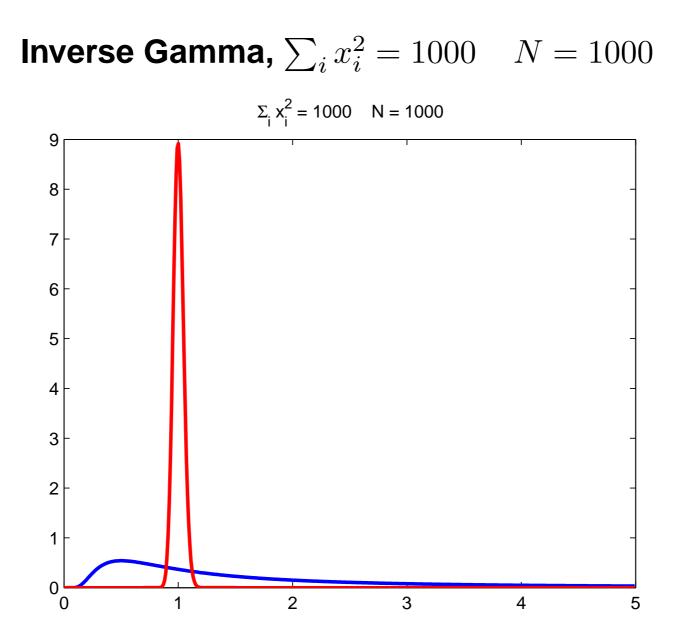
$$\propto \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right) \exp\left(-\left(\frac{1}{2}\sum_{i}x_i^2\right)\frac{1}{R} - \frac{N}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c}-(a+1+\frac{N}{2})\\-(1/b+\frac{1}{2}\sum_{i}x_i^2)\end{array}\right)^{\top}\left(\begin{array}{c}\log R\\1/R\end{array}\right)\right) \propto \mathcal{IG}(R; a+\frac{N}{2}, \frac{2}{\sum_{i}x_i^2+2/b})$$

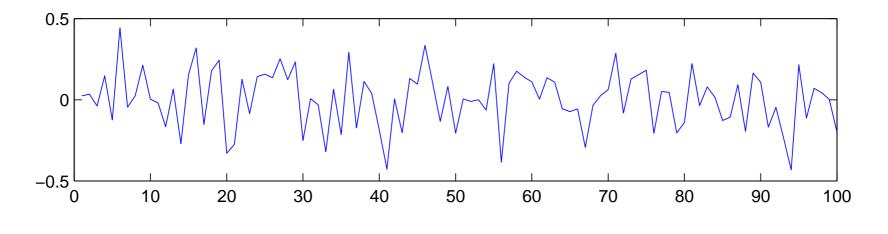
Sufficient statistics are additive



Inverse Gamma, $\sum_i x_i^2 = 100$ N = 100 $\Sigma_{i} x_{i}^{2} = 100$ N = 100 3 2.5 2 1.5 1 0.5 0 × 0 2 3 4 5 1



Example: AR(1) model



 $x_k = Ax_{k-1} + \epsilon_k \qquad \qquad k = 1 \dots K$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

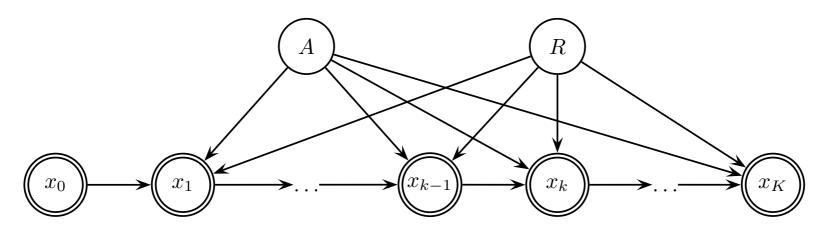
Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \beta/\nu)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; A x_{k-1}, R) \qquad x_0 = \hat{x}_0$$



Gaussian : $\mathcal{N}(x; \mu, V) \equiv |2\pi V|^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^2/V)$ Inverse-Gamma distribution: $\mathcal{IG}(x; a, b) \equiv \Gamma(a)^{-1}b^{-a}x^{-(a+1)}\exp(-1/(bx))$ $x \ge 0$ Observed variables are shown with double circles

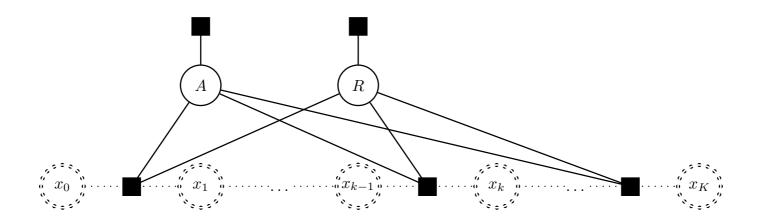
AR(1) Model. Bayesian Posterior Inference

$$p(A, R|x_0, x_1, \dots, x_K) \propto p(x_1, \dots, x_K|x_0, A, R)p(A, R)$$

Posterior \propto Likelihood × Prior

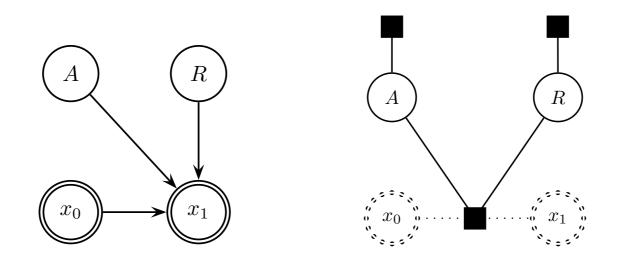
Using the Markovian (conditional independence) structure we have

$$p(A, R|x_0, x_1, \dots, x_K) \propto \left(\prod_{k=1}^K p(x_k|x_{k-1}, A, R)\right) p(A)p(R)$$



Numerical Example

Suppose K = 1,



By Bayes' Theorem and the structure of AR(1) model

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

= $\mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$

Numerical Example

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0x_1\frac{A}{R} - \frac{1}{2}\frac{x_0^2A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

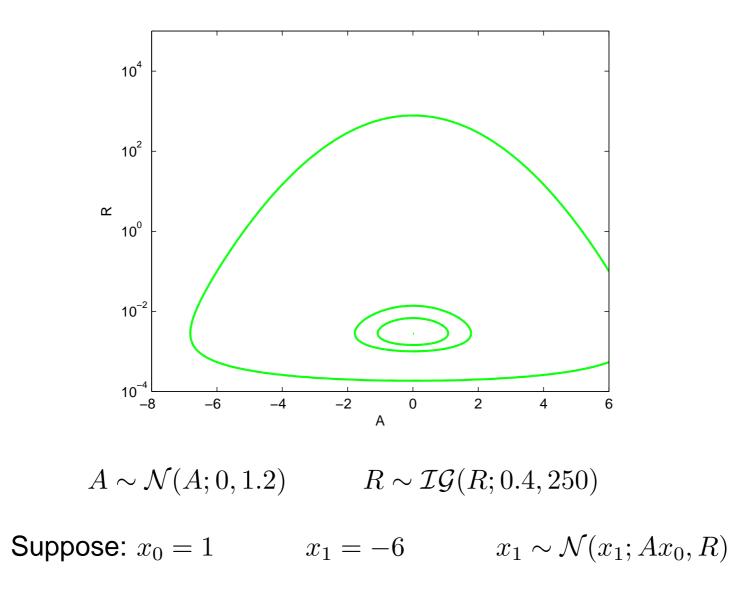
$$\exp\left(-\frac{1}{2}\frac{A^2}{P}\right)\exp\left(-(\nu+1)\log R - \frac{\nu}{\beta}\frac{1}{R}\right)$$

