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1 Introduction

Monte Carlo (method) (MC) is an umbrella name for an arsenal of numerical techniques for com-
puting approximate estimates via random sampling. The estimates are very often given as the result
of an intractable integral and the technique could have been named “numerical integration in high
dimensions via random sampling”. The term Monte Carlo was initially coined during 1940’s by von
Neumann, Ulam and Metropolis [29, 28] as a “cuteness” [15] to refer to the famous casino of 1940’s.
However, due to the central importance of the subject and wide use of the concept, it soon became
an established technical term.

Monte Carlo techniques have been further popularized in applied sciences with the wider availability
of computing power, starting from the 90’s, most notably in statistics, computer science, operational
research and signal processing. In signal processing or operational research, MC experiments are
extensively used for assessing the performance of a system or a computational method by generating
a random sample of typical inputs. While the term Monte Carlo experiment is also used extensively
here, the goal in such applications is ’system simulation’, i.e., to understand the properties of a
system under uncertainty. The Monte Carlo methods in this paper are slightly different from system
simulation; we have a well defined ’deterministic’ computational problem with a single answer and
randomization is used as a tool for approximate computation. As such, we will refer to MC in this
context and the applications will be parameter estimation, prediction and model selection.

In this tutorial, we will sketch the aims, the basic techniques and the principles of Monte Carlo
computation. After the illustration of the law of large numbers and central limit theorem [18], we
cover basic Monte Carlo methods for sampling from elementary distributions: inversion, transform
and rejection techniques[26]. We cover also Markov Chain Monte Carlo (MCMC) methods [3]; but
rather than giving only the basic algorithms, we sketch the implications of some of the key results
in the theory of finite Markov chains [30]. We also cover importance sampling and sequential Monte
Carlo methods [25, 8, 11]. Finally we give an overview of a more advanced technique, the reversible
jump method [17]. Our goal is to provide a self contained introduction with a unified notation,
build up a basic appreciation of modern Monte Carlo techniques and to sharpen the readers intuition
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using several toy examples. Parts of this material have been used in advanced undergraduate and
introductory graduate courses on Monte Carlo computation, taken primarily by students interested
in techniques for data analysis with signal processing, machine learning or data mining background
with some working knowledge of probability theory and statistics. Experience has shown that even
tutorial texts on statistical computation were not immediately accessible due to the notation barrier
and students benefited mostly from toy examples. Inevitably, in an elementary tutorial we had to
omit a lot of techniques but still tried to retain the ’gist’ of the subject.

2 The Monte Carlo Principle

In an abstract setting, the main principle of a Monte Carlo technique is to generate a set of samples
x(1), . . . , x(N) from a target distribution π(x) to estimate some features of this target density π.
Features are simply expectations of ’well behaving’ functions that can be approximated as averages:

Eπ(ϕ(x)) ≈
ϕ(x(1)) + · · ·+ ϕ(x(N))

N
≡ Ēϕ,N .

Provided that N is large enough, we hope that our estimate Ēϕ,N converges to the true value of the
expectation Eπ(ϕ(x)). More concrete examples of test functions ϕ(x) will be provided in the next
section. For independent and identically distributed samples, this is guaranteed by two key math-
ematical results: the strong Law of Large Numbers (LLN) and the Central Limit Theorem (CLT)
[32, 18]. Assuming that Eπ(ϕ(x)) = µ and Vπ (ϕ(x)) = σ2 (we have finite mean and variance), the
LLN states that

Ēϕ,N → µ a.s.

Here, a.s. denotes convergence almost surely, meaning that Pr{limN→∞ |µ−Eϕ,N | = 0} = 1. Whilst
fluctuations are inevitable (since our approximation will be based on a random and finite sample set
x(1) . . . x(N)) we wish these fluctuations to be small. This is guaranteed by the CLT: for sufficiently
large N , the fluctuations are approximately Gaussian distributed

Ēϕ,N ∼ N
(
Ēϕ,N µ, σ2/N

)

and the variance of the estimate drops with increasing N , while its mean is the desired value. This
result has important practical consequences. If we can generate i.i.d. samples from the distribution
of x, denoted as π(x), we can estimate expectations of ϕ(x) :

1. Monte Carlo provides a ‘noisy’ but unbiased estimate of the true value µ = Eπ(ϕ(x)),

2. The error behaves as O(N−1/2),

3. The convergence rate is independent of the dimensionality of x.

The third point is particularly important. It suggests that, at least in principle, with a quite small
number of samples one can compute approximate solutions for arbitrary large parameter estimation
problems. All one needs is obtaining independent samples. The difficulty with this approach, how-
ever, is in generating independent samples from a target distribution π(x) and various Monte Carlo
methods aim to provide techniques for this.
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2.1 Illustration of the MC principle

In this section, we will illustrate the MC principle, that averages obtained from several random
experiments tends to stabilize. As the running example we will focus on a problem mentioned in the
famous letters between Pascal and Fermat, first writings that are considered to mark the start of
the modern probability theory [19]. A French nobleman and gambler Chevalier de Méré contacted
Pascal. Méré was betting that in four rolls of a single die, at least one six would turn up. Later,
Méré ‘extended’ his schema where he was betting that in 24 rolls of two dice, a pair of sixes would
turn up. He was not happy with this new schema and was calling Pascal for an explanation.

Indeed, the analytical solution for this problem is elementary; we merely calculate the probability
that in 4 consecutive independent throws at least a 6 comes up. A quick calculation shows indeed
there is a slight advantage for Méré:

Pr{Méré wins in 4 throws} = 1− Pr{no 6 is thrown}4
= 1− (5/6)4 = 0.5177

In a sense, this experiment is equivalent to playing head and tail with a carefully forged coin. The
bias is small and may not be easily detected by a naive opponent. Like all Casinos, Méré exploited
this subtle bias to his advantage to earn money on average in repeated trials.

However, the analytical solution for the two dice game reveals that throwing the dice only 24 times
is not a good bet for Méré:

Pr{Méré wins in 24 throws} = 1− (35/36)24 = 0.4914

but with 25 throws, the odds turn into his favor as

Pr{Méré wins in 25 throws} = 1− (35/36)25 = 0.5055

The natural question here is if one could detect with certainty that there is indeed a systematic
deviation from 0.5 by just looking at the outcomes of a sequence of games. Indeed for many problems
of interest, such probability calculations will be significantly harder, if at all possible, and it is natural
to ask how reliable it is to estimate such quantities using data obtained from MC experiments.

Playing the game repetitively is a MC experiment. By just recording the outcome of each game (and
the total number of games played), we could in principle estimate the winning probability. To be

more precise, consider the single die, 4 times throw game. Let x
(n)
k denote the outcome of the die at

k’th throw in the n’th game. Formally, a game is represented by the tuple x ≡ (x1, x2, x3, x4). We
assume a fair die, as such for k = 1 . . . 4

xk ∼ U(1, 6)

where U(a, b) denotes a uniform distribution on integers x such that a ≤ x ≤ b. Since each throw in
the game is independent, the target distribution π(x) is the uniform distribution on X = {1, . . . , 6}4
and each game is simply a random point in X .
To estimate the probability of winning, we define formally the indicator function for winning the
n’th game

ϕ(x(n)) = I{0 <

4∑

k=1

I{x(n)
k = 6}}
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Here, I{x} is an indicator function that is 1 if x is true and 0 if false. The test function ϕ looks
awkward but it just checks if in 4 throws at least a 6 is obtained. Finally, the probability θ that
Méré wins in 4 throws can be estimated as

θ = Eπ(ϕ(x)) ≈
1

N

N∑

n=1

ϕ(x(n)) = Ēϕ,N

Similarly, for the two dice, 24 throws game, formally we let x
(n)
i,k denote the outcome of the die i at

k’th throw in the n’th game.

ϕ(x(n)) = I{0 <

24∑

k=1

I{x(n)
1,k = 6}I{x(n)

2,k = 6}}

Ēϕ,N =
1

N

N∑

n=1

ϕ(x(n)) (1)

The mean and variance of φ(x(n)) are

E
(
ϕ(x(n))

)
= θ

Var{ϕ(x(n))} = θ(1− θ)

respectively1. As these are finite, the strong law of large numbers applies. The law guarantees the
very intuitive fact that with increasing number of games N , the estimates become increasingly more
and more accurate. Technically, when N →∞ we have convergence

Ēϕ,N → θ

The ‘speed’ is given by the central limit theorem, that says that for largeN the estimate is distributed

Ēϕ,N ∼ N
(
Ēϕ,N θ, θ(1− θ)/N

)

Provided that we can generate independent samples, the error will be O(N−1/2). The most important
aspect of this convergence result, that can not be overemphasized is that the error does not depend
on the dimensionality of the parameter to be estimated!

To illustrate these concepts with an example consider Fig.1 where we simulate the estimate for a
two dice, 24 throw game case for several N . The path shows the estimate Ēϕ,N in Eq.1 for each N .
We can see that the path converges to the true value. For each N , the error bars correspond to the
standard deviations given by the central limit theorem.

To illustrate the implication of the central limit theorem, consider now a collection of estimates,
obtained from results of N games per night with a total of K different nights. Formally, the outcome
of the n’th game at the k’th night is denoted as ϕ(x(n,i)) for i = 1 . . .K and n = 1 . . .N . The
estimate at the i’th night after observing the N ’th game as

Ē
(i)
ϕ,N =

1

N

N∑

n=1

ϕ(x(n,i))

. Now, we visualise all the paths together, where each path is depicted corresponds to the sequence of
estimates for each independent night i (Fig.2). Each path corresponds to the estimate as a function
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Figure 1: The estimate of winning probability for a pair of 6 in 24 throws game. The horizontal
solid line shows the true odds θtrue that is smaller than 0.5. The path shows the estimate Ēϕ,N as a
function of N . Law of large numbers says that all these curves eventually will converge to the true
θtrue, shown as a solid line.
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Figure 2: Verification of the central limit theorem. We estimate the winning probability for the
2 dice, 24 throws game. Each path corresponds to the estimate Ē

(i)
ϕ,N as a function of N , where

i = 1 . . .K denotes the independent sequences of games. CLT says that at any fixed N , Ē
(i)
ϕ,N the

values of these estimates is approximately normal distributed with standard deviation σ/
√
N . For

each N , the red dotted curves designate the [θtrue− 3σ/
√
N, θtrue+3σ/

√
N ]. It is a common folklore

in statistics to plot the ±3σ interval for a univariate Gaussian as this interval contains more than 99%
of the probability mass. As given by the CLT, the paths exit the ±3σ/

√
N tube only occasionally.
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of the number of games played N . We can clearly see that all the independent paths eventually stay
in the “narrow tube”, as predicted by the CLT.

