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1 Introduction

Certain problems in statistics require the computation of derivatives of vari-
ous quantities with respect to vectors or matrices. For example, in the max-
imum likelhod (ML) estimation of a multivariate Gaussian, the ML solution
requires the computation of the derivative with respect the mean (vector)
and the covariance matrix. If we want to compute standard error bars on
the parameter estimates, we need to compute second derivatives, more pre-
cisely the inverse of negative Hessian of log likelihood. In the multivariate
Gaussian example, the computation of error bars of the covariance matrix
requires differentiation of a matrix quantity (the Jacobian) with respect to
the covariance matrix. This expressions can be complicated to evaluate. For-
tunately, with consistent definitions, it turns out that this derivatives have
simple and convenient forms and are easily programmed in matrix computa-
tion packages such as MATLAB.

The results presented here are rather elementary. However, instead of
providing a table of derivatives of common forms, we develop a practical
notation for derivation of these quantities. In this respect this review is
just about a slightly modified presentation of material from Magnus and
Neudecker (1999). We use ideas from tensor notation surveyed in Arfken
(1985).



2 Definition of Notation

We use small Greek letters to denote scalar variables, Latin small letter to
denote vector variables and Latin capital letters to denote matrix variables.
For example £ is a scalar, z is a vector and X is a matrix. Function names
obey the same convention and we will use ¢, f and F' to denote functions
which evaluate to a scalar, vector and a matrix respectively. Some examples
are

$(X)=Tr X

f(z) = Ax

ro=(5 )

The vector notation is very compact and easy to program and these features
make it a very useful tool in derivations. For example Az compactly encodes
the expression ) 7 | A;;z;. The fact that z is a column vector and A is a
matrix of compatible size is implicit in this notation. Thus in analytic work
one has to check the sizes and shapes of objects in an expression for con-
sistency. Unfortunately, representation of objects involving more then two
indices turns out to be less transparent. In this respect the index notation is
more expressive however besides requiring “more ink” it can lead to ambigui-
ties in transforming theexpression back to matrix notation. Suppose we wish
to express 7 AT in index form. The result is again Y 7, x;A;; and conse-
quently we can not distinguish between the row or column vectors. Clearly,
the reason is that the notation in its present form does not distinguish be-
tween row and column indices. We extend the index notation as follows: The
expression

Az
will be denoted as
AZ:EJ

We get rid of the summation sign and adapt the convention introduced by
Einstein, that repeated index means summation. Moreover, we organize
the indices such that an index occurring in the subscript (superscript) corre-
sponds to a row (column) index. The resulting notation is almost as compact
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as the matrix notation; we only keep track of indices explicitly. We can dis-
tinguish 27 AT from Az since the former expression now corresponds to Alz?,
an object with only one upper index, hence a row vector. We denote the size
of Al as [i| x |j|, where |i| denotes the number of states that the index i
addresses.

In physics and tensor analysis (Arfken, 1985), the upper and lower indices
are classified as contravariant and covariant, which determine the behavior
of corresponding quantities (i.e. numbers indexed using these indices) under
various transformations. Here, it is rather immaterial how one organizes
these numbers in a data structure. In contrast, our motivation is to develop
a practical notation to find simple expressions for various matrix derivatives.
In that respect it turns out to be useful to classify the indices as row and
column indices. ! Consequently, the result of any operation can be expressed
in form of a matrix regardless of the number of indicies involved. Beside
possessing the advantage of easy implementation, one can use results from
matrix theory directly on resulting objects. For example, the derivative of
a matrix w.r.t. a matrix comes out to be itself a Jacobian, and questions
relating to a vanishing Jacobian determinants remain meaningful (Magnus
and Neudecker, 1999).