This posterior has a nonstandard form

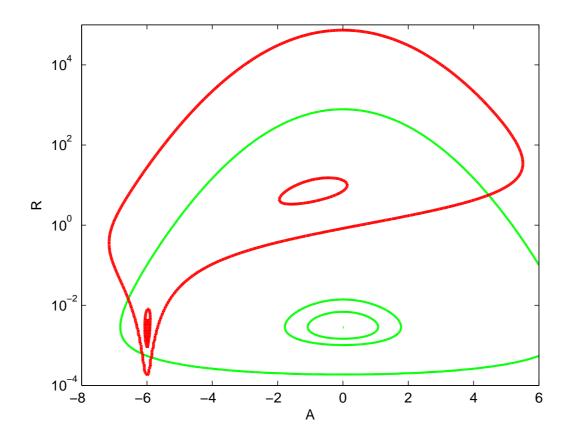
$$\exp\left(\alpha_1 \frac{1}{R} + \alpha_2 \frac{A}{R} + \alpha_3 \frac{A^2}{R} + \alpha_4 \log R + \alpha_5 A^2\right)$$

Numerical Example, the prior p(A, R)

Equiprobability contour of p(A)p(R)



Numerical Example, the posterior p(A, R|x)



Note the bimodal posterior with $x_0 = 1, x_1 = -6$

- $A \approx -6 \Leftrightarrow$ low noise variance R.
- $A \approx 0 \Leftrightarrow$ high noise variance R.

Remarks

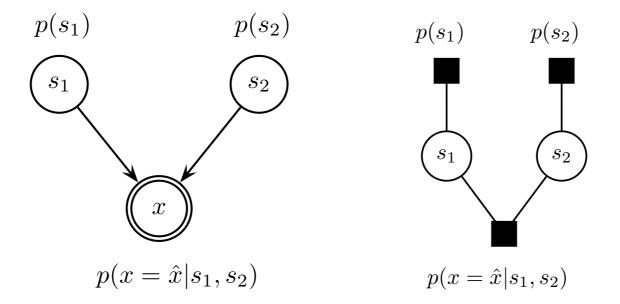
- Even very simple models can lead easily to complicated posterior distributions
- Ambiguous data usually leads to a multimodal posterior, each mode corresponding to one possible explanation
- A-priori independent variables often become dependent aposteriori ("Explaining away")
- (Unfortunately), exact posterior inference is only possible for few special cases
- \Rightarrow We need numerical approximate inference methods

Approximate Inference

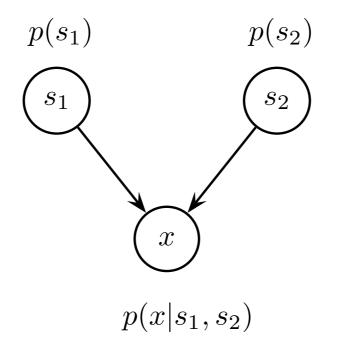
• Markov Chain Monte Carlo, Gibbs sampler

It turns out that the Gibbs sampler can be viewed as a message passing algorithm on a factor graph

• Lets focus on a simpler graph to illustrate these algorithms



Toy Model : "One sample source separation"



This graph encodes the joint: $p(x, s_1, s_2) = p(x|s_1, s_2)p(s_1)p(s_2)$

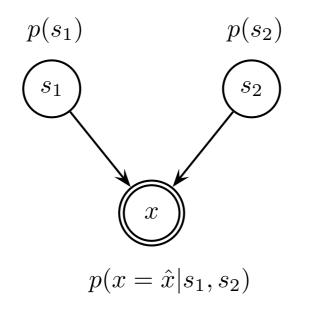
$$s_1 \sim p(s_1) = \mathcal{N}(s_1; \mu_1, P_1)$$

$$s_2 \sim p(s_2) = \mathcal{N}(s_2; \mu_2, P_2)$$

$$x|s_1, s_2 \sim p(x|s_1, s_2) = \mathcal{N}(x; s_1 + s_2, R)$$

Toy example

Suppose, we observe $x = \hat{x}$.



• By Bayes' theorem, the posterior is given by:

$$\mathcal{P} \equiv p(s_1, s_2 | x = \hat{x}) = \frac{1}{Z_{\hat{x}}} p(x = \hat{x} | s_1, s_2) p(s_1) p(s_2) \equiv \frac{1}{Z_{\hat{x}}} \phi(s_1, s_2)$$

• The function $\phi(s_1, s_2)$ is proportional to the exact posterior. ($Z_{\hat{x}} \equiv p(x = \hat{x})$)

Toy example, cont.

$$\log p(s_1) = \mu_1^T P_1^{-1} s_1 - \frac{1}{2} s_1^T P_1^{-1} s_1 + \text{const}$$

$$\log p(s_2) = \mu_2^T P_2^{-1} s_2 - \frac{1}{2} s_2^T P_2^{-1} s_2 + \text{const}$$

$$\log p(x|s_1, s_2) = \hat{x}^T R^{-1} (s_1 + s_2) - \frac{1}{2} (s_1 + s_2)^T R^{-1} (s_1 + s_2) + \text{const}$$

$$\log \phi(s_1, s_2) = \log p(x = \hat{x} | s_1, s_2) + \log p(s_1) + \log p(s_2)$$

= + $(\mu_1^T P_1^{-1} + \hat{x}^T R^{-1}) s_1 + (\mu_2^T P_2^{-1} + \hat{x}^T R^{-1}) s_2$
 $-\frac{1}{2} \operatorname{Tr} (P_1^{-1} + R^{-1}) s_1 s_1^T - \underbrace{s_1^T R^{-1} s_2}_{(*)} - \frac{1}{2} \operatorname{Tr} (P_2^{-1} + R^{-1}) s_2 s_2^T$

• The (*) term is the cross correlation term that makes s_1 and s_2 a-posteriori dependent.

Toy example, cont.