In the above examples, instead of experimenting with real dice, we have simulated the experiment on
a computer. It turns out that it is surprisingly delicate to simulate ‘truly’ random numbers on de-
terministic hardware. Instead, pseudo-random numbers are generated using deterministic algorithms
and are briefly reviewed in the next section.

2.2 Random Number Generation

“The generation of random numbers is too important to be left to chance”2 and truly random num-
bers are impossible to generate on a deterministic computer. Published tables or other mechanical
methods such as throwing dice, flipping coins, shuffling cards or turning the roulette wheels are
clearly not very practical for generating the random numbers that are needed for computer simu-
lations. Other techniques, more suited to computation exist; these rely on chaotic behavior, such
as the thermal noise in Zener diodes or other analog circuits as well as the atmospheric noise (see,
e.g., www.Random.org) or running a hash function against a frame of a video stream. Still, the vast
amount of random numbers are obtained from pseudo-random number generators. Apart from being
very efficient, one additional advantage of these techniques is that the sequences are reproducible by
setting a seed, this property is key for debugging MC code.

The most well known method for generating random numbers is based on a Linear Congruential Generator (LCG)
The theory is well understood, the method is easy to implement and it runs very fast. A LCG is
defined by the recurrence relation:

xn+1 ≡ (axn + c) (mod M)

If the coefficients a and c are chosen carefully (e.g., relatively prime toM), x will be roughly uniformly
distributed between 0 and M − 1. Roughly uniformly means that, the sequence of numbers xn will
pass many reasonable tests for randomness. A such test suite is the so called DIEHARD tests,
developed by George Marsaglia [1] that are a battery of statistical tests for measuring the quality of
a random number generator.

A more recently proposed generator is the Mersenne Twister algorithm, by Matsumoto and Nishimura
[27]. It has several desirable features such as a long period and being very fast. Many public domain
implementations exist and it is the preferred random number generator for statistical simulations
and Monte Carlo computations.

Good random number generators provide uniformly distributed numbers on an interval. Hence,
provided we have a good random number generator that can generate uniformly random integers
(say between 0 and 264− 1), the resulting integers can be used to generate double precision numbers
almost uniformly distributed in [0, 1). We will assume in the sequel that we have access to a good
uniform random number generator that can generate real numbers on [0, 1); knowing that in practice
such a generator generates only rational numbers (say double precision floating point numbers). We
will denote this generator by U(0, 1) and denote a realization, i.e., a sample drawn as u ∼ U(0, 1).

1The mean and variance of a Bernoulli random variable.
2Wikipedia entry on Pseudo Random Number generator
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3 Basic techniques for simulating random variables

The techniques described in this section sketch the basic techniques to generate (mostly univariate
and bivariate random variables) with a given density. This is a surprisingly deep and interesting
subject touching many facets of computer science. For further information, the reader is invited to
look at the fantastic book by Luc Devroye, on non uniform random variate generation [7].

3.1 Inversion

The basic technique is based on transformation; we generate a uniform random number u ∼ U(0, 1)
and transform it to obtain x = g(u) where g is a function. This method requires calculating the cumu-
lative density function and inverting it. Recall the definition of a Cummulative Density function (CDF)

FX(x) =

∫ x

−∞

fX(τ)dτ

where fX is the probability density of the random variable X . The key observation behind the
inversion method is the fact that when X ∼ fX , the quantity U = FX(X), when viewed as a random
variable, is uniformly distributed on [0, 1). To see this, assume that the inverse of FX exists, and we
can find X = F−1

X (U).

FX(x) = Pr{X < x}
FX(F

−1
X (u)) = Pr{F−1

X (U) < F−1
X (u)}

u = Pr{U < u} 0 ≤ u ≤ 1

By taking the derivative, we see that the density of u is uniform. The argument works also in the
opposite direction: when we first choose uniform U and pass it through the function X = F−1

X (U),
the density of X will be fX . To allow for discrete distributions or continuous densities with atoms
(where single points have positive probability mass), we define the generalised inverse CDF

F−(u) ≡ inf{x : F (x) ≥ u}
The x generated by this method are guaranteed to be distributed by fX . Figure Fig.3 illustrates this
construction. The generalized inverse allows for jumps in the cumulative density when atoms have
nonzero probability.

Example 1. Exponential random variables can be derived by the inversion method from uniform
samples. The exponential density with rate parameter λ is

E(x;λ) = λ exp(−λx)

The CDF of the exponential distribution is found as

F (x) =

∫ x

0

λ exp(−λτ) = − exp(−λx) + 1

The generalised inverse is obtained via

u = F (x) = 1− exp(−λx)
x = − log(1− u)/λ = F−(u)
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Figure 3: Generation of samples from a discrete distribution. We generate u uniformly on [0, 1) and
find the corresponding x via the generalised inverse F−(u). The discrete case is particularly intuitive:
think of dividing a stick of length 1 into pieces of length πi = fX(xi) and label each region with xi.
Select a point u uniformly random and return the label of the region that u falls in.
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Figure 4: Visualisation of the generalised inverse. The blue curve shows a CDF of a probability
distribution with an atom, as can be seen from the discontinuity. For a given probability u, F−(u)
is the ’minimum’ x such that the probability of the interval (∞, x] is equal or exceeds u.
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We can even avoid calculating 1− u by noting that both u and w = 1− u are distributed uniformly
on [0, 1], so

x = F−(w) = − log(w)/λ

3.2 Transformation

The generalised inverse method works by applying a suitable function (the generalized inverse F−(u))
on a random input with a known density (u with a uniform density). This method can be made
more general by a technique known as the change of variables [18].

To illustrate the transformation method, we will first give an example where the mapping function
will be affine (that is linear plus a constant term). Suppose we are given a random variable X with
density fX(x) and wish to find the density of Y where

Y = aX + b

It is clear that the density of Y , denote by fY should be somewhat related to fX . For example if X
is uniform (fX = U) on [0, 1) and a = 2 and b = −1, one could see that Y is uniform on [−1, 1).
The general case, when fX is any density, is perhaps slightly harder to see. To find the density of Y ,
we first will find the CDF FY (y) of Y and obtain the desired density fY (y) by taking the derivative
w.r.t. y. In particular,

FY (y) = Pr{Y ≤ y} = Pr{aX + b ≤ y} =
{

Pr{X ≤ (y − b)/a}, a > 0
Pr{X ≥ (y − b)/a}, a < 0

By taking derivative we see that the density is given by

fY (y) =
dFY

dy
=

1

|a|fX((y − b)/a)

For the more general case, we have a more general mapping g where

Y = g(X)

X = g−1(Y )

The density can be found as

FY (y) = Pr{Y ≤ y} = Pr{g(X) ≤ y} = Pr{X ≤ g−1(y)}

fY (y) =
dFY

dy
= fX(g

−1(y))

∣
∣
∣
∣

dg−1(y)

dy

∣
∣
∣
∣
≡ fX(x(y)) |J(y)| (2)

here, the derivative of g−1 is denoted as the Jacobian and the absolute value ensures the positivity
of the densities. In many textbooks it is common to drop the explicit reference to the function g;
authors often use y(x) for y = g(x) and x(y) for the inverse g−1(y). In the sequel, we will also adopt
this notation. The multivariate case is analogous; here we illustrate the bivariate case, the most
encountered case in derivations. The function g, that is also called a transform, is defined as

(y1, y2) = g(x1, x2)
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If we can invert g, which is not always easy to do analytically, we find

x1 = x1(y1, y2)

x2 = x2(y1, y2)

The derivative term is the Jacobian determinant defined as

J =

∣
∣
∣
∣

∂x1/∂y1 ∂x2/∂y1
∂x1/∂y2 ∂x2/∂y2

∣
∣
∣
∣
= J(y1, y2)

Consequently, the density of the transformed variable, similar to Eq.2, is given by

fY (y1, y2) = fX(x1(y1, y2), x2(y1, y2))|J(y1, y2)|

Example 2. To illustrate the method, we describe the Box-Müller method for generating normal
random variables. The Box-Müller method generates the pair (x1, x2)

x1 ∼ E(x1; 1/2) =
1

2
exp(−x1/2)

x2 ∼ U(x2; 0, 2π) =
1

2π
I{0 ≤ x2 ≤ 2π}

where x1 is the square of the magnitude and x2 is the angle of a point in polar coordinates. The
method transforms this point into cartesian coordinates

y1 =
√
x1 cos(x2)

y2 =
√
x1 sin(x2)

It turns out, that y1 and y2 obtained via this method are independent and unit Gaussian (N (0, 1))
distributed. To show this, we find the inverse mapping

x1 = y21 + y22
x2 = arctan(y2/y1)

The Jacobian determinant is found as

J =

∣
∣
∣
∣

∂x1/∂y1 ∂x2/∂y1
∂x1/∂y2 ∂x2/∂y2

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

2y1
1

1+(y2/y1)2
−y2
y21

2y2
1

1+(y2/y1)2
1
y1

∣
∣
∣
∣
∣
= 2

The resulting density is

fY (y1, y2) = E(x1(y1, y2); 1/2)U(x2(y1, y2); 0, 2π)|J(y1, y2)|
=

1

2
exp(−(y21 + y22)/2)

1

2π
2 =

1√
2π

exp(−y21/2)
1√
2π

exp(−y22/2)

= N (y1; 0, 1)N (y2; 0, 1)
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3.3 Rejection Sampling

Rejection sampling is a technique for indirectly sampling from a target distribution π by sampling
from a proposal distribution q. We reject some of the generated samples to compensate for the fact
that q 6= π. The algorithm is as follows: We sample x(i) for i = 1 . . .N independently from q. We
accept the sample x(i) with acceptance probability a(x(i)) where the acceptance probability is

a(x) ≡ π(x)

Mq(x)

Here, M is a positive number that guarantees π(x) ≤ Mq(x) for all x, i.e., that Mq(x) completely
covers the density π(x). The approach also works when the normalization constant Z of π is unknown,
that is we can only evaluate φ pointwise where

π(x) =
1

Z
φ(x)

In this case, we let the acceptance probability be

ã(x) ≡ φ(x)

M̃q(x)

where φ(x) ≤ M̃q(x) for all x. If a suitable M (or M̃) can be found, the algorithm is simple to
implement and requires only sampling from q and pointwise evaluation of φ. To understand the idea
behind rejection sampling, we observe that for any density function f(x), (including obviously our
target π and the proposal q) we have the following identity:

f(x) =

∫ f(x)

0

1dτ =

∫

I{0 ≤ τ ≤ f(x)}dτ (3)

In other words, f(x) can be written as a marginal density of a distribution with density I{0 ≤ τ ≤
f(x)} on the extended space (x, τ). This density is simply the uniform density over the volume
under the curve f(x). The equation Eq.3 says that generating samples from f(x) is equivalent to
uniformly generating samples on the set A = {(x, τ) : 0 ≤ τ ≤ f(x)} and then simply ignoring the τ
coordinate. When f(x) = φ(x)/Z and we don’t know Z

f(x) =
1

Z
φ(x) =

1

Z

∫ φ(x)

0

1dτ =
1

Z

∫

I{0 ≤ τ ≤ φ(x)}dτ (4)

By integrating over x on both sides we get the normalization constant Z as the area of the region
A = {(x, τ) : 0 ≤ τ ≤ φ(x)}:

Z =

∫ ∫

I{0 ≤ τ ≤ φ(x)}dτdx

Hence

f(x) =

∫
I{0 ≤ τ ≤ φ(x)}dτ

∫ ∫
I{0 ≤ τ ≤ φ(x)}dτdx

This equation suggests that f(x) is the marginal density of uniform density over the set A. A useful
metaphor for understanding the concept is of thinking fishes in a lake [26], where x is a coordinate
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on the water surface and τ is the depth, which is illustrated in Fig.5. If all fishes in the lake are
distributed uniformly in the water, when viewed from above they will be marginally distributed with
density f(x).