We demonstrate the power of the index notation by a few examples. The
vec X of a matrix is defined to be a column vector obtained from X by
stacking the columns of X on top of each other. For example if

= (30)

then

(1)

vec X =

S ™= R

The Kronecker product of X with Y is defined to be the partitioned matrix

aY BY
Koy (0 )
In index notation vec X becomes X;;. We note that this is just a column
vector indexed with a double index. We apply here one more convention
that the slowest index appears first. To understand what we mean by this

1Column vectors have row indices and row vectors have column indices.



convention consider the example in Eq. 1. This is a column vector indexed
with one row index, say k. If k increases by one, in the original matrix X7
this corresponds first to an increment in ¢ and then to j. In other words
while k£ goes from 1 to 4, 7, the fast index, traces the numbers 1,2,1,2 and j,
the slower index, traces 1, 1,2,2. By applying the same convention we have

Z=XQY =X]v}=2]
The result can easily be seen as follows: Since Y is replicated in every cell of

X, clearly the indices of Y are faster. Until 7 or j change we have to traverse
over all £ and [. Some additional examples are shown in Table 1.

Matrix Notation | Index Notation | MATLAB | Comment

X X! X li| x |7] Matrix

X' X! X’ Matrix Transpose

X! (XY inv(X) | Matrix Inverse
vec X Xji X(:) Slowest index first

XY X]v] XY Matrix Multiplication
XQY XZY}CI kron(X,Y) | Kronecker Product

Tr X X! trace(X) | Trace (X must be square)

Table 1: Notation

Probabily the most important advantage of index notation is that it re-
laxes the structural constrains put onto an expression and enables us to move
terms around once all components are expressed in index form. We demon-
strate this by a proof of an important identity in matrix algebra which relates
® and vec:

(A® B)vec X = vec(BXA") (2)

Here A is |m| X |n|, B is |p| X |¢| and X is consequently |g| X |n| so that the
term BX AT makes sense. The form of (A ® B) vec X is T,,,.

(A® B)vecX)mp = (A® B);,,(vecX), (3)
= (A® B)?nqp (vec X)ng (4)

= vec((A® B)pL(vec X)) (5)

= vec((A® B),LX]) (6)

= vec(A},BIX]) (7)

vec(BIX]' (AT (8)

= vec((BXA")) (9)

= (vec(BXA"))mp (10)
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In Eq. 3, « is just a dummy index, since it will be summed over. This
summation could be evaluated in arbitrary order and we choose to set it to
a = ng. The result will be an object of form T;,, so the additional vec
operation is justified. Eq. 5 shows how the matrix structure is relaxed: the
outside vec arranges the result as a vector T;,,, so we can arrange the terms
arbitrarly in the argument of vec as long as the resulting object has the form
.

3 Matrix Calculus: Differentiation

3.1 The first Derivative : The Jacobian

Before the discussion of the general case, namely the derivative of a matrix
function F'(X') we consider the derivative of a vector function f(z). We define
the derivative of (f(x)); w.r.t. x, as

d(f(x)): _ Of;
dz> Oz (11)

Df(x) =

Note that the row index o became a column index, i.e. we have

of (x
D/(x) = 2112 (12)
Let us consider an example:
fle) = Az (13)
Q11 (12 ¢
= 04271 (),/2,2 ( 51 ) (14)
Q31 Q39 2

011§ + 0128
= 02181 + 02280 (15)
031§ + 0328

We have three quantities to be differentiated w.r.t. two quantities. We
organize these derivatives in a matrix of size 3 x 2. We get the intuitive



result:

9fi 8L
ozl  Ox?
Df(z) = | 34 55 (16)
Ofs  Ofs
Ozl  Ox?
11 (12
= Qg1 G229 (17)
Q31 (32
= A (18)

Let f(z) = z, the identity function. Then we have

83:1-
oz 0

where 6§ is the Kronecker-delta symbol, which is defined as

5o — 1 1=«
© 71 0 otherwise

This symbol turns out to be very useful in evaluation of expressions involving
derivatives. To see this consider again the example f(z) = Ax:

Dx

DAx = ADz (19)
_ 4i9%

- z.al_a (20)

= Alge (21)

A? (22)

The usefulness of 0 can be better appreciated when we consider the general
case.

