Boğaziçi University, Dept. of Computer Engineering

CMPE 58N, MONTE CARLO METHODS

Spring 2012, Midterm

Name: ________________________________

Student ID: ___________________________

Signature: _____________________________

• Please print your name and student ID number and write your signature to indicate that you accept the University honour code.

• During this examination, you may use any notes, books or laptops. You can even lookup resources on the internet; however communication with fellow students is not allowed.

• Read each question carefully and show all your work. Underline your final answer to each question.

• There are 6 questions. Point values are given in parentheses.

• You have 180 minutes to do all the problems.

<table>
<thead>
<tr>
<th>Q</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>
1. **(Gamma Distribution)** The gamma density is given by

\[
\mathcal{G}(\lambda; a, b) = \exp((a - 1) \log \lambda - b \lambda - \log \Gamma(a) + a \log b)
\]

(a) Suppose we have

\[
p_1(x) = \mathcal{G}(x; a_1, b_1) \\
p_2(x) = \mathcal{G}(x; a_2, b_2)
\]

Express

\[
p_1(x)p_2(x)
\]

as a Gamma density times a constant.

(b) Suppose we have

\[
p(x_1) = \mathcal{G}(x_1; \alpha_1, \beta_1) \\
p(x_2) = \mathcal{G}(x_2; \alpha_2, \beta_2)
\]

Find the density of \(z\) where

\[
z = x_1x_2
\]

(20 points)
2. **Circles** Suppose we have only access to unit Gaussian $\mathcal{N}(x; 0, 1)$ random number generator and no uniformly random numbers. Describe methods for sampling

(a) uniformly on the unit circle, i.e., on $A = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\}$

(b) uniformly on a unit circular region, i.e., on $A = \{(x_1, x_2) : x_1^2 + x_2^2 \leq 1\}$

(c) uniformly on a unit circular band, i.e., on $A_e = \{(x_1, x_2) : 1 - e \leq x_1^2 + x_2^2 \leq 1 + e\}$ where $0 < e < 1$

Try to be as efficient as possible. For each method sketch a proof why your method works.

(20 points)
3. **Simplex** Consider a set $A \subset \mathbb{R}^3$ such that $A = \{(x_1, x_2, x_3) : x_i \geq 0 \text{ and } \sum x_i = 1\}$. Suppose we wish to generate points uniformly random on A and someone proposes the following method.

- Sample u_i uniformly on $(0, 1]$ for $i = 1 \ldots 3$. Let $s = \sum u_i$. Set $x_i = u_i/s$ for $i = 1 \ldots 3$

Prove that this method works or disprove and show that it does not work.

(20 points)
4. **IS** Suppose we will use importance sampling with a Gaussian proposal of form $q = \mathcal{N}(x; 0, v)$ for estimating expectations under the density $p = \mathcal{U}(x; 0, 1)$. What is the best v in terms of minimizing the variance of the importance weights?

(20 points)
5. **LLN and CLT** Suppose we are throwing a loaded coin with an unknown probability π of heads. How many trials would be needed to figure out with 50 percent confidence that indeed the coin is biased, i.e. $\pi \neq 1/2$.

(20 points)
6. Suppose you are given a directed acyclic graph (DAG) \(G = (V, E) \) where \(V \) is the vertex set and \(E \) is the edge set. Describe a method to sample uniformly from all topological orderings of \(G \), i.e. permutations of \(V \) that conform to \(G \).

For example: \(A \leftarrow B \rightarrow C \) has two topological orders: \(\sigma_1 = (B, A, C) \) and \(\sigma_2 = (B, C, A) \). Both permutations conform to \(G \). Here your algorithm should output \(\sigma_1 \) with probability 0.5. On the other hand \(A \rightarrow B \rightarrow C \) has only a single topological order \((A, B, C) \).

To find a topological order of \(G \), (1) remove a node \(v \) that doesn’t have any edges pointing to it, (2) remove all the edges from \(v \) to the other nodes from the graph, (3) goto one if the graph \(G \) has still vertices. The elimination sequence is a possible topological order.

\((20\ points) \)