Note that the reasoning of Eq.3 works also in the reverse direction: when we have samples x(i) for
i = 1 . . .N generated from a proposal q(x), we can select the τ coordinate for each x(i) simply by
choosing τ (i) uniformly on [0,Mq(x(i))]. The resulting pairs (x(i), τ (i)) will be uniformly distributed
on the set AMq = {(x, τ) : 0 ≤ τ ≤ Mq(x)}. Provided that φ(x) ≤ Mq(x), if we now select only
the pairs such that τ (i) < φ(x(i)), these accepted tuples will be distributed uniformly on the set
Aφ = {(x, τ) : 0 ≤ τ ≤ φ(x)}. But, by Eq.4, the marginal of this uniform density will be p.

Figure 5: Fishes in a lake. We view the bivariate density function f(x) as the bottom surface of
a lake. Take uniformly distributed points in this volume. When viewed from above, i.e., when we
ignore their depth, the points will be distributed more densely where the lake is deeper.
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Figure 6: Rejection sampling. Sampling x from the proposal q(x) and then sampling the associated
τ uniformly on [0, M̃q] results in uniformly distributed tuples (x, τ) (all the points under M̃q(x)).
Restricting those to only points such that τ ≤ φ(x) provides the accepted points (red dots), the
other points are rejected (blue crosses). Note that the probability Pr{τ ≤ φ(x)} = φ(x)/M̃q(x) is
the acceptance probability ã(x).
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Algorithm 1 Rejection Sampling

1: Construct an easy to sample density q(x) and positive number M̃ such that φ(x) < M̃q(x)
2: for i = 1, 2, 3 . . . do
3: Draw x(i) ∼ q(x)
4: Accept x(i) with probability α̃(x(i)) = φ(x(i))/M̃q(x(i))
5: end for

4 Markov Chain Monte Carlo

In Markov Chain Monte Carlo methods [33, 16, 31, 24, 3], instead of directly attempting to sample
from π(x), we sample from a Markov chain with transition density (‘kernel’) K(x(n)|x(n−1)) where n
indexes the sample number3. To see how this connects to our ultimate desire to sample from a target
π(x) consider first drawing samples from the Markov chain. Given an initial state x(1), we draw x(2),
then conditioned on x(2) we draw x(3) and so on by iteratively drawing from K(x(n)|x(n−1)). The
distribution of state occupancy at time n, πn(x), is found from

πn(x) =

∫

K(x|x′)πn−1(x
′)dx′

which we write more compactly as πn = Kπn−1. This generates a sequence of marginal distri-
butions π1, π2, . . .. Does this sequence of distributions converge and, if so, what does it converge
to? A stationary distribution, π satisfies π = Kπ. A key result here is that for an ergodic chain
(i.e.,irreducible (chain) and aperiodic (chain)) there exists a unique distribution π for which π = Kπ
and therefore a unique stationary distribution to which all the occupancy distributions converge,
irrespective of their initial states [30]. For finite state Markov chains, irreducibility means that each
state can be visited starting from each one (related to connectedness of the state transition diagram)
and aperiodicity means that each state can be visited at any time n larger than some fixed number.

The first question is, given a Markov chain with transition kernel K, how to find the marginal
distribution πn(x) for large n. The second question is how to construct a transition kernel that
is easy to sample from and converges to the desired target distribution. In the finite state case, a
solution to the first question is provided by the eigenvalue-eigenvector decomposition of the transition
matrix that will be introduced in the next section. The answer to the second question turns out to
be very elegant and simple and underlies the celebrated Metropolis-Hastings Markov Chain Monte
Carlo method [28, 20] that will be covered afterwards.

4.1 Stationary distribution of a Markov Chain with finite number of

states

We first focus our attention on the convergence of a Markov chain and illustrate results in the finite
state case. The finite state case may seem to be too restrictive, and in a sense it indeed is. From
a mathematical perspective, the theory of Markov chains for more general spaces is more delicate

3Note that, the sample number is conceptually different than the ‘time’ index in a time series model; for example,
in a time series model xt corresponds to the state at time t, whereas here xn can correspond to a vector of all state
variables – a full state trajectory. In this context, it is convenient to think of n simply as the iteration number of the
sampling algorithm and x(n) as a particular realisation of all random variables being sampled.
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and it does not rely on linear algebra. Nevertheless, it turns out that the results for more general
state spaces have similar flavor and understanding what is happening in the finite case provides the
basic intuition about the issues involved. For technicalities on countable state spaces, see [30] or
uncountable state spaces, see [5], chapter 13.

For the finite state case, we proceed as follows. First, we note that the marginals of a Markov chain
satisfy the following recursive relation

πn(xn) =
∑

xn−1

K(xn|xn−1)π(xn−1)

Now, a probability mass function on a finite state space is simply a vector of positive entries which
sum up to one so in index notation we write

πn(i) =
∑

j

Ki,jπn−1(j)

where the marginal distribution of the chain is denoted by πn(i) ≡ πn(xn) and the transition model
is denoted by the transition matrix K with the entries Ki,j = K(xn = i|xn−1 = j). Adopting the
matrix notation, we write πn = Kπn−1. This gives the expression for the marginal πn as a function
of the initial occupancy density π0

πn = Knπ0

This is simply a (linear) fixed point iteration and the question reduces to finding a stationary point
π that satisfies

π = lim
n→∞

Knπ0 ≡ K∞π0

where K∞ = limn→∞Kn. An eigen-decomposition of the transition matrix K

K = DΛD−1

provides insight about the limit behavior of Kn where D is the matrix of eigenvectors and Λ is a
diagonal matrix of eigenvalues. It turns out that for transition matrices K, the maximum eigenvalue
is always 1. If the magnitude of the second largest eigenvalue λ2 is strictly less, |λ2| < 1, we have a
unique stationary distribution. To see this consider

Kn = DΛD−1DΛD−1 · · ·DΛD−1 = DΛnD−1

But as Λ is diagonal, Λn for large n is a matrix very close to all zeros matrix with only a single 1
on the diagonal. Say without loss of generality that the first eigenvalue λ1 = 1 is at position Λ(1, 1)
(otherwise construct a permutation matrix P and consider T = (DP⊤)(PΛP⊤)(PD−1) = D̃Λ̃D̃−1).
Then K∞ is the rank-one matrix given by the outer product

K∞ = D(:, 1)D−1(1, :)

Here, D(:, i) denotes the i’th column of the matrix D and D−1(i, :) is the i’th row of D−1. These are
respectively the right and left eigenvectors. But what is D−1(1, :)? By definition we have

D−1K = ΛD−1

D−1(1, :)K = Λ(1, 1)D−1(1, :) = D−1(1, :)
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But as K is a transition matrix, all its columns sum up to one. In other words, if we would left
multiply K by an all-ones vector v, we get vK = v so it is easy to see that the left eigenvector
corresponding to the largest eigenvalue is proportional to the all ones vector

D−1(1, :) =
(
1 1 . . . 1

)

But this implies that the columns of K∞ are all the same as

K∞ = [D(:, 1), D(:, 1), . . . , D(:, 1)]

We can conclude that, regardless of the initial state, the probabilities are all the same and the
stationary density is proportional to the (right) eigenvector corresponding to the eigenvalue λ1 = 1.
This is pictorially illustrated using a random transition matrix K in Fig. 7. In the MC literature, we
use the term transition kernel instead of transition matrix as the latter is restricted only to countable
state spaces.

K K2 K5 K10 K∞

x0x0x0x0x0

x
1

x
2

x
5

x
1
0

x
∞

Figure 7: The powers Kτ of a transition matrix K(xn = i|xn−1 = j) with τ = 1, 2, 5, 10,∞. Darker
colors correspond to higher transition probabilities. The identical columns of K∞ depicts the station-
ary distribution, which is reached independent of any starting density. We see that for this transition
matrix K, even after a few iterations τ the columns of Kτ are close to the stationary density, sug-
gesting a rapid convergence. The magnitude of the second eigenvalue is |λ2| ≈ 0.64 which verifies
that our observation is indeed correct.

A natural question to ask is how fast a chain converges to stationarity. For Markov Chains, the rate
of convergence is governed by the second eigenvalue. The convergence to the stationary distribution
is geometric and is given by

‖Knπ0 − π‖var ≤ C|λ2|n

where C is a positive constant and the function ‖·‖var measures the distance between two densities.
It is known as the total variation norm and is given by

‖P −Q‖var ≡
1

2

∑

s∈X

|P (s)−Q(s)|

However, for a large transition matrix, it may be hard to show algebraically that |λ2| < 1. Fortu-
nately, there is a convergence result that states that if K is irreducible and aperiodic, then there
exist 0 < r < 1 and C > 0 s.t.

‖Knπ0 − π‖var ≤ Crn
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where π is the invariant distribution [24]. This result also generalizes to more general Markov chains,
such as on countable infinite or uncountable state spaces where explicit calculation of the second
largest eigenvalue of the transition kernel is intractable.