3.1.1 General case

We define the derivative of F/(X) with respect to X as

def Ovec F'(X)

DF(X) £ Fvec X)T (23)



Note that this definition is consistent with the case when F' and X are vectors.
The marices are merely vectorized. As a first example consider F'(X) = X.
Then by definition we have

_ 0X;i
~ 0XPe

DF(X) (24)

since vec X = X; and (vec X )T = (Xp,)" = XP*. This is an object of form
Zfi‘)‘. Indeed as in the vector case

ani

9XBa 5 (25)
= sy (26)
I®I (27)

Note that this result demonstrates the consistency of the definition. We get
an identity matrix of size (|i[[7]) x (|i||]). If we had organized the derivatives
on some other (arbitrary) order, (e.g. Zfaj ) we would not get an identity
matrix. In general, that result would not posess any structure. It would only
display the derivatives but nothing more.

Example:
F(X) = AXB=A*X!B] (28)
OF};
DF(X) = A(DX)B= i (29)
OXik |
= A gy (30)
= Af)6yB] (31)
= A?B] (32)

In terms of tensor calculus this is the answer, i.e. the general term of the ex-
pression for DAX B. However, we require by our definition that the resulting
object has to be of form Zﬁa. So we continue transforming further:

= (B¢ (33)
= B"®4 (34)
Corollary:
D(AX) = I®A (35)
D(XA) = AT@I (36)



Now we will consider the derivative of X ! which appears to be a little
more tricky. We will first solve by index notation, and then demonstrate how
the result is obtained by using differentials:

I = K'K

I —1\j 17l

6 = (KK |

0 = D((K~"))K}+ (K~ ")ID(K})
Tj K+ (K)855

We multiply both sides with (K )7,

0 = T+ (K Hi6/68(K™h); (41)
T = —(KH3KE ) (42)
= —(KHYT"®K™! (43)

A more compact notation is achieved by using differentials

0 = d(K'K) (44)
(dK YK + K '(dK) (45)
dK! = —-K '(dK)K! (46)

At this stage we can introduce indicies and write
diK ) = —(K HIAE)(K )] (47)

then we differentiate w.r.t X? and obtain the result in the same lines as
Eq. 43. The thing to keep in mind is that the object dK “behaves” like a
matrix.

3.1.2 Special Cases: D¢(X) and DF(§)
The definition DF'(X) in Eq. 23 is changed when we have the derivative of a

scalar function w.r.t. a matrix (ag(;()) or the derivative of a matrix function

w.r.t. a scalar (81:;—25)). In these cases we define
0¢

Dop(X) = —

o) = oxa

OF}

DF = !
© = %



Example

$(X) = TrX"X = (X")iX] = (X])’ (48)
Dp(X) = 2X{(DX{) (49)

OX .

= 9XxJ =1
e (50)
= 2X/§’s2 (51)
= 2X7 (52)
= 2X (53)
A slightly general form arises in many applications such as the Kalman Filter:
¢(X) = TrBX'CX (54)
Bl (X")CLX; (55)

06(X)

Do(X) = 56
ox) = 25 (56)
- 0X ; i 0Xy
= B! 8Xga0,ﬁxl+BgX,gc,Q 5xFa (57)
= Bl§lopCiX] + Bl X]CLo! 57 (58)
= BJC\X]+ BLXx]Cg¢ (59)
= CX(B] +(CTeX{ (B (60)
= CXB+C"xB" (61)

3.2 The second Derivative : The Hessian

We define the Hessian of a matrix function as
HF(X) = D((DF(X))")

To see the rationale behind this definition in contrast to appearently more
natural definition D(DF’), we consider the second derivative of F(X) =