Completing the square

$$\log \phi(s_1, s_2) =^+ \begin{pmatrix} P_1^{-1} \mu_1 + R^{-1} \hat{x} \\ P_2^{-1} \mu_2 + R^{-1} \hat{x} \end{pmatrix}^+ \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$
$$-\frac{1}{2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^\top \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

Remember:
$$\log \mathcal{N}(s; m, \Sigma) =^+ (\Sigma^{-1}m)^\top s - \frac{1}{2}s^\top \Sigma^{-1}s$$

$$\Sigma = \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix}^{-1} \qquad m = \Sigma \qquad \begin{pmatrix} P_1^{-1} \mu_1 + R^{-1} \hat{x} \\ P_2^{-1} \mu_2 + R^{-1} \hat{x} \end{pmatrix}$$

Gibbs sampler

• We define the following iterative schema to generate a Markov Chain

$$s_1^{(t+1)} \sim p(s_1|s_2^{(t)}, x = \hat{x}) \propto \phi(s_1, s_2^{(t)})$$

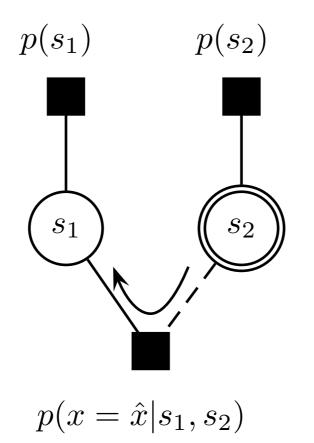
$$s_2^{(t+1)} \sim p(s_2|s_1^{(t+1)}, x = \hat{x}) \propto \phi(s_1^{(t+1)}, s_2)$$

- The desired posterior \mathcal{P} is the stationary distribution of T (why? later...).
- A remarkable fact is that we can estimate any desired expectation by ergodic averages

$$\langle f(\mathbf{s}) \rangle_{\mathcal{P}} \approx \frac{1}{t - t_0} \sum_{n=t_0}^{t} f(\mathbf{s}^{(n)})$$

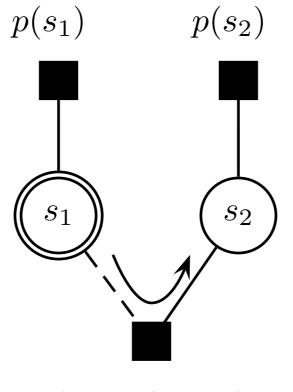
 Consecutive samples s^(t) are dependent but we can "pretend" as if they are independent!