To see an example how convergence speed is affected consider a very simple chain xn with two states,
labeled as 1 and 2 with the transition matrix

K =

(
ǫ 1− ǫ

1− ǫ ǫ

)

(5)

where 0 ≤ ǫ ≤ 1. In other words, if at time t the chain is in state i, with probability ǫ, the chain
stays put, or jumps to the other state with probability 1− ǫ. One natural question to ask is: where
would we find the chain if we stop it at a large n? Say we start initially from state i but in the
previous section we saw that this initial choice won’t matter (most of the time). It turns out that for
0 < ǫ < 1 the answer is 0.5: it is equally likely to find the chain in any of the two states, regardless
of the initial state but for each ǫ the rate of convergence is different. We illustrate these concepts on
Fig.8.

4.2 Designing a Markov Chain for a given target distribution: The

Metropolis-Hastings method

The discussion of the previous section suggests that, if we can design a transition kernel K such that
the target density π(x) is its stationary distribution, at least in principle one can generate samples
from the Markov chain that eventually will tend to be drawn from the target distribution. After
ignoring samples obtained from an initial ‘burn in’ period, as the chain moves towards the stationary
distribution, the generated samples can be subsequently used to estimate expectations under the
target distribution, as if they are independent. There are a couple of caveats: formally we require
the chain to be ergodic – otherwise the chain might never reach the desired stationary distribution.
Even if the chain is ergodic, typically we would not know in practice how close the chain is to the
stationary distribution.

Here we set aside the issue of ergodicity and concentrate on designing a transition kernel K for
a given target π. This is surprisingly simple via the approach proposed by Metropolis [29], later
generalised by Hastings [20], for a rigorous treatment see [33, 34]. Note that this approach does
not provide explicit formula for the transition Kernel K (which is often intractable to compute even
in finite state spaces); it merely states a procedure to draw a new sample given the previous one.
Suppose we are given a target density π = φ/Z, where Z is a (possibly unknown) normalisation
constant. The Metropolis-Hastings (MH) algorithm uses a proposal density q(x′|x), which generates
a candidate sample x′ possibly dependent4 on the current sample x. The algorithm is very simple,
we define a chain by the following rule: Accept the proposed sample with probability

α(x→ x′) = min

{

1,
q(x|x′)π(x′)

q(x′|x)π(x)

}

,

where α is the acceptance probability satisfying clearly the condition 0 ≤ α(x|x′) ≤ 1. If the sample
is not accepted, the chain stays put at the old location x. This procedure implicitly defines the
following MH transition kernel K:

K(x|x′) = q(x|x′)α(x|x′) + δ(x− x′)ρ(x′) , (6)

4Note that whilst one can consider proposals q(x′) which are independent of x, the actual MH transition K(x′|x)
nevertheless depends on x.
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Figure 8: Convergence to the stationary distribution for the transition matrix K defined in Eq.5
with ǫ = 0, 1/6, 2/6, . . . , 1 from top to bottom. Horizontal axis denotes the time n and the vertical
axis is the state x. The probability πn(x) is high for darker regions. For ǫ = 1 (bottom), the state
transition matrix is K = I and the states are no longer connected. The chain fails to be irreducible
and the chain fails to have a unique stationary distribution. For ǫ = 0 (top), the states alternate
periodically. The chain is periodic and similarly fails to have a unique stationary distribution. For
all other cases with 0 < ǫ < 1 we have convergence to the uniform distribution, whilst with different
speed. The second eigenvalues are λ2 = 2ǫ− 1; as expected the chains converge slower when |λ2| is
closer to one.

here, δ(x) is the Dirac delta ρ is the rejection probability satisfying 0 ≤ ρ(x′) ≤ 1 is given by

ρ(x′) ≡
∫

(1− α(x|x′))q(x|x′)dx .

This simply sums up all the probability of rejection. Note that we don’t directly sample from K, we
merely sample from the proposal q but reject some of the samples. In practice we typically don’t
need to evaluate K – indeed very often this is intractable. Recall that the stationary distribution
should satisfy the following condition

π(x) =

∫

K(x|x′)π(x′)dx′ .
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Algorithm 2 Metropolis-Hastings

1: Initialise x(1) arbitrarily
2: for n = 2, 3 . . . do
3: Propose a candidate: xnew ∼ q(xnew|x(n−1))
4: Compute acceptance probability:

α(xnew|x(n−1)) = min
{

1, q(x(n−1)|xnew)π(xnew)

q(xnew|x(n−1))π(x(n−1))

}

5: Sample from uniform distribution: a ∼ U(0, 1)
6: if a < α then
7: Accept candidate: x(n) ← xnew

8: else
9: Reject candidate: x(n) ← x(n−1)

10: end if
11: end for

For an arbitrary kernel K, it is hard to verify stationarity. However, if K happens to satisfy a
stronger condition5, known as the detailed balance condition

K(x′|x)π(x) = K(x|x′)π(x′) ,

one sees directly that π must be the stationary distribution by integrating both sides over x′. Veri-
fication of detailed balance for the Metropolis-Hastings kernel is straightforward:

K(x|x′)π(x′) = (q(x|x′)α(x|x′) + δ(x− x′)ρ(x′))π(x′)

= q(x|x′)min{1, q(x
′|x)π(x)

q(x|x′)π(x′)
}π(x′) + δ(x− x′)ρ(x′)π(x′)

= min{q(x|x′)π(x′), q(x′|x)π(x)}+ δ(x− x′)ρ(x′)π(x′)

= q(x′|x)min{q(x|x
′)π(x′)

q(x′|x)π(x) , 1}π(x) + δ(x′ − x)ρ(x)π(x)

= K(x′|x)π(x) .

Note that to compute the acceptance probability α, we only need to evaluate π up to a normalisation,
since the normalisation constant cancels out. For a given target π and assumed proposal q(x′|x) we
now have a procedure for sampling from the Markov chain K(x′|x) with stationary distribution π.
Sampling from the transition (6) can be achieved using the procedure detailed in Algorithm 2.

4.3 Illustration

In this section, we will derive a MH algorithm for sampling from a discrete distribution π(x) = φ(x)/Z
where x ∈ {1, 2, . . . , 20}. The target, which has two bumps is shown on Fig.9. Our proposal q(x′|x) is
a mixture of a random walk with a uniform density: with probability ν, we choose a random walk. If
we choose the random walk, with equal probability we let x′ ← max{0, x−1} or x′ ← max{20, x+1}.
Alternatively, with probability 1 − ν, we choose x′ uniformly on {1, 2, . . . , 20}. The random walk

5A sufficient condition; a kernel K may have π as the stationary distribution while not satisfying detailed balance.
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Figure 9: Target Density and the acceptance probability α(xnew|x(n−1)) under a symmetric proposal
q(xnew|x(n−1)) = q(x(n−1)|xnew).

component corresponds to a ’local exploration’ whereas the uniform jump corresponds to a ’restart’.
Here, the parameter ν is a algorithm parameter that will effect the behavior of our overall proposal
and we will show how this may effect the convergence rate of the resulting MH algorithm. In Fig.10,
we show the proposals and corresponding MH transition matrices.

A moments thought would reveal that the local moves are not sufficient to cross the low probability
region between the two bumps of the target, so setting ν close to 1 might be a poor choice in terms of
the convergence, also known as the mixing time. In this case, having the uniform proposal is certainly
useful as it may help the chain to investigate the state space, hence reducing the mixing time.
However, longer jumps have the risk of hitting low probability regions, increasing the rejections. The
optimal choice for ν seems to be somewhere in between those two extremes and we will numerically
illustrate this.

In this simple example, we can numerically compute the effective MH transition matrix and compute
the spectral gap, given as 1 − |λ2|; the distance between magnitudes of two largest eigenvalues. For
all ν, the spectral gap is plotted in Fig.11. The bigger this gap, the faster is the convergence: an
illustration of this fact is shown in Fig.12.

For real problems, the above computations are typically intractable but fortunately they are also not
needed at all for the application of the MH algorithm. All we need is to sample from the proposal
and evaluate the acceptance probability. In figure 13, we show the results that would reflect a typical
MH run. For different parameter settings with ν = 0.1, 0.5, 0.99, we generate sample paths using the
algorithm in 2. Then, following a burn in period of 100 iterations, for each state x we simply count
the number of times the chain visits x to estimate π(x). Formally, we construct the estimator

π̄n(x) =
1

n− 100

n∑

τ=101

[
x(τ) = x

]
(7)

Note that, while the samples x(τ) are correlated, we calculate our estimate as if they are independent.
This is still valid as after convergence all the x(τ) are effectively drawn from the same stationary

20



 

 

5 10 15 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

x
(n

−
1
)

x(n) ν = 0.1

 

 

5 10 15 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

x
(n

−
1
)

x(n) ν = 0.5

 

 

5 10 15 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

x
(n

−
1
)

x(n) ν = 0.99

 

 

5 10 15 20

5

10

15

20

0.2

0.4

0.6

x
(n

−
1
)

x(n) ν = 0.1

 

 

5 10 15 20

5

10

15

20

0.2

0.4

0.6

x
(n

−
1
)

x(n) ν = 0.5

 

 

5 10 15 20

5

10

15

20

0.2

0.4

0.6

x
(n

−
1
)

x(n) ν = 0.99

Figure 10: (Top, left to right) The proposal density with ν = 0.1, 0.5, 0.99. (Bottom, left to right)
The corresponding transition matrices K, computed by Eq.6.
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Figure 11: The spectral gap (1 − |λ2|) computed numerically for the transition matrix K obtained
using the proposals shown in Fig.10. The picture suggests that for fastest convergence, we need to
set ν ≈ 0.1. Only using the local moves (ν = 1 case) results in poor mixing and uniform proposal
seems to be a better choice for this problem. Yet, using local moves occasionally improves mixing as
the gap at ν = 0.1 is slightly bigger than ν = 0.

distribution π(x). The results are shown in Fig.13.

Example 3. Object position estimation from range measurements. In this section, we will
illustrate the MH algorithm on a synthetic example of object localization. In this example, we have 3
noisy sensors at known positions sj , j = 1 . . . 3, each measuring with noise the distance to an object
at an unknown location x. The setup is shown in Fig.14. Each sensor observes a noisy distances
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Figure 12: Convergence to the stationarity when using the proposal with parameters ν = 0.1, 0.5, 0.99.
(Top) The marginals πn, as computed via Knπ0 where darker color indicates higher probability.
(Bottom) The total variation distance between stationary distribution π = π∞ and the marginal
πn. As predicted, the distance drops very slowly for ν = 0.99 and faster for the other cases. This
example suggests that the algorithm is not very sensitive to ν and a broad range of values are useful
in practice.
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Figure 13: Sample paths and estimates of the marginal when using the proposal with parameters
ν = 0.1, 0.5, 0.99. (Top) An example of a sample paths generated by the algorithm (Bottom) Estimate
of the marginal π̄τ (x) (see Eq.7) using averages over a single realization after an initial burn-in period
of 100 iterations.

with the following model

yj|x, sj ∼ N (yj; ‖x− sj‖, R)

where ‖x‖ ≡ (
∑

k x
2
k)

1/2
denotes the Euclidian distance and R is the noise variance of each sensors.