¢1,1 (151,2 _ § 01,1 Q12 £ n
F(X) N ( ¢2,1 (152,2 ) N ( n A ) < Qg1 (22 > ( Y A ) (62)
( a1,1§2 + (o2 + a91)¥E + 042,272 01,1M€ + 120 + a2 1Y + a2 Ay >
o1 1m€ + g0y + 21 AE + gy g1 + (o + 1) A + g\’
211§ + (1,2 t@2,1)y  (a1,2 +@2,1)§ + 2az2,2y 0 0
DF(X) ( e Ehiun | miimn o miin )
2(,\{1,1 12 + Q21 0 0 \
Q12+ Qg 2009 0 0
0 0 0 0
0 0 0 0
0 0 11 21
0 0 12 32
@11 @21 0 0
21 (0O%) 0 0
HF(X) 0’ 0’ iy " (63)
0 0 Q.1 Q22
Q1 Q12 0 0
192 Q29 0 0
0 0 0 0
0 0 0 0
0 0 20011 Q12+ Qg
\ 0 0 Q12+ Qg 20000 )
/ A+ AT 0 \
0 0
0 A H 1,1
AT 0 H o1
0 AT | Hows (64)
A 0 H ¢272
0 0
\ 0  A+AT )

The reader can verify easly that the alternative definition D(DF') would lead
to a Hessian matrix which could not be expressed as the partitioned form in
Eq. 64. Nevertheless, in practice Hessians are computed for scalar functions
#(X). For this case it is easy to see that D((DF)T) = D(DF). As an example
we evaluate the Hessian of ¢(X) = Tr BX7CX (Eq. 54). We identify the
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resulting object of size Zj;

0(Do(X))sa
po(x)) = 2CAX s (65)
= BlC! OXu | i ONik o 66

“gxm Boxm k
= BJCL5]6] + BLo]siCy
1] «
BlCt + BjC:
Ho(X) = B"'@C+BeC"

4 Applications

4.1 ML Estimation of a multivariate Gaussian

The derived results can be used to estimate parameters and corresponding
error bars of a multivariate Gaussian from data. The Gaussian distribution
is given by

p(e) = [2K| 3 exp(— (o — m) K (@ —m))

where |K| denotes the determinant of K.
The log likelihood of a i.i.d. data set {z;}}¥, 2 is

N
L = log][p() (70)
i=1
N 1 &
= — logl2nk| - 5 Z;(x —m)TK Y (z; —m) (71)
To find the ML parameters we compute the derivatives 8%5& and aafffj and set

them to zero.

N GNP
e 8m< Ns"K "m+ 5 M K 'm (72)
= NK '(m—s) (73)

N
where s is the sample mean s = # To find K, we write L as

N N
L = -3 Trlog2n K — E’I‘rK_lP

2Here, x; denotes the i’th sample in the data set, not the i’th element of z. We denote
this fact by explicitly showing the summation sign.
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from which it follows that

oL N N
= = __K'4+_K'PK!
oK T

Here P is the sample covariance P = + SN (@i—m)(z;—m)T. By setting the
derivatives to zero we verify the standard ML solutions m = s and K = P.
To find the error bars we need to compute second derivatives i(g—;fl),

om
2 (2£) and % (2%). These are found to be

0K \ 0K 7]
8 oL, »
o (5) = -NK (74)
DL 0 N N
ok‘or) T ar\ Tl TR K PET) (75)
= gKl(DK)KI + N(—K '(DK)K 'PK '+ K 'PK ' (DK)K76)
- —gK_l(DK)K_l (77)
_ _gKl & K- (78)
_ 2 -1
= —($K®K) (79)
Eq. 77 follows because K~'P = I at ML solution.
& oL
om oK) =" (80
The Hessian is given by
Hf(z) = D(Df(z)) (81)
—(§K)™! 0
= (82)
0 —(*K®@K) !

The error bars for m and K are given by diag(%K)? and diag(2K ® K)3
respectively.
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