Gibbs Sampling



$$\mathbf{s_1}^{(t+1)} \sim \mathcal{N}(s_1; m_1(s_2^{(t)}), S_1)$$

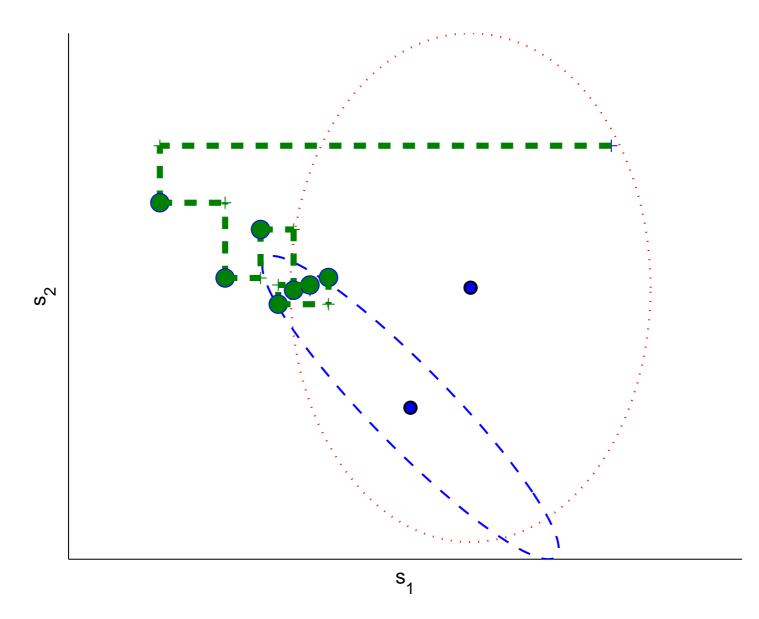
Gibbs Sampling



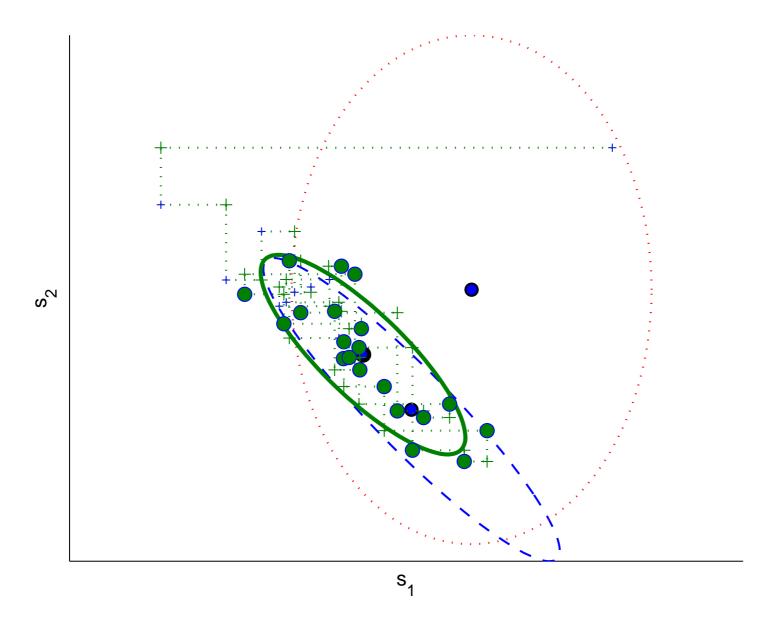
 $p(x = \hat{x}|s_1, s_2)$

$$s_2^{(t+1)} \sim \mathcal{N}(s_2; m_2(s_1^{(t+1)}), S_2)$$

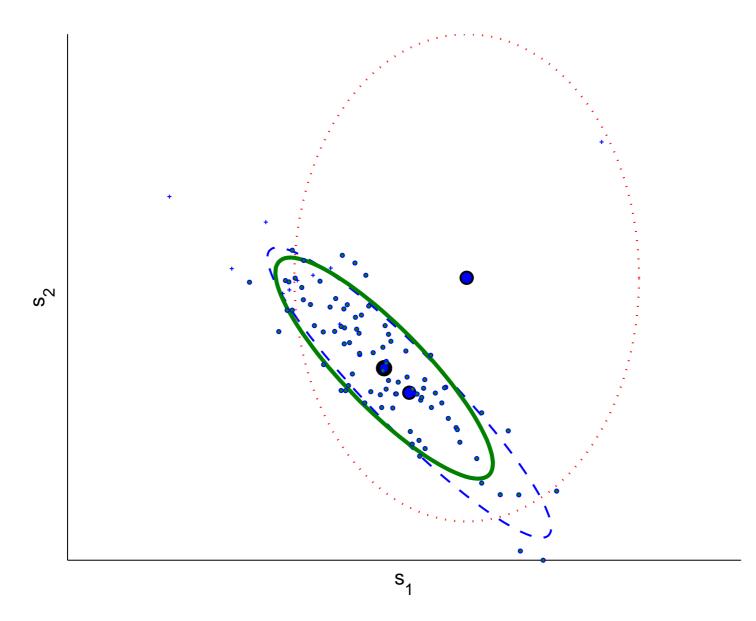
Gibbs Sampling



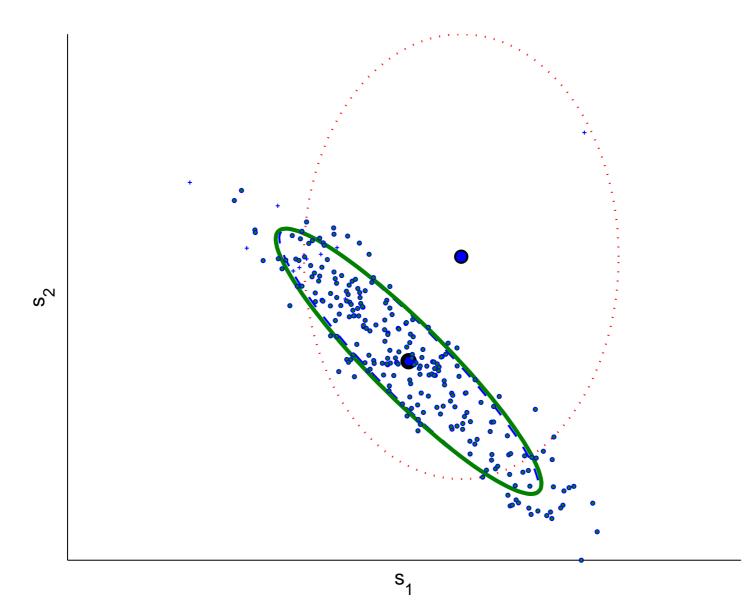
Gibbs Sampling, t = 20



Gibbs Sampling, t = 100



Gibbs Sampling, t = 250



Finding the full conditionals

$$s_1^{(t+1)} \sim p(s_1|s_2^{(t)}, x = \hat{x}) \propto \phi(s_1, s_2^{(t)})$$

Eliminate terms that don't depend on s_1

$$\log \phi(\mathbf{s}_{1}, \mathbf{s}_{2}^{(t)}) = \log p(x = \hat{x} | \mathbf{s}_{1}, \mathbf{s}_{2}^{(t)}) + \log p(\mathbf{s}_{1}) + \log p(\mathbf{s}_{2}^{(t)})$$

$$=^{+} \underbrace{\mu_{1}^{\top} P_{1}^{-1} \mathbf{s}_{1} - \frac{1}{2} \mathbf{s}_{1}^{\top} P_{1}^{-1} \mathbf{s}_{1}}_{\log p(\mathbf{s}_{1})} + \underbrace{\hat{x}^{\top} R^{-1} (\mathbf{s}_{1} + \mathbf{s}_{2}^{(t)}) - \frac{1}{2} (\mathbf{s}_{1} + \mathbf{s}_{2}^{(t)})^{\top} R^{-1} (\mathbf{s}_{1} + \mathbf{s}_{2}^{(t)})}_{p(x = \hat{x} | \mathbf{s}_{1}, \mathbf{s}_{2}^{(t)})}$$

$$=^{+} \left(\mu_{1}^{\top} P_{1}^{-1} + (\hat{x} - \mathbf{s}_{2}^{(t)})^{\top} R^{-1}\right) \mathbf{s}_{1} - \frac{1}{2} \operatorname{Tr} \left(P_{1}^{-1} + R^{-1}\right) \mathbf{s}_{1} \mathbf{s}_{1}^{\top}$$

$$p(\mathbf{s}_{1} | \mathbf{s}_{2}^{(t)}, x = \hat{x}) = \mathcal{N}(\mathbf{s}_{1}; m_{1}, S_{1})$$

$$S_{1} = \left(P_{1}^{-1} + R^{-1}\right)^{-1} \qquad m_{1}(\mathbf{s}_{2}^{(t)}) = S_{1} \left(P_{1}^{-1} \mu_{1} + R^{-1} (\hat{x} - \mathbf{s}_{2}^{(t)})\right)$$

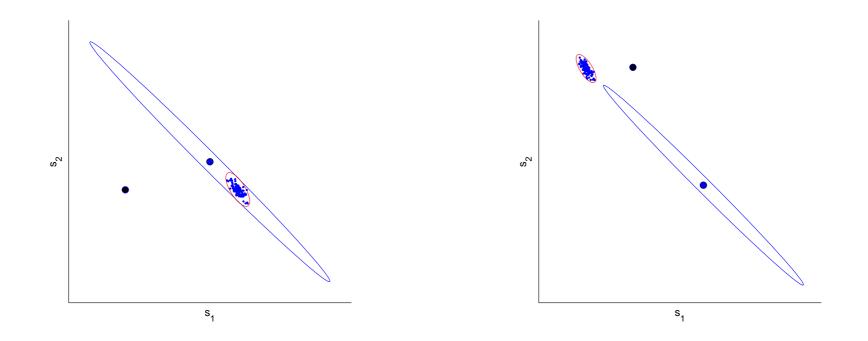
The transition kernel

$$T(s_1^{(t+1)}, s_2^{(t+1)} | s_1^{(t)}, s_2^{(t)}) = T(s_2^{(t+1)} | s_1^{(t+1)}, s_1^{(t)}, s_2^{(t)}) T(s_1^{(t+1)} | s_1^{(t)}, s_2^{(t)})$$

= $T(s_2^{(t+1)} | s_1^{(t+1)}) T(s_1^{(t+1)} | s_2^{(t)})$
= $\mathcal{N}(s_2^{(t+1)}; m_2(s_1^{(t+1)}), S_2) \mathcal{N}(s_1^{(t+1)}; m_1(s_2^{(t)}), S_1)$

Therefore, the transition kernel is also Gaussian.

The transition kernel



But why does the chain converge to the target distribution?

Markov Chain Monte Carlo (MCMC)

• Construct a transition kernel $T(\mathbf{s}'|\mathbf{s})$ with the stationary distribution $\mathcal{P} = \phi(\mathbf{s})/Z_x \equiv \pi(\mathbf{s})$ for any initial distribution $r(\mathbf{s})$.

$$\pi(\mathbf{s}) = T^{\infty} r(\mathbf{s}) \tag{1}$$

- Sample $\mathbf{s}^{(0)} \sim r(\mathbf{s})$
- For $t = 1...\infty$, Sample $\mathbf{s}^{(t)} \sim T(\mathbf{s}|\mathbf{s}^{(t-1)})$
- Estimate any desired expectation by the average

$$\langle f(\mathbf{s}) \rangle_{\boldsymbol{\pi}(\mathbf{s})} \approx \frac{1}{t - t_0} \sum_{n=t_0}^{t} f(\mathbf{s}^{(n)})$$

where t_0 is a preset burn-in period.

But how to construct T and verify that $\pi(s)$ is indeed its stationary distribution?