We assume that we don’t have any information about the position of the object so we choose a flat
prior p(x) ∝ 1. The solution for this problem is given by the posterior

π(x) = p(x|y1, y2, y3) =
1

Z
p(y1|x)p(y2|x)p(y3|x)p(x) ≡

1

Z
φ(x)

The true target posterior density is depicted in Fig.15. As the target posterior π(x) is nonstandard,
we will sample from it using a MH algorithm. We design a MH algorithm with a symmetric random
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walk proposal where q(x′|x) = N (x, σ2I). The acceptance probability is

α(x→ x′) = min{1, φ(x
′)

φ(x)
}

Note that the symmetric proposal has been canceled out. By construction, the resulting kernel will
admit π as the unique stationary density. In Fig.16, we show a sequence of samples obtained from
this MH algorithm. We see that the chain visits states around the high probability region. The
consecutive samples are dependent (as can be seen from the connecting lines) but as expected, a 2-D
histogram obtained from a single chain shows a fairly accurate approximation.
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Figure 14: Sensor locations s1, s2 and s3 (round red points) and the true object position (blue square).
The observations are noisy versions of the true distances.

4.4 The Gibbs sampler

The MH schema is a very general technique for deriving MCMC algorithms. This generality stems
partially from the arbitrariness of the proposal q; in complex models the design of a reasonable
proposal such that the chain mixes well can require a lot of work. It would be desirable if somehow
the proposal design phase could be automated. The Gibbs sampler [14, 24] is an attempt in this
direction.

The Gibbs sampler is suitable for sampling a multivariate random variable x = (x1, . . . , xD) with in-
tractable joint target density π(x). Gibbs sampling proceeds by partitioning the set of variables x into
a chosen variables xd and the rest, x = (xd, x−d). The assumption is that the full conditional densities
π(xd|x−d) are tractable. One then proceeds coordinatewise by sampling from full conditionals as in
Algorithm 3. The Gibbs sampler is actually a MH schema with a sequence of proposals for d = 1 . . .D

qd(x|x′) = p(xd|x′
−d)δ

(
x−d − x′

−d

)
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Figure 16: (Left) A state trajectory obtained from the MH algorithm. (Right) A 2-D histogram
estimate of the target density (from a longer state trajectory).

each corresponding to a Gibbs transition kernels Kd. Moreover, it is easy to check that using this
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Algorithm 3 Gibbs sampler

1: Initialize x(1) = (x1, . . . , xD)
(1) arbitrarily

2: for n = 2, 3 . . . do
3: x

(n)
1 ∼ p(x1|x(n−1)

2 , x
(n−1)
3 , . . . , x

(n−1)
D )

4: x
(n)
2 ∼ p(x2|x(n)

1 , x
(n−1)
3 , . . . , x

(n−1)
D )

...
5: x

(n)
D ∼ p(xD|x(n)

1 , x
(n)
2 , . . . , x

(n
D−1))

6: end for

proposal results in a MH acceptance probability of 1, so that every move is accepted. This guarantees
that each kernel Kd admits the same stationary distribution π as a stationary distribution, so we
have π = Kdπ for all d. Now, we see that π = K1π and π = K2π implies

π = K1K2π

and by induction

π = (K1K2 . . .KD)π ≡ Kπ

Here, the transition kernel K is the effective Gibbs kernel after we sweep over all the variables
xd once. Unless the full conditionals are degenerate, the effective kernel K will be aperiodic and
irreducable while none of the individual kernels Kd are. Note that we could visit the variables in
any deterministic or order, provided each xd is visited infinitely often in the limit. If we choose a
deterministic order, the resulting sampler is known as a deterministic sca Gibbs sampler; if we choose
a random order, not surprisingly, the sampler is called a random scan Gibbs sampler.

The ease of use of the Gibbs sampler has resulted the method being employed in many applications.
There are very effective programs that generate a Gibbs sampler automatically from a model speci-
fication, such as BUGS. In the sequel, we will illustrate the Gibbs sampler on a change-point model
for count data [22].
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Figure 17: A typical realisation from the change-point model. True intensities are shown with a
dotted line. The intensity has dropped from λ1 = 3.2 to λ2 = 1.2 at τ = 26. The time index is
indicated by t and the number of counts by yt. Generating such synthetic datasets provide intuition
about the underlying models qualitative behaviour.
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Example 4. Gibbs sampling for a change-point model. In this model, at each time t we
observe the count of an event yt. All the counts up to an unknown time τ come from the same
distribution after which the distribution changes. We assume that the change-point τ is uniformly
distributed over 1, . . . , T . The two different distributional regimes up to and after τ are indicated by
the random variables λi, i = 1, 2, which are assumed to follow a Gamma distribution

G(λi; a, b) =
1

Γ(a)
baλa−1

i e−bλi = e(a−1) log λ−bλ−log Γ(a)+a log b .

Under regime λi, the counts are assumed to be identically Poisson distributed

PO(yt;λi) =
λyt
i

yt!
e−λi = eyt log λi−λi−log(yt!) .

This leads to the following generative model:

p(τ) = 1/T uniform

λi ∼ G(λi; a, b), i = 1, 2

yt ∼
{
PO(yt;λ1) 1 ≤ t ≤ τ
PO(yt;λ2) τ < t ≤ T

A typical draw from this model is shown in Fig. 17. The inferential goal is to compute the posterior
distribution of the change-point location and the intensities given the count data, p(λ1, λ2, τ |y1:T ).
In this problem the posterior is actually tractable [13] and could serve to assess the quality of the
Gibbs sampling approximation.

To implement Gibbs sampling we need to compute the distribution of each variable, conditioned
on the rest. These conditionals can be derived by writing the log of the full joint distribution and
collecting terms that depend only on the free variable6. To derive the full conditional densities p(λ1|·),
p(λ2|·) and p(τ |·), we proceed by writing the full joint density The log of the full joint density is
given by7:

p(y1:T , λ1, λ2, τ) =

(
τ∏

t=1

p(yt|λ1)

)(
T∏

t=τ+1

p(yt|λ2)

)

p(λ1)p(λ2)p(τ)

log p(y1:T , λ1, λ2, τ) =
τ∑

t=1

(+yt log λ1 − λ1 − log(yt!))

+
T∑

t=τ+1

(+yt log λ2 − λ2 − log(yt!))

+(a− 1) logλ1 − bλ1 − log Γ(a) + a log b

+(a− 1) logλ2 − bλ2 − log Γ(a) + a log b− log T

and collect terms that depend only on the free variable.

log p(λ1|τ, λ2, y1:T ) =+

(

a+
τ∑

t=1

yt − 1

)

log λ1 − (τ + b)λ1 =
+ log G(a+

τ∑

t=1

yt, τ + b)
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Calculation of p(λ2|·) is similar.

log p(τ |λ1, λ2, y1:T ) =
τ∑

t=1

(+yt log λ1 − λ1 − log(yt!))

+

M∑

t=τ+1

(+yt log λ2 − λ2 − log(yt!))

= +

(
τ∑

t=1

yt

)

log λ1 − τλ1 +

(
T∑

t=τ+1

yt

)

log λ2 − (T − τ)λ2

We have to evaluate the above expression for τ = 1 . . . T . This Gibbs procedure is summarized in
Algorithm 4.

Algorithm 4 A Gibbs sampler for the change-point model

1: Initialize λ1
2, τ

1

2: for n = 2, 3 . . . do
3: λ

(n)
1 ∼ p(λ1|λ(n−1)

2 , τ (n−1), y1:T ) = G(a+
∑τ

t=1 yt, τ + b)

4: λ
(n)
2 ∼ p(λ2|λ(n)

1 , τ (n−1), y1:T ) = G(a+
∑T

t=τ+1 yt, T − τ + b)

5: τ (n) ∼ p(τ |λ(n)
1 , λ

(n)
2 , y1:T )

6: end for

We illustrate the algorithm on a coal mining disaster dataset [21], see Fig.18. The data consists
of the number of deadly coal-mining disasters in England per year over a time span of 112 years
from 1851 to 1962. It is widely agreed in the statistical literature that a change in the intensity
(the expected value of the number of disasters) occurs around the year 1890, after new health and
safety regulations were introduced. In Fig.18 we show the samples obtained from the posterior of
the changepoint location. The posterior of the intensities λ1, λ2 are shown in Fig.19.

5 Sequential Monte Carlo

The MCMC techniques described in the previous section are widely used in many areas of applied
sciences and engineering. However, they may have some potential drawbacks in signal processing:
MCMC methods are by construction batch algorithms that require availability of all data records.
This can be prohibitive in some signal processing application such as tracking when the data arrives
sequentially and decisions have to be taken in real time. One could in principle design online MCMC
algorithms that operate on the full data record observed so far. However, such batch algorithms take
increasingly more time. In such cases, it is desirable to have alternative methods which process data
sequentially and take a constant time per observation.

Sequential Monte Carlo (SMC) is an umbrella term for Monte Carlo techniques that process data in
an online fashion [8]. Popular techniques such as particle filtering or sequential importance sampling (SIS)
are special SMC algorithms. SMC techniques are particularly natural for probabilistic signal models
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Figure 18: Estimation of change points on the coal mining disaster dataset. (Top) The number of
deadly disasters yt each year t. (Bottom) The posterior distribution of the changepoint location
p(τ |y1:T ).
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Figure 19: Samples drawn from the posterior intensities p(λ1, λ2|y1:T ) on the coal mining disaster
dataset. This results clearly indicate that after the health and safety regulations, the intensity has
dropped from about λ1 = 3 to λ2 = 1.

where data has a natural order8. A very large class of signal models can be described as state space
models, that have the following general form:

x0 ∼ p(x0)

xt|xt−1 ∼ p(xt|xt−1) (8)

yt|xt ∼ p(yt|xt) (9)

Here, xt is the state and yt are the observations and t = 0 . . . T is a discrete time index. Note that t
does not have to correspond to the wall clock, it only specifies some natural ordering of the underlying
the data. The Eq.8 and Eq.9 are known as transition and observation models. State space models,
also named as hidden Markov models, are ubiquitous in signal processing and many popular models,
such as linear dynamical systems or autoregressive (AR) models, can be formulated as special cases.

