Boğaziçi University, Dept. of Computer Engineering

CMPE 58N, MONTE CARLO METHODS

Spring 2014, Midterm

Name [.]			
i tanito.			

Student ID:	

Signature: _____

- Please print your name and student ID number and write your signature to indicate that you accept the University honour code.
- During this examination, you may NOT use any books or laptops. You can use an A4 cheat sheet.
- Read each question carefully and show all your work. Underline your final answer to each question.
- There are 5 questions. Point values are given in parentheses.
- You have 180 minutes to do all the problems.

Q	1	2	3	4	5	Total
Score						
Max	20	20	20	20	20	100

- 1. (a) (1 pts) What is the law of large numbers ?
 - (b) (1 pts) What is the CLT ?
 - (c) (1 pts) What does the CLT says about Monte Carlo integration?
 - (d) (1 pts) Suppose you have generated independent samples from the joint density p(x, y). How would you estimate the expected value $\langle x \rangle$?
 - (e) (1 pts) Box Muller method for generating Gaussian random variables is an instance of which sampling method ?
 - (f) (1 pts) What is 'the weight function'?
 - (g) (1 pts) What is 'the variance of importance weights'?
 - (h) (1 pts) Is reducing the variance of importance weights a good objective in importance sampling ? Why?

- (i) (1 pts) What is the 'optimum proposal' in importance sampling?
- (j) (1 pts) How do you 'postprocess' samples generated by importance sampling $x^{(i)}$ to make them unweighted in the sense that you can use the estimator $\sum_i f(x^{(i)})/N$ to estimate $\langle f \rangle$?

Name: _____

- (a) $s = x_1 + x_2$
- (b) $y = x_1/(x_1 + x_2)$

- 3. (Rejection and Importance Sampling) Consider a symmetric triangular distribution p with support [-1, 1] and a symmetric triangular distribution on $[-\tau, \tau]$ as the proposal q,
 - (a) What is the highest efficiency as a function of τ for rejection sampling from p? Draw a figure. (Efficiency is the ratio of the number of samples generated by the numbers that are proposed)
 - (b) What is the importance weight expression as a function of τ ?
 - (c) What is the variance expression for the importance weights as a function of τ ?

4. Markov Chains

- (a) (2 pts) What is meant by 'the stationary (invariant) distribution of a Markov chain'?
- (b) (2 pts) Under what conditions is the stationary distribution of a MC unique ?
- (c) (2 pts) What is meant when one says 'the Markov chain converged to the stationary distribution' ?
- (d) (2 pts) Show that when two Markov transition matrices T_1 and T_2 have the same unique invariant distribution, their mixture $T = \lambda T_1 + (1 \lambda)T_2$ has the same invariant distribution.
- (e) (2 pts) What is detailed balance?
- (f) (2 pts) Give an example of a Markov chain on two states, that doesn't satisfy detailed balance.
- (g) (2 pts) Suppose a chain doesn't satisfy detailed balance. Can it have a unique stationary distribution ?
- (h) (2 pts) What is a periodic Markov chain?

- (i) (2 pts) What is the total variation distance of two densities ?
- (j) (2 pts) How can you estimate numerically the rate of convergence of a Markov chain on a small finite set ?

Name: _____

5. Suppose we have the following procedure, expressed in a Matlab like language. rand() returns a uniform random number on [0, 1]

```
x(1) = 1
lp = log([3 1])
for t=2:T,
    xp = (rand()<0.5) + 1;
    la = lp(xp) - lp(x(t-1));
    if log(rand()) < la,
        x(t) = xp;
    else
        x(t) = x(t-1);
    end
end</pre>
```

E = sum(x == 1)/T;

- (a) Find the Markov transition matrix $T = p(x_t|x_{t-1})$ that this procedure corresponds to. What is its stationary distribution?
- (b) What is the expected value of E? What is its variance?