Proof Technique

- Show that the target distribution is a stationary distribution of the Markov chain
 - Verify detailed balance
- Show that the transition kernel T has a unique stationary distribution
 - Verify irreducibility and aperiodicity \Rightarrow unique stationary distribution
 - * Irreducibility (probabilisic connectedness): Every state s' can be reached from every s

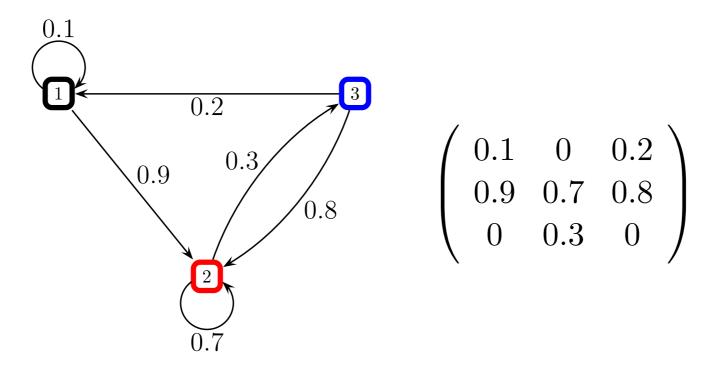
$$T(s'|s) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is **not** irreducible

* Aperiodicity : Cycling around is not allowed

$$T(s'|s) = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

is not aperiodic

Reminder of Theory of Markov Chains



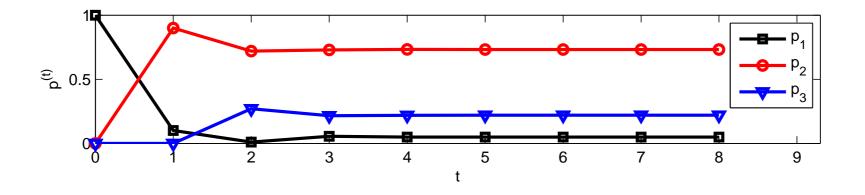
• Suppose the inital state is 1, we have

$$p^{(1)} = \mathbf{T}p^{(0)} = \begin{pmatrix} 0.1 & 0 & 0.2 \\ 0.9 & 0.7 & 0.8 \\ 0 & 0.3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.9 \\ 0 \end{pmatrix}$$

Numeric Example

• Continue

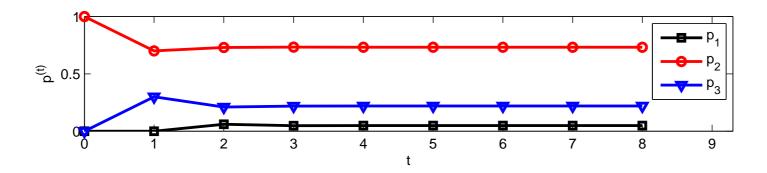
$$p^{(2)} = \mathbf{T} \begin{pmatrix} 0.1\\ 0.9\\ 0 \end{pmatrix} = \begin{pmatrix} 0.01\\ 0.72\\ 0.27 \end{pmatrix}$$
$$p^{(3)} = \mathbf{T} \begin{pmatrix} 0.01\\ 0.72\\ 0.72\\ 0.27 \end{pmatrix} = \begin{pmatrix} 0.05\\ 0.73\\ 0.22 \end{pmatrix}$$



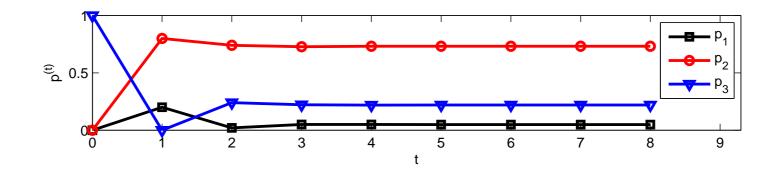
Convergence to a stationary distribution

Starting from other configurations does not alter the picture

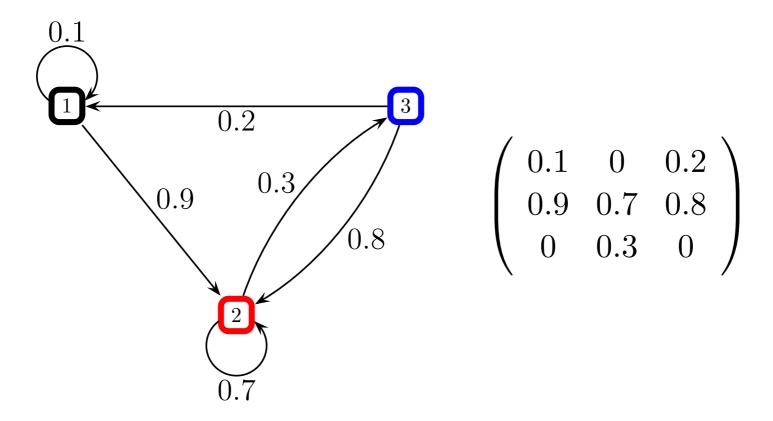
•
$$p^{(0)} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^\top$$



•
$$p^{(0)} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^\top$$

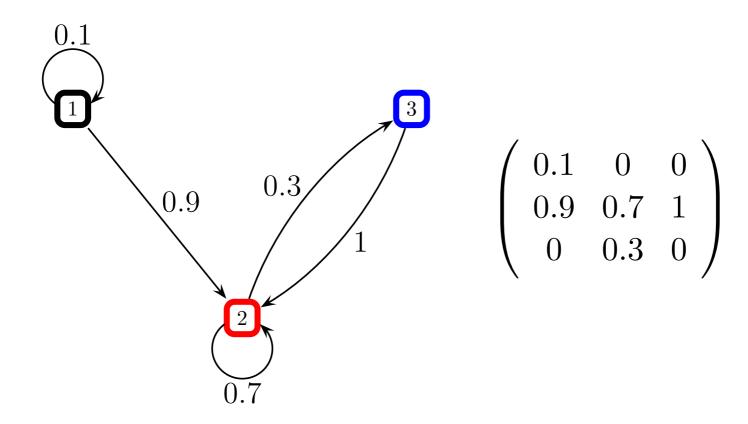


Examples: Irreducable chain

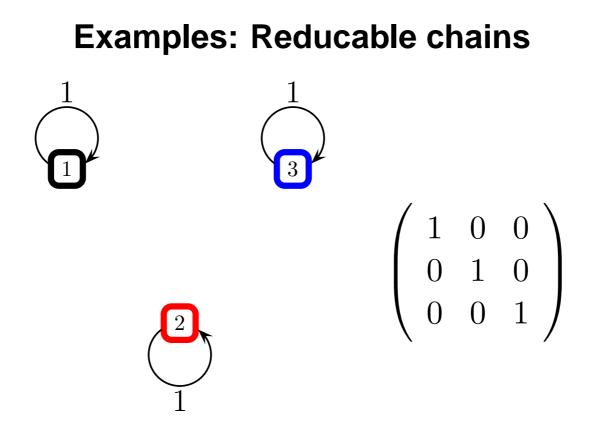


- All states communicate \Rightarrow Chain is said to be irreducable
- All states recurrent

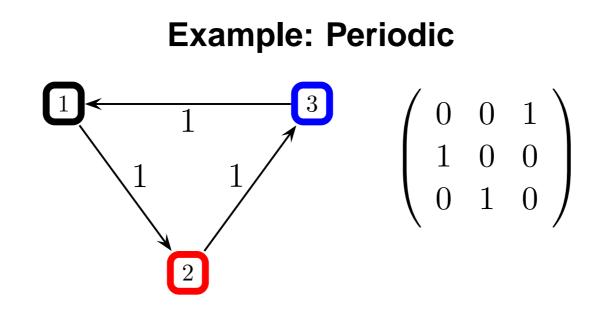
Examples: Transient states



• When the chain leaves state 1, it never returns \Rightarrow State 1 is transient



- Disconnected subgraphs in state transition diagram \Rightarrow Chain is reducable
- No unique stationary distribution