There are several inference problems of interest for state space models, where inference in this context

8SMC techniques are not necessarily limited to such systems, though, see, e.g., [24]
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is the task of using a distribution to answer questions of interest. A common inference problem
is the prediction of an unseen future variable yT+1, which requires computing p(yT+1|y1:T ) from a
joint distribution. Another one is the so called filtering problem, estimation of the state xt given
observations so far y1:t. This is achieved via calculation of the posterior quantity p(xt|y1:t). One of
the challenges in statistical signal processing is to develop efficient inference routines for answering
such questions.

In this context, SMC techniques [9, 11] have proved very useful. SMC methods are based on impor-
tance sampling/resampling which we review in the following sections. We first review importance
sampling and resampling techniques and subsequently introduce the SMC algorithm as a sequential
importance sampler.

5.1 Importance sampling (IS)

Consider a target distribution π(x) = φ(x)/Z where the non-negative function φ(x) is known, but
the overall normalisation constant Z is assumed to be computationally intractable. The main idea
of importance sampling (IS) is to estimate expectations Eπ(ϕ(x)) by using weighted samples from a
tractable IS distribution q(x). Note that unlike other MC methods, our goal is not directly generating
samples but estimating expectations via weighted samples. However, we can also generate unweighted
independent samples, if we desire to so by a mechanism called resampling.

More specifically, we can write the normalization constant as

Z =

∫

φ(x)dx =

∫
φ(x)

q(x)
q(x)dx =

∫

W (x)q(x)dx = Eq(W (x)) ,

where W (x) ≡ φ(x)/q(x) is called weight function. Therefore we have

Eπ(ϕ(x)) =
1

Z

∫

ϕ(x)
φ(x)

q(x)
q(x)dx =

Eq(ϕ(x)W (x))

Eq(W (x))
.

A Monte Carlo estimate of Eπ(ϕ(x)) is then given by

µ̂N =

∑N
i=1W

(i)ϕ(x(i))/N
∑N

i=1W
(i)/N

,

where W (i) ≡ W (x(i)) and the ‘particles’ x(1), . . . , x(N) are sampled from q(x). Using normalised
weights w(i) ≡W (i)/

∑N
i′=1W

(i′) we can write the approximation as

µ̂N =
N∑

i=1

w(i)ϕ(x(i)) .

In other words, instead of sampling from the target density p(x), we sample from a different tractable
distribution q(x) and correct by reweighing the samples accordingly. An example is given in Fig.20.

5.1.1 Resampling

A practical issue is that, unless the IS sampling density q(x) is close to the target density π(x),
the normalised weights will typically have mass in only a single component. This can be partially
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Figure 20: Illustration of Importance Sampling. (Top): The solid curve denotes the unnormalised
target density φ(x) and the dashed curve the tractable IS density q(x). We assume that it is straight-
forward to generate samples x(i) from q(x); these are plotted on the x axis. Middle: To account for
the fact that the samples are from q and not from the target π = φ/Z, we need to reweight the
samples. In this example, the IS density q generated far too many samples where π has low mass,
and too few where π has high mass. The samples in these regions are reweighted according to the
weight function W (x). Bottom: Binning the weighted samples from q, we obtain an approximation
to π such that averages with respect to this approximation will be close to averages with respect to
π.

addressed using re-sampling as we now describe. Given a weighted particle system
∑N

i=1w
(i)δ(x−x(i)),

resampling is the term for a set of methods for generating randomly an unweighted particle system
of the form 1

M

∑M
j=1 δ(x− x̃(i)) such that

E

(

1

M

M∑

j=1

δ(x− x̃(j))

)

=
∑N

i=1w
(i)δ(x− x(i)) ,

where the expectation is over the draws from the resampling algorithm. In resampling, typically the
total number of particles are unchanged, so we have N = M . Alternatively, one can view resampling
as a randomised pruning algorithm where we discard particles with low weight and increase the
number of particles with high weight. Unlike a deterministic pruning algorithm, the random nature
of resampling does not introduce a systematic bias and ensures an asymptotically consistent algorithm
when the number of samples N goes to infinity. In Fig.21, we illustrate the result of resampling from
a weighted particle set. It is instructive to compare histograms obtained from weighted particle
set (Fig.20); the resampling stage introduces additional Monte Carlo variation but the histogram
is still a reasonable approximation to the underlying density. Two popular methods for resampling
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are multinomial resampling and systematic resampling, which we will review in the sequel. For a
discussion and comparison of various resampling schemata, see [4, 11].

Multinomial resampling equivalent to the inversion method when the target is a discrete distribution,
as explained in Fig.3. Here, we view the weighted sample set x(i) as a discrete distribution with
categories i = 1 . . .N where the probability of the i’th category is given by the normalized weight
w(i). To sample M times independently from this target, we generate u(j) ∼ U(0, 1) for j = 1 . . .M
and we obtain an unweighted set of particles by evaluating the generalized inverse at each u(j), as
explained in Fig.3.

Systematic resampling is quite similar to multinomial resampling, only the generation of u(j) is not
entirely random but ’systematic’. To generate M samples we only select u(1) uniformly random from
the interval [0, 1/M ] and set u(j) = u(1) + (j − 1)/M . The u are located on a uniform grid with a
random initial shift. In Fig.22, we illustrate both methods.

From only a theoretical perspective, the actual details of a resampling schema are not important
and the estimates converge to their true values in the infinite particle limit. One has to only ensure
that the expectation under the resampled particle set is on average equal to the expectation under
the original weighted particle set. However, with a finite number of particles, there may be notable
differences.

It can be shown that systematic resampling achieves a lower variance while both methods have the
same expectation and no bias. Coupled with its ease of implementation, this makes systematic
resampling a popular choice in practice.
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Figure 21: Importance Sampling with Resampling. We can generate from the weighted samples x
generated by importance sampling unweighted samples x̃ by resampling. Some of the particles in the
original set will be replicated while others will be simply discarded.
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Figure 22: Multinomial Resampling (left column) versus Systematic Resampling (right column).
(Top) True weights, (Middle) Cummulative weight function, (Bottom) Bin counts after resampling.
Note that the resulting histograms can be thought of as approximations of the original discrete
distribution.

5.2 Sequential Importance Sampling

We now apply importance sampling to the state space model introduced earlier in Eq.8 and Eq.9.
’Plain’ importance sampling is actually not very effective in high dimensional problems but when
executed sequentially using resampling techniques, it has become a very efficient and effective tool
for inference. The resulting sequential IS methods are also known as particle filters [11]. The goal is
to draw samples from the posterior

p(x1:t|y1:t) = p(y1:t|x1:t)p(x1:t)
︸ ︷︷ ︸

φ(x1:t)

/ p(y1:t)
︸ ︷︷ ︸

Zt

,

where we assume that the normalisation term Zt is intractable. An importance sampling approach
uses at each time t an importance distribution qt(x1:t), from which we draw samples x

(i)
1:t with corre-

sponding importance weights

W
(i)
t = φ(x

(i)
1:t)/qt(x

(i)
1:t) .

The key idea in SMC is the sequential construction of the IS distribution q and the recursive calcu-
lation of the importance weights. Without loss of generality, we may write

qt(x1:t) = qt(xt|x1:t−1)qt(x1:t−1) .

In particle filtering, one chooses a IS proposal q that only updates the current xt and leaves previous
samples unaffected. This is achieved using

qt(x1:t) = qt(xt|x1:t−1)qt−1(x1:t−1) .

As we are free to chose the IS proposal q fairly arbitrarily, we can also ’construct’ the proposal on
the fly conditioned on the observations seen so far:

qt(x1:t|y1:t) = qt(xt|x1:t−1, y1:t)qt−1(x1:t−1|y1:t−1) .
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In the sequel, we won’t include y1:t in our notation but it should be understood that the proposal q
can be constructed at the observations so far.

Due to the sequential nature of the state space model and q, the weight function Wt(x1:t) admits a
recursive computation

Wt(x1:t) =
φ(x1:t)

qt(x1:t)
=

p(yt|xt)p(xt|xt−1)
∏t−1

τ=1 p(yτ |xτ )p(xτ |xτ−1)

qt(xt|x1:t−1)
∏t−1

τ=1 qτ (xτ |x1:τ−1)

=
p(yt|xt)p(xt|xt−1)

qt(xt|x1:t−1)
︸ ︷︷ ︸

vt

Wt−1(x1:t−1)

where vt is called the incremental weight. Particle filtering algorithms differ in their choices for
qt(xt|x1:t−1). The optimal choice (in terms of reducing the variance of weights) is the one step
filtering distribution [10]

qt(xt|x1:t−1) = p(xt|xt−1, yt) .

However, sampling from this filtering density is often difficult in practice, and simpler methods are
required. The popular bootstrap filter uses the model transition density as the proposal

qt(xt|x1:t−1) = p(xt|xt−1) ,

for which the incremental weight is vt = p(yt|xt). For the bootstrap filter, the IS distribution does not
make any use of the recent observation and therefore has the tendency to lose track of the high-mass
regions of the posterior. Indeed, it can be shown that the variance of the importance weights for
the bootstrap filter increases in an unbounded fashion [10, 24] so that the state estimates are not
reliable. In practice, therefore, after a few time steps the particle set typically loses track of the
exact posterior mode. A crucial extra step to make the algorithm work is resampling which prunes
branches with low weights and keeps the particle set located in high probability regions. It can be
shown that although the particles become dependent due to resampling, the estimations are still
consistent and converge to the true values as the number of particles increases to infinity. A generic
particle filter algorithm is shown in Algorithm 5.

