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Boğaziçi University, Istanbul, Turkey

Instructor: A. Taylan Cemgil

Spring 2009



Cemgil CMPE 58N Monte Carlo Methods. Lecture 8 . 06 May 2009, Boğaziçi University, Istanbul

Time series models and Inference, Terminology
In signal processing, applied physics, machine learning many
phenomena are modelled by dynamical models

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

◮ x are the latent states
◮ y are the observations
◮ In a full Bayesian setting, x includes unknown model

parameters
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Online Inference, Terminology

◮ Filtering: p(xk|y1:k)
◮ Distribution of current state given all past information
◮ Realtime/Online/Sequential Processing

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

◮ Potentially confusing misnomer:
◮ More general than “digital filtering” (convolution) in DSP –

but algoritmically related for some models (KFM)
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Online Inference, Terminology

◮ Prediction p(yk:K, xk:K|y1:k−1)
◮ evaluation of possible future outcomes; like filtering without

observations

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

◮ Tracking, Restoration
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Offline Inference, Terminology

◮ Smoothing p(x0:K |y1:K),
Most likely trajectory – Viterbi path arg maxx0:K p(x0:K |y1:K)
better estimate of past states, essential for learning

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK

◮ Interpolation p(yk, xk|y1:k−1, yk+1:K)
fill in lost observations given past and future

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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Deterministic Linear Dynamical Systems

◮ The latent variables sk and observations yk are
continuous

◮ The transition and observations models are linear
◮ Examples

◮ A deterministic dynamical system with two state variables
◮ Particle moving on the real line,

sk =

(

phase
period

)

k

=

(

1 1
0 1

)

sk−1 = Ask−1

yk = phasek =
(

1 0
)

sk = Csk
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Kalman Filter Models, Stochastic Dynamical Systems

◮ We allow random (unknown) accelerations and
observation error

sk =

(

1 1
0 1

)

sk−1 + ǫk

= Ask−1 + ǫk

yk =
(

1 0
)

sk + νk

= Csk + νk
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Tracking

s0 s1 . . . sk−1 sk . . . sK

y1 . . . yk−1 yk . . . yK

◮ In generative model notation

sk ∼ N (sk; Ask−1, Q)

yk ∼ N (yk; Csk, R)

◮ Tracking = estimating the latent state of the system =
Kalman filtering
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α1|0 = p(x1)
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α1|1 = p(y1|x1)p(x1)
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α2|1 =
∫

dx1p(x2|x1)p(y1|x1)p(x1) ∝ p(x2|y1)
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α2|2 = p(y2|x2)p(x2|y1)
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α5|5 ∝ p(x5|y1:5)
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Nonlinear/Non-Gaussian Dynamical Systems

xk ∼ p(xk|xk−1) Transition Model

yk ∼ p(yk|xk) Observation Model

◮ What happens when the transition and/or observation
model are non-Gaussian

◮ Apart from a handful of happy cases, the filtering density is
not available in closed form or costs a lot of memory to
represent exactly
⇒ Need efficient and flexible numeric integration techniques
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Nonlinear Dynamical System Example

◮ Noisy Sinusoidal with frequency modulation

∆k ∼ N (∆k;∆k−1, Q)

φk = φk−1 + ∆k

yk ∼ N (yk; sin(φk), R)
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Example:
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Sequential Monte Carlo - Particle Filtering

◮ We try to approximate the so-called filtering density with a
set of points/Gaussians ≡ particles

◮ Algorithms are intuitively similar to randomised search
algorithms but are best understood in terms of sequential
importance sampling and resampling techniques
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Importance Sampling (Review)
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Resampling (Review)

◮ Importance sampling computes an approximation with weighted
delta functions

p(x) ≈
∑

i

W̃(i)δ(x − x(i))

◮ In this representation, most of W̃(i) will be very close to zero and
the representation may be dominated by few large weights.

◮ Resampling samples a set of new “particles”

x(j)
new ∼

∑

i

W̃(i)δ(x− x(i))

p(x) ≈
1
N

∑

j

δ(x− x(j)
new)

◮ Since we sample from a degenerate distribution, particle
locations stay unchanged. We merely dublicate (, triplicate, ...)
or discard particles according to their weight.
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Resampling (Review) (cont.)

◮ This process is also named “selection”, “survival of the fittest”,
e.t.c., in various fields (Genetic algorithms, AI..).
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Resampling
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Resampling

◮ Importance sampling computes an approximation with
weighted delta functions

p(x) ≈
∑

i

w̃(i)δ(x − x(i))

◮ In this representation, most of w̃(i) will be very close to zero
and the representation may be dominated by few large
weights.

◮ Resampling samples a set of new “particles”

x(j)
new ∼

∑

i

w̃(i)δ(x − x(i))

p(x) ≈
1
N

∑

j

δ(x − x(j)
new)
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Resampling (cont.)

◮ Since we sample from a degenerate distribution, particle
locations stay unchanged. We merely duplicate (, triplicate,
...) or discard particles according to their weight.