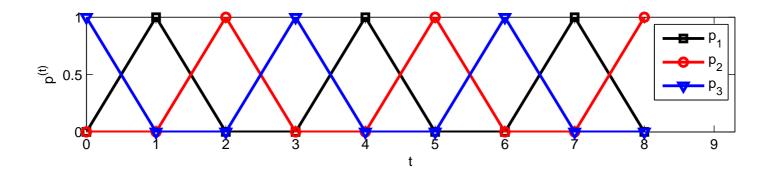


- All states communicate, but ...
- Effect of Initial distribution $p(s^0)$ on $p(s^t)$ does not diminish when $t \to \infty$

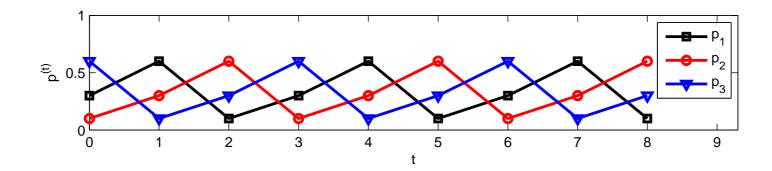
Example: Periodic

There is no stationary distribution

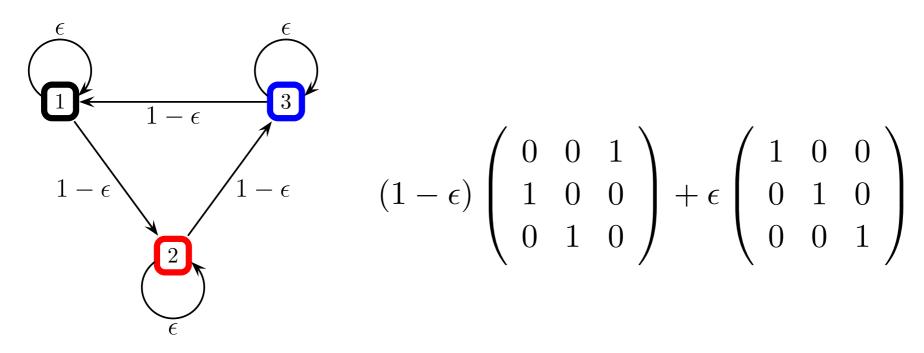
•
$$p^{(0)} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^\top$$



•
$$p^{(0)} = \begin{pmatrix} 0.3 & 0.1 & 0.6 \end{pmatrix}^{\top}$$



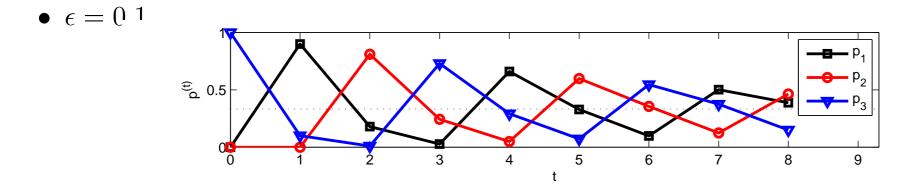
Example: Mixture

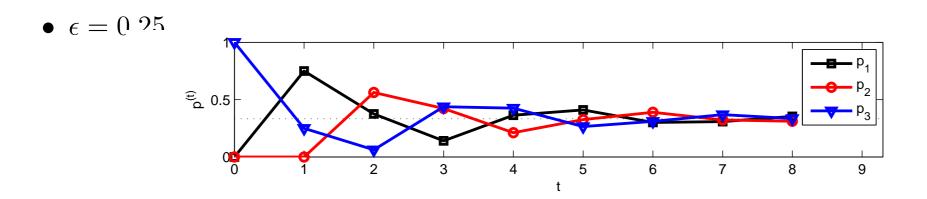


- All states communicate, not periodic
- Is there a unique stationary distribution?

Example: Mixture

• There is a stationary distribution $p^{(\infty)} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \end{pmatrix}^{\top}$

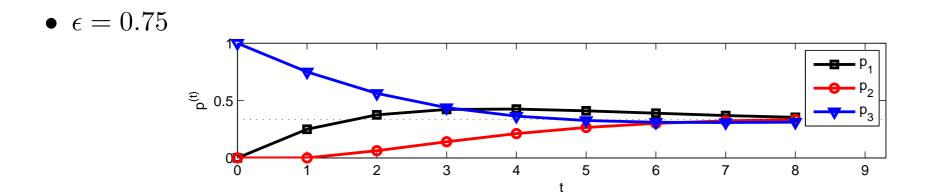


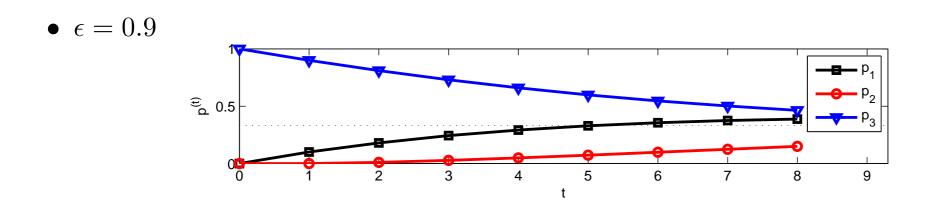


• Convergence rates are different

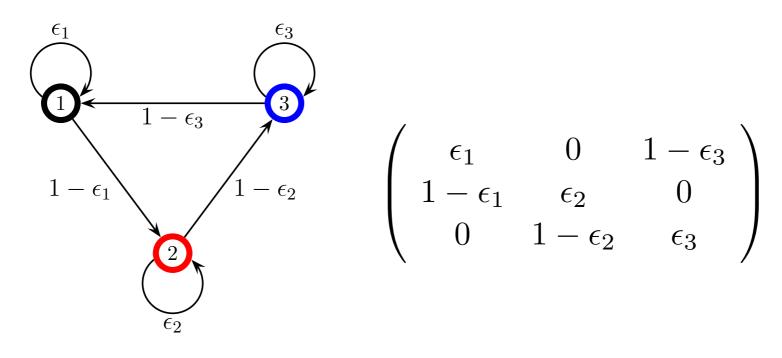
Example: Mixture

• There is a stationary distribution $p^{(\infty)} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \end{pmatrix}^{\top}$





Example



- Self transition probabilities $\epsilon_1 > \epsilon_2 > \epsilon_3 \Rightarrow p_1^{(\infty)} > p_2^{(\infty)} > p_3^{(\infty)}$, but the exact relationship is not trivial
- How can we find the stationary distribution ? How fast is the convergence ?
- How can we design a chain that will converge to a given target distribution ?