Example 5. Particle Filtering. We will consider the following model of a sequence of Poisson
random variables yt with intensities exp(lt):

yt|lt ∼ p(yt|lt) = PO(yt; exp(lt)) = exp(ytlt − exp(lt)− log(yt!)) (10)

The latent log intensities lt are assumed to be changing slowly with t; this can be modeled by a
random drift

lt|lt−1 ∼ p(lt|lt−1) = N (lt; lt−1, R) = exp

(

−1
2

(lt − lt−1)
2

R
− 1

2
log 2πR

)

(11)

This model can be considered as an alternative to the single change point model introduced in section
4. Rather than allowing for a single abrupt change, this model proposes slowly varying intensities
where the drift is controlled by the transition variance parameter R. If R is small, consecutive log
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Algorithm 5 Particle Filter

for i = 1, . . . , N do
Compute the IS distribution: qt(xt|x(i)

1:t−1) possibly using the latest observation yt

Generate offsprings: x̂
(i)
t ∼ qt(xt|x(i)

1:t−1)
Evaluate importance weights:

v
(i)
t =

p(yt|x̂(i)
t )p(x̂

(i)
t |x(i)

t−1)

qt(x̂
(i)
t |x(i)

1:t−1)
, W

(i)
t = v

(i)
t W

(i)
t−1

end for

ESS = 1/
∑

i

(

w̃
(i)
1:t

)2

if ESS > Threshold then
No need to Resample
Extend particles: x

(i)
1:t = (x

(i)
1:t−1, x̂

(i)
t ), i = 1, . . . , N

else
Resample
Normalise importance weights:

Z̃t ←
∑

j
W

(j)
t , w̃t ← (W

(1)
t , . . . ,W

(N)
t )/Z̃t

Generate Associations via a Resampling method

(a(1), . . . , a(N))← Resample(w̃t)

Discard or Keep particles and Reset weights:

x
(i)
0:t ← (x

a(i)
0:t−1, x̂

a(i)
t ), W

(i)
t ← Z̃t/N, i = 1, . . . , N

end if
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intensities lt and lt+1 will be close to each other. In the limit of R going to zero, the model degenerates
into a constant intensity model. In this example, we will assume that we know R.

To design a SMC algorithm, we need to decide upon a proposal mechanism and derive the expression
for the incremental importance weight

vt(lt|l1:t−1) =
p(yt|lt)p(lt|lt−1)

qt(lt|l1:t−1)

For illustration purposes, we will consider here two different proposal mechanisms.

1. Transition density as the proposal (the Bootstrap filter)
Here, we choose as our proposal the models transition density

qt(lt|l1:t−1) = p(lt|lt−1)

This choice is the most widely used one for constructing proposals because of its simplicity, ease
of implementation and the intuitive interpretation as a ’the survival of the fittest’ algorithm.
The resulting algorithm is known in the SMC literature as the bootstrap filter and in computer
vision as the condensation algorithm. For the bootstrap filter, the incremental weight expression
becomes

vt(lt|l1:t−1) =
p(yt|lt)p(lt|lt−1)

p(lt|lt−1)
= p(yt|lt)

= exp(ytlt − exp(lt)− log(yt!))

2. The observation likelihood as the proposal
Here, we choose a density that is proportional to the likelihood term

qt(lt|l1:t−1) = qt(lt) = p(yt|lt)/ct
where ct =

∫
p(yt|lt)dlt. Note that this proposal can only be used when the normalizer ct is

not infinite hence a density exists9. This option is perhaps less intuitive to understand but
could be a lot more efficient than the bootstrap in problems where the transition model is very
diffuse but the observations are very informative. Using a bootstrap filter may be inefficient in
this case, as most of the proposed particles will fall into low probability regions.

vt(lt|l1:t−1) =
p(yt|lt)p(lt|lt−1)

p(yt|lt)/ct
= ctp(lt|lt−1)

In practice, unless we need to explicitly evaluate the marginal likelihood p(y1:t), we do not need
to evaluate normalizer ct as it will cancel out when calculating the normalized weights.

To find this proposal density, we make the following observation: the Poisson density, when
viewed as a function of the intensity is proportional to a Gamma density10

PO(y;λ) ∝ exp(y log λ− λ)

∝ exp((y + 1− 1) log λ− λ− log Γ(y + 1)) = G(λ; y + 1, 1)

So for a given Poisson observation, we can easily generate λ by a unit gamma random number
generator with shape parameter y + 1. To generate the log intensities l, we sample λ and set
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l = log(λ). The density of l = log λ when λ is gamma distributed is found via the transformation
method

l(λ) = log(λ)

λ(l) = exp(l)

|J | = ∂λ(l)/∂l = exp(l)

p(l) = G(λ(l); a, b) exp(l)

So the density of our proposal is

qt(lt) ∝ exp((yt + 1)lt − exp(lt)− log Γ(yt + 1))

The weight expression is

vt(lt|l1:t−1) =
exp(ytlt − exp(lt)− log Γ(yt)) exp

(

−1
2
(lt−lt−1)2

R

)

exp((yt + 1)lt − exp(lt)− log Γ(yt + 1))
∝ exp

(

−1
2

(lt − lt−1)
2

R
− lt

)

Here, we have simply ignored the terms that do not depend on lt as these do not contribute to
the normalized importance weight.

As mentioned earlier, in practice the transition model is taken often as the proposal density. It should
be stressed that, the choice of an efficient proposal has a profound effect on the performance and the
transition model need not to be always the best choice. As the above example illustrates, there are
typically always alternative proposals and in the context of an application, at least a few alternatives
should be considered before opting to the transition density. As a guideline, one should look for
a proposal that is close to the filtering density but that does not require extensive computation to
sample. If a proposal is too costly to sample from, one may consider using a simpler but poorer
proposal with more samples for a given computational cost.

6 Advanced Monte Carlo Methods

We have reviewed some of the basic Monte Carlo techniques in previous sections. However, there
are many problems that need techniques beyond standard strategies. In this section, we will review
such a technique: reversible jump MCMC (RJ-MCMC) [17, 12]. This technique is an extension of
the Metropolis-Hastings method to more general state spaces [34]. It is mostly used in settings where
we wish to perform model selection, such as inferring a model where the order is unknown.

6.1 Reversible Jump MCMC

The reversible jump MCMC is a Metropolis-Hastings method for sampling from Markov chains in
state spaces of varying dimensionality. Such state spaces arise naturally in model selection problems
where we have several candidate models {Mk} with model index k, formally denoted as k ∈ K for
some finite set K. With each modelMk there is an associated parameter vector θk of dimensionality
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Figure 23: Illustration of the Bootstrap particle filter for the model in Eq.10 and Eq.11 using N = 3
particles. The observations yt are shown as black crosses. The squares show the true state of the
process exp(λt) used for generating the observations yt. Remember that 〈yt〉 = exp(λt) due to the
Poisson assumption so it is natural to plot the yt and exp(λt) on the same plot. At each time t, the
particles are shown as individual trajectories of λ1:t with the circle size proportional to the normalized
weight at time t. The edges denote the ancestral links. While the term ’particle’ suggests that each
particle is only a point in λt, it is actually more natural to view a particle as an entire trajectory
of λ1:t. At each time t, each particle selects a new position lt+1 and the new weight Wt+1(l1:t+1) is
computed recursively. If the effective sample size drops below a chosen threshold, we compute the
normalized weights w̃(1:N) and and select each particle via resampling (See at time t = 4) and reset
the weights to 1/N .
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Nk, i.e., θk ∈ R
Nk . The inferential goal is to sample from the joint density π(k, θk) of model index k

and the parameters θk where

π(θk, k) =
1

Zk

φk(θk)p̃k (12)

p̃k ≡
pk

∑

k′∈K pk′
(13)

Here, for all models k ∈ K, Zk =
∫
dθkφk(θk) are unknown normalizing constants and pk are prior

weights, usually taken as flat with pk = 1. These quantities have direct counterparts in a Bayesian
model selection setting: we have a probability model that couples observations x with parameters as
p(x, θk, k) = p(x, θk|k)p(k). In this context, the target density is the posterior

π(θk, k) = p(θk, k|x) = p(θk|k, x)p(k|x)

and the joint distribution of parameters and data for each model Mk is φk(θk) = p(x, θk|k) and
Zk =

∫
dθkφk(θk) = p(x|k). To find the model order after observing the data x we would need the

posterior marginal

p(k|x) =
p(k, x)

∑

k′∈K p(k, x)
=

p̃kZk
∑

κ∈K p̃κZκ
=

pkZk
∑

κ∈K pκZκ

where the equalities follow by noting that p(k, x) =
∫
p(θk, k, x)dθk = p̃kZk and p(x) =

∑

k p̃kZk.
With these results, the posterior can be written as

π(θk, k) =
1

Zk

φk(θk)
pkZk

∑

κ∈K pκZκ

= φk(θk)
pk

∑

κ∈K pκZκ

One possible approach for calculating the posterior of models order p(k|x) would require estimation
of individual normalizing constants Zk. The RJ-MCMC approach circumvents this need by setting
up a chain to sample from (k, θk) pairs. The difficulty is that now the target density π is defined on
a nonstandard state space E where

E =
⋃

k∈K

Ek

Ek ≡ {{k} × R
Nk}

and we need to set up a so called transdimensional Markov chain that can jump across spaces of
different dimensions Ek and Ek′ as (k, θk) → (k′, θk′). This chain is ’nonstandard’ in the sense that
its dimension varies over time but is otherwise completely natural for the class of model selection
problems.

There is a technical caveat: The “ordinary” Metropolis-Hastings algorithm requires that we design
a proposal

q(k′, θk′|k, θk) = q(θk′|k′, k, θk)q(k
′|k, θk)

and evaluate the acceptance probability as

α((k, θk)→ (k′, θk′)) = min{1, q(k, θk|k
′, θk′)π(k

′, θk′)

q(k′, θk′ |k, θk)π(k, θk)
}

38



We need to construct the proposals carefully, as as a proper lower dimensional space embedded into
a higher dimensional space may have measure zero with respect to the probability measure defined
on the larger space11. The remedy comes from the transformation method introduced earlier. By
introducing auxiliary variables, we design the proposal as a ’reversible’ transformation between both
spaces. Suppose we wish to jump from a lower dimensional space Ek to a higher dimensional space
Ek′. We define N̄k such that Nk′ = Nk + N̄k and draw the N̄k dimensional vector uk from a proposal
qk(uk) and match the dimensions of both spaces via a transformation defined as

θk′ = gk→k′(θk, uk)

The mapping gk→k′ is fairly general but must be invertible such that g−1
k→k′ = gk′→k exists. As an alter-

native notation for g or its inverse g−1, we omit the letter g and write θk′(θk, uk) and (θk(θk′), uk(θk′))
respectively. More naturally, it is also possible to match dimensions on a higher dimensional space
where Nk′ + N̄k′ = Nk + N̄k where (θk′, uk′) = g(θk, uk) but we won’t discuss this option further here.