◮ This process is also named “selection”, “survival of the
fittest”, e.t.c., in various fields (Genetic algorithms, AI..).
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Resampling
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Popular Resampling Methods

◮ Multinomial Resampling

◮ Systematic Resampling

◮ Residual Resampling
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Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples
from the posterior p(x0:K |y1:K).

p(x0:K |y1:K) =
1

p(y1:K)
p(y1:K |x0:K)p(x0:K) ≡

1
Zy

φ(x0:K) (1)

Key idea: sequential construction of the proposal distribution q,
possibly using the available observations y1:k, i.e.

q(x0:K |y1:K) = q(x0)

K
∏

k=1

q(xk|x1:k−1y1:k)
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Sequential Importance Sampling
Due to the sequential nature of the model and the proposal, the
importance weight function W(x0:k) ≡ Wk admits recursive
computation

Wk =
φ(x0:k)

q(x0:k|y1:k)
=

p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1y1:k)

φ(x0:k−1)

q(x0:k−1|y1:k−1)
(2)

=
p(yk|xk)p(xk|xk−1)

q(xk|x0:k−1, y1:k)
Wk−1 ≡ uk|0:k−1Wk−1 (3)

Suppose we had an approximation to the posterior (in the sense
〈f (x)〉φ ≈

∑

i W(i)
k−1f (x(i)

0:k−1))

φ(x0:k−1) ≈
∑

i

W(i)
k−1δ(x0:k−1 − x(i)

0:k−1)

x(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k) Extend trajectory

W(i)
k = u(i)

k|0:k−1Wk−1 Update weight

φ(x0:k) ≈
∑

i

W(i)
k δ(x0:k − x(i)

0:k)
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Example

◮ Prior as the proposal density

q(xk|x0:k−1, y1:k) = p(xk|xk−1)

◮ The weight is given by

x(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W(i)
k = u(i)

k|0:k−1Wk−1 Update weight

=
p(yk|x

(i)
k )p(x(i)

k |x
(i)
k−1)

p(x(i)
k |x

(i)
k−1)

W(i)
k−1 = p(yk|x

(i)
k )W(i)

k−1

◮ However, this schema will not work, since we blindly
sample from the prior. But ...
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Example (cont.)

◮ Perhaps surprisingly, interleaving importance sampling
steps with (occasional) resampling steps makes the
approach work quite well !!

x(i)
k ∼ p(xk|x

(i)
k−1) Extend trajectory

W(i)
k = p(yk|x

(i)
k )W(i)

k−1 Update weight

W̃(i)
k = W(i)

k /Z̃k Normalize (Z̃k ≡
∑

i′
W(i′)

k )

x(j)
0:k,new ∼

N
∑

i=1

W̃(i)δ(x0:k − x(i)
0:k) Resample j = 1 . . . N

◮ This results in a new representation as

φ(x) ≈
1
N

∑

j

Z̃kδ(x0:k − x(j)
0:k,new)

x(i)
0:k ← x(j)

0:k,new W(i)
k ← Z̃k/N
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Optimal proposal distribution

◮ The algorithm in the previous example is known as
Bootstrap particle filter or Sequential Importance
Sampling/Resampling (SIS/SIR).

◮ Can we come up with a better proposal in a sequential
setting?

◮ We are not allowed to move previous sampling points x(i)
1:k−1

(because in many applications we can’t even store them)
◮ Better in the sense of minimizing the variance of weight

function Wk(x).

◮ The answer turns out to be the filtering distribution

q(xk|x1:k−1, y1:k) = p(xk|xk−1, yk) (4)
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Optimal proposal distribution (cont.)

◮ The weight is given by

x(i)
k ∼ p(xk|x

(i)
k−1, yk) Extend trajectory

W(i)
k = u(i)

k|0:k−1W(i)
k−1 Update weight

u(i)
k|0:k−1 =

p(yk|x
(i)
k )p(x(i)

k |x
(i)
k−1)

p(x(i)
k |x

(i)
k−1, yk)

×
p(yk|x

(i)
k−1)

p(yk|x
(i)
k−1)

=
p(yk, x(i)

k |x
(i)
k−1)p(yk|x

(i)
k−1)

p(x(i)
k , yk|x

(i)
k−1)

= p(yk|x
(i)
k−1)
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A Generic Particle Filter

1. Generation :
Compute the proposal distribution q(xk|x

(i)
0:k−1, y1:k).

Generate offsprings for i = 1 . . . N

x̂(i)
k ∼ q(xk|x

(i)
0:k−1, y1:k)

2. Evaluate importance weights

W(i)
k =

p(yk|x̂
(i)
k )p(x̂(i)

k |x
(i)
k−1)

q(x̂(i)
k |x

(i)
0:k−1, y1:k)

W(i)
k−1 x(i)

0:k = (x̂(i)
k , x(i)

0:k−1)

3. Resampling (optional but recommended)

Normalize weigts W̃(i)
k = W(i)

k /Z̃k Z̃k ≡
∑

j
W(j)

k

Resample x(j)
0:k,new ∼

N
∑

i=1

W̃(i)δ(x0:k − x(i)
0:k) j = 1 . . . N

Reset x(i)
0:k ← x(j)

0:k,new W(i)
k ← Z̃k/N
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Particle Filtering
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Summary

◮ Time Series Models and Inference

◮ Importance Sampling, Resampling Review

◮ Putting it all together, Sequential Monte Carlo