Stationary Distribution

• We compute an eigendecomposition

$$\mathbf{T} = B\Lambda B^{-1}$$
$$\Lambda = \mathbf{diag}(1, \lambda_2, \dots, \lambda_K)$$

• The stationary distribution is given by the limit

$$\lim_{t \to \infty} p^{(t)} = \lim_{t \to \infty} \mathbf{T}^t p^{(0)}$$
$$\mathbf{T}^t = B\Lambda B^{-1} B\Lambda \dots \Lambda B^{-1} = B\Lambda^t B^{-1}$$

 It turns out since T is a conditional probability matrix (columns sum up to one), the eigenvalues satisfy

$$1 = \lambda_1 \ge |\lambda_2| \ge |\lambda_3| \ge \dots \le |\lambda_K|$$

Stationary Distribution

• If and only if $|\lambda_2| < 1$

$$\mathbf{T}^{t} = B \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda_{2}^{t} & 0 \\ 0 & & \ddots & \\ 0 & & & \lambda_{K}^{t} \end{pmatrix} B^{-1} \xrightarrow{t \to \infty} B \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ & & \ddots & \\ 0 & & 0 \end{pmatrix} B^{-1} = \begin{pmatrix} \pi_{1} \\ \pi_{2} \\ \vdots \\ \pi_{K} \end{pmatrix} (1 \ 1 \ \dots \ 1)$$

• Geometric Convergence property, there exist c > 0 s.t.

$$\|\mathbf{T}^t p^{(0)} - \pi\|_{\mathsf{var}} \le c |\lambda_2|^t$$

• However, it is hard to show algebraically that $|\lambda_2| < 1$. Fortunately, there is a...

Convergence Theorem (for finite-state Markov Chains)

- Finite State space $\mathcal{X} = \{1, 2, \dots, K\}$
- T is irreducable and aperiodic, then there exist 0 < r < 1 and c > 0 s.t.

$$\|\mathbf{T}^t p^{(0)} - \pi\|_{\mathsf{var}} \le cr^t$$

where π is the invariant distribution

$$\|P - Q\|_{\operatorname{var}} \equiv \frac{1}{2} \sum_{s \in \mathcal{X}} |P(s) - Q(s)|$$

MCMC Equilibrium condition = Detailed Balance

$$T(\mathbf{s}|\mathbf{s}')\pi(\mathbf{s}') = T(\mathbf{s}'|\mathbf{s})\pi(\mathbf{s})$$

If detailed balance is satisfied then $\pi(s)$ is a stationary distribution

$$\pi(\mathbf{s}) = \int d\mathbf{s}' T(\mathbf{s}|\mathbf{s}') \pi(\mathbf{s}')$$

If the configuration space is discrete, we have

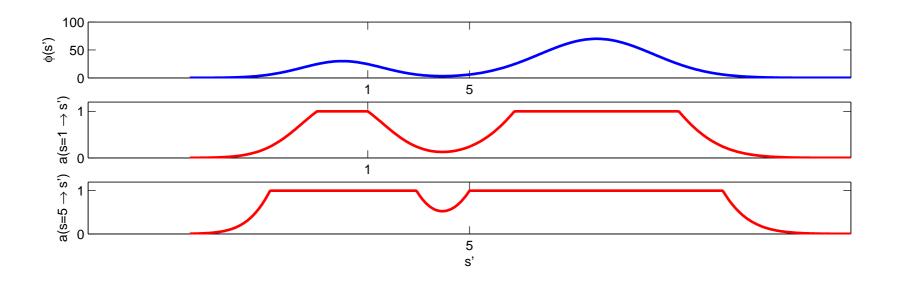
$$\pi(\mathbf{s}) = \sum_{\mathbf{s}'} T(\mathbf{s}|\mathbf{s}')\pi(\mathbf{s}')$$
$$\pi = T\pi$$

 π has to be a (right) eigenvector of T.

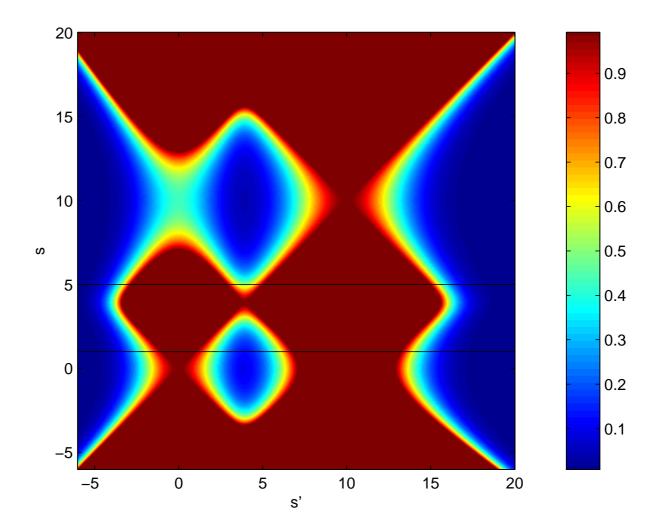
Metropolis-Hastings Kernel

- We choose an arbitrary proposal distribution q(s'|s) (that satisfies mild regularity conditions).
 (When q is symmetric, i.e., q(s'|s) = q(s|s'), we have a Metropolis algorithm.)
- We define the *acceptance probability* of a jump from s to s' as

$$a(s \to s') \equiv \min\{1, \frac{q(s|s')\pi(s')}{q(s'|s)\pi(s)}\}$$



Acceptance Probability $a(s \rightarrow s')$



Basic MCMC algorithm: Metropolis-Hastings

- 1. Initialize: $s^{(0)} \sim r(s)$
- **2.** For t = 1, 2, ...
 - Propose:

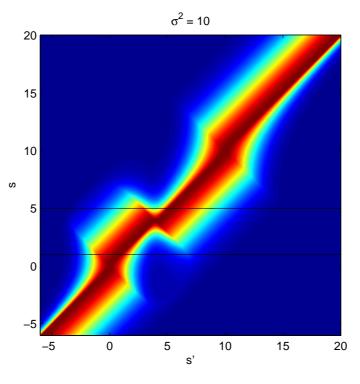
$$s' \sim q(s'|s^{(t-1)})$$

• Evaluate Proposal: $u \sim \text{Uniform}[0, 1]$

$$s^{(t)} := \begin{cases} s' & u < a(s^{(t-1)} \rightarrow s') & \text{Accept} \\ s^{(t-1)} & \text{otherwise Reject} \end{cases}$$

Transition Kernel of the Metropolis-Hastings

$$T(s'|s) = \underbrace{q(s'|s)a(s \to s')}_{\text{Accept}} + \underbrace{\delta(s'-s)\int ds'q(s'|s)(1-a(s \to s'))}_{\text{Reject}}$$



Only Accept part for visual convenience

Verification of detailed balance for Metropolis

$$\pi(s) = \frac{1}{Z}\phi(s)$$

$$a(s \to s') = \min\{1, \frac{\pi(s')}{\pi(s)}\} = \min\{1, \frac{\phi(s')}{\phi(s)}\} \qquad q(s|s') = q(s'|s)$$

$$T(s'|s)\pi(s) = q(s'|s)\min\{1, \frac{\phi(s')}{\phi(s)}\}\pi(s) \quad \{+\delta(s-s')\pi(s)\dots\}$$

= $q(s'|s)\min\{\frac{\phi(s)}{Z}, \frac{\phi(s')}{\phi(s)}\frac{\phi(s)}{Z}\}$
= $q(s'|s)\min\{\frac{\phi(s)}{Z}, \frac{\phi(s')}{Z}\}$
= $q(s|s')\frac{\phi(s')}{Z}\min\{\frac{\phi(s)/Z}{\phi(s')/Z}, 1\} = T(s|s')\pi(s')$