In order to design a MH algorithm, we will construct our proposal in two stages as in

q(k′, θk′|k, θk) = q(k′|k, θk)q(θk′|k′, k, θk)

The first factor in this proposal is the probability of choosing a jump from k to k′ when the chain is in
θk. Often, this term is taken to be independent of θk, so q(k

′|k) = q(k′|k, θk). We will denote the jump
probabilities q(k′|k) as qk→k′. The second factor, which we will denote as fk′(θk′) ≡ q(θk′|k′, k, θk),
will be defined via the variable transformation gk→k′. Noting that θk′ = gk→k′(θk, uk), for some
density fk(θk), the density of θk′ can be written as is

fk′(θk′) = fk(θk(θk′))qk(uk(θk′))

∣
∣
∣
∣

∂g−1
k→k′(θk′)

∂θk′

∣
∣
∣
∣

= fk(θk(θk′))qk(uk(θk′))

∣
∣
∣
∣

∂gk→k′(θk, uk)

∂(θk, uk)

∣
∣
∣
∣

−1

To simplify the notation, in the sequel we will denote the Jacobian terms as

Jk→k′ ≡
∂gk→k′(θk, uk)

∂(θk, uk)
Jk′→k ≡

∂g−1
k→k′(θk′)

∂θk′
= J−1

k→k′

Now, interpret fk(θk) as a reverse jump proposal q(θk|k, k′, θk′). The ratio of the proposals to compute
the MH-acceptance probability can be written for this case as

q(k, θk|k′, θk′)

q(k′, θk′|k, θk)
=

fk(θk)qk′→k

fk′(θk′)qk→k′
=

fk(θk)qk′→k

fk(θk(θk′))qk(uk(θk′))qk→k′

∣
∣
∣
∣

∂gk→k′(θk, uk)

∂(θk, uk)

∣
∣
∣
∣

=
qk′→k

qk(uk(θk′))qk→k′
|Jk→k′|

The ratio of the targets is

π(k′, θk′)

π(k, θk)
=

φk′(θk′)
p
k′∑

κ∈K pκZκ

φk(θk)
pk∑

κ∈K pκZκ

=
φk′(θk′)pk′

φk(θk)pk

11The probability of jumping to an isolated point (a proper low dimensional space) under a proposal with an
absolutely continuous density is zero. As an example, think of the probability of hitting an interval (−ǫ, ǫ) when
ǫ→ 0.
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Consequently, we arrive at the rather complicated looking formula for the RJ-MCMC acceptance probability

α((k, θk)→ (k′, θk′)) = min{1, φk′(θk′)pk′

φk(θk)pk

qk′→k

qk(uk)qk→k′
|Jk→k′|} (14)

≡ min{1, rk→k′} (15)

≡ αk→k′ (16)

The rk→k′ argument min function is known as the MH-ratio. The acceptance probability of the jump
in the reverse direction is

αk′→k = min{1, φk(θk)pk
φk′(θk′)pk′

qk(uk)qk→k′

qk′→k
|Jk′→k|}

= min{1, rk′→k} = min{1, r−1
k→k′}

Note that for a pair of reversible jumps (k → k′) and (k′ → k), the corresponding MH-ratios are
simply the inverses of each other rk′→k = r−1

k→k′.

6.2 RJ-MCMC Algorithm

The RJ-MCMC algorithm is actually a special Metropolis Hastings method with a special proposal
mechanism for transdimensional moves. To construct the algorithm, for each pair k, k′ ∈ K we
need to decide on the jump probabilities qk→k′ and qk′→k. Note that these are just parameters of
the sampling algorithm and not the model, but a careful choice is important for good mixing. In
practice, often only jumps between ’adjacent’ k and k′ are used as it is relatively simpler to design
proposals with reasonable acceptance probability. Here, a popular choice is only allowing moves with
k′ = k + 1, k′ = k − 1, k′ = k, where these are called birth, death and update moves.

If a pair of moves have nonzero probability, qk→k′qk′→k > 0, we have to have to design the following :

• For jumps to a larger space Nk′ > Nk we design a suitable invertible transformation gk→k′ and
a proposals for qk(uk) to sample a N̄k dimensional random vector to match the dimensions such
that Nk′ = Nk + N̄k. Note that our choice completely fixes the moves in the reverse direction
as well.

• Calculate the Jacobian determinants |Jk→k′| = |Jk′→k|−1.

• Calculate the acceptance probabilities. Remember that if

αk′→k = min {1, rk′→k} ⇔ αk→k′ = min {1, rk→k′} = min

{

1,
1

rk′→k

}

A summary of the RJ-MCMC is shown as Algorithm.6

Example 6. Reversible Jump - MCMC. As a illustrative toy example, we define a target density
on the union of two spaces E = E1 ∪ E2 where

E1 = {{1} × r} E2 = {{2} × (x, y)}
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Figure 24: (Top) The target density π ∝ [k = 1]φ1(r)p1 + [k = 2]φ2(x, y)p2, with parameters λ =
1, a = 3, b = 1, µx = 1.5, µy = 1, σ2 = 4, p1 = p2 = 1. (Bottom) Histograms obtained from samples of
the RJ-MCMC algorithm.
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Algorithm 6 Reversible Jump Markov Chain Monte Carlo

1: Initialise (k(1), θ
(1)

k(1)
) arbitrarily

2: for τ = 2, 3 . . . do
3: Let (k, θk) = (k(τ−1), θ

(τ−1)

k(τ−1))
4: Propose a move type: knew ∼ qk→k′

5: if k = knew, a ordinary move in the same space then
6: θnew ∼ qk(θk|θ(τ−1)

k )
7: end if
8: if k < knew, a transdimensional move to a larger space then
9: Propose u ∼ qk(uk)
10: θnew ← gk→knew(θk, u)
11: Compute the acceptance probability

α((k, θk)→ (knew, θnew)) = min{1, φknew(θknew)pknew
φk(θk)pk

qknew→k

qk(u)qk→knew
|Jk→knew|}

12: end if
13: if k > knew, a transdimensional move to a smaller space then
14: (θnew, u)← gk→knew(θk)
15: Compute the acceptance probability

α((k, θk)→ (knew, θnew)) = min{1, φknew(θknew)pknew
φk(θk)pk

qknew(u)qknew→k

qk→knew
|Jk→knew|}

16: end if
17: Sample from uniform distribution: a ∼ U(0, 1)
18: if a < α((k, θk)→ (knew, θnew)) then

19: Accept candidate: ((k(τ), θ
(τ)

k(τ)
))← (knew, θnew)

20: else
21: Reject candidate and stay put: (k(τ), θ

(τ)

k(τ)
)← (k(τ−1), θ

(τ−1)

k(τ−1))
22: end if
23: end for

with parameters corresponding to each space as

θ1 ≡ r θ2 ≡ (x, y)

We choose, for k = 1, a target proportional to a truncated exponential distribution. For k = 2, our
target is a two dimensional Gaussian density truncated on an elliptical region

φ1(r) = e−λr[0 ≤ r ≤ 1]

φ2(x, y) = exp

(

−(x− µx)
2 + (y − µy)

2

2σ2

)[(x

a

)2

+
(y

b

)2

≤ 1

]

the normalization constants Z1 =
∫ 1

0
e−λrdr and Z2 =

∫ ∫
φ2(x, y)dxdy are assumed to be unknown.

As shown earlier, these cancel out in the acceptance probability. The target density is

π(k, θk) =
1

p1Z1 + p2Z2
([k = 1]φ1(r)p1 + [k = 2]φ2(x, y)p2) (17)

This target density is illustrated on Fig.24.

We will derive now a RJ-MCMC method to sample from the target density defined in Equation 17.
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Figure 25: Histogram estimate of the marginal π(k). By simply counting and normalizing the
number of steps the chain spends in each space, we can estimate the marginal π(k), with probabilities
p1Z1/(p1Z1 + p2Z2) and p2Z2/(p1Z1 + p2Z2). Such quantities are useful for model comparison.

Acceptance Probabilities

To design a RJ-MCMC algorithm, we should define an ’ordinary’ MCMC algorithm to sample within
each space Ek for all k ∈ K and transdimensional moves for each pair k, k′ such that k 6= k′ using the
general formula for the RJ-MCMC acceptance probability α as given in 14.

E1 → E1

We use a Metropolis algorithm with an independent uniform proposal such that

r′ ∼ U(0, 1)
giving the acceptance probability as

α1→1 = min{1, φ1(r
′)

φ1(r)
} (18)

E2 → E2

We choose a symmetric random walk proposal
(

x′

y′

)

=

(
x
y

)

+ ǫ (19)

where ǫ ∼ N (0, vI). Since the proposal is symmetric, the Metropolis acceptance probability is

α2→2 = max{1, φ2(x
′, y′)

φ2(x, y)
} (20)

E1 → E2

In order to make a transition from the one dimensional space E1 to the two dimensional space E2, we
define the auxiliary variable u1 such that

u1 ∼ q1(u1) = U(0, 2π) =
1

2π
(21)
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and define the following one-to-one transformation (x, y) = g(r, u) as

x = ar cos(u) y = br sin(u)

Each r is mapped uniformly into a point on the ellipse x2/a + y2/b = r2. This mapping is depicted
in Fig.26. To compute the acceptance probability, we need the Jacobian. The partial derivatives of
the transformation are obtained as follows

∂x

∂r
= a cos(u)

∂x

∂u
= −ar sin(u) (22)

∂y

∂r
= b sin(u)

∂y

∂u
= br cos(u)

and the Jacobian term can then be determined as

|J1→2| =
∣
∣
∣
∣

∂x

∂r

∂y

∂u
− ∂x

∂u

∂y

∂r

∣
∣
∣
∣

= |a cos(u)br cos(u) + ar sin(u)b sin(u)| =
∣
∣abr(cos2(u) + sin2(u))

∣
∣ = abr

Finally, substituting the results the acceptance probability α1→2 is obtained as

α1→2 = min{1, φ2(x, y)p2
φ1(r)p1

q2→1

q1→2

1

(1/2π)
|J1→2|} (23)

E2 → E1

We find the inverse transformation g−1 ,

r =

√

x2

a2
+

y2

b2
u = arccos

(

xb
√

x2b2 + y2a2

)

The Jacobian J2→1 is obtained by calculating the partial derivatives

∂r

∂x
=

xb

a
√

x2b2 + y2a2
∂r

∂y
=

ya

b
√

x2b2 + y2a2

∂u

∂x
= − yab

x2b2 + y2a2
y

|y|
∂u

∂y
=

xab

x2b2 + y2a2
y

|y|

and the determinant is

|J2→1| =
1

√

x2b2 + y2a2

Note that we could have avoided this calculation by directly using the Jacobian of the inverse as
|J2→1| = |J1→2|−1 = 1/(abr), giving the same