Verification of detailed balance for Metropolis-Hastings

$$\pi(s) = \frac{1}{Z}\phi(s)$$

$$a(s \to s') = \min\{1, \frac{q(s|s')\pi(s')}{q(s'|s)\pi(s)}\} = \min\{1, \frac{q(s|s')\phi(s')}{q(s'|s)\phi(s)}\}$$

$$T(s'|s)\pi(s) = q(s'|s)\min\{1, \frac{q(s|s')\phi(s')}{q(s'|s)\phi(s)}\}\frac{\phi(s)}{Z}$$
$$= \min\{q(s'|s)\frac{\phi(s)}{Z}, \frac{q(s|s')\phi(s')}{Z}\} = T(s|s')\pi(s')$$

Verification of detailed balance for Gibbs

- The transition kernel for Gibbs sampler is a product of transition kernels operating on a single coordinate *i*.
- The transition kernel for a deterministic scan Gibbs sampler is

$$T = \prod_{i} T_i$$

$$\pi(s_i, s_{-i}) = \frac{1}{Z} \phi(s_i, s_{-i})$$
$$q_i(s'_i, s'_{-i} | s_i, s_{-i}) = \frac{1}{Z_i} \phi(s'_i | s_{-i}) \delta(s_{-i} - s'_{-i})$$

The acceptance probability is

$$\begin{aligned} a(s \to s') &= \min\{1, \frac{q(s|s')\pi(s')}{q(s'|s)\pi(s)}\} \\ &= \min\{1, \frac{\frac{1}{Z_i}\phi(s_i|s'_{-i})\delta(s_{-i} - s'_{-i})\frac{1}{Z}\phi(s'_i, s'_{-i})}{\frac{1}{Z_i}\phi(s'_i|s_{-i})\delta(s_{-i} - s'_{-i})\frac{1}{Z}\phi(s_i, s_{-i})}\} \\ &= \min\{1, \frac{\frac{1}{Z_i}\phi(s_i|s_{-i})\frac{1}{Z}\phi(s'_i, s_{-i})}{\frac{1}{Z_i}\phi(s'_i|s_{-i})\frac{1}{Z}\phi(s_i, s_{-i})}\} \\ &= \min\{1, \frac{\frac{1}{Z_i}\phi(s_i|s_{-i})\frac{1}{Z}\phi(s'_i|s_{-i})\phi(s_{-i})}{\frac{1}{Z_i}\phi(s'_i|s_{-i})\frac{1}{Z}\phi(s_i|s_{-i})\phi(s_{-i})}\} = 1 \end{aligned}$$

Hence all the moves are accepted by default.

Cascades and Mixtures of Transition Kernels

Let T_1 and T_2 have the same stationary distribution p(s).

Then:

$$T_c = T_1 T_2$$

 $T_m = \nu T_1 + (1 - \nu) T_2 \quad 0 \le \nu \le 1$

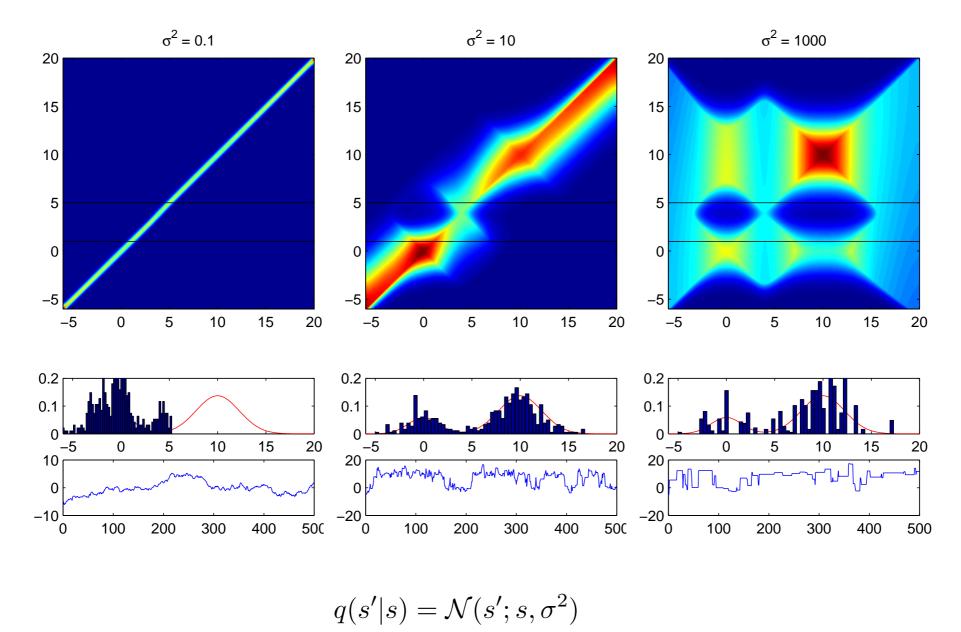
are also transition kernels with stationary distribution p(s).

This opens up many possibilities to "tailor" application specific algorithms. For example let

> T_1 : global proposal (allows large "jumps") T_2 : local proposal (investigates locally)

We can use T_m and adjust ν as a function of rejection rate.

Variance Karnale with the same stationary distribution



Optimization : Simulated Annealing and Iterative Improvement

For optimization, (e.g. to find a MAP solution)

 $s^* = rg\max_{s \in \mathcal{S}} \pi(s)$

The MCMC sampler may not visit s^* .

Simulated Annealing: We define the target distribution as

 $\pi(s)^{\tau_i}$

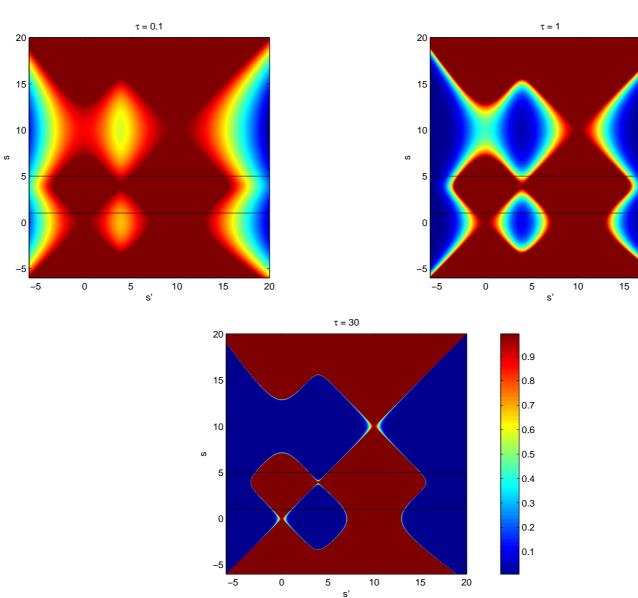
where τ_i is an annealing schedule. For example,

 $\tau_1 = 0.1, \ldots, \tau_N = 10, \tau_{N+1} = \infty \ldots$

Iterative Improvement (greedy search) is a special case of SA

$$au_1 = au_2 = \dots = au_N = \infty$$

Acceptance probabilities $a(s \rightarrow s')$ at different τ



20

Summary

- Bayesian Inference,
- Probability models and Graphical model notation
 - Directed Graphical models, Factor Graphs
- The Gibbs sampler
- Metropolis-Hastings, MCMC Transition Kernels
- Sketch of convergence results
- Simulated annealing and iterative improvement

The End

Slides will be available online

http://www-sigproc.eng.cam.ac.uk/~atc27/papers/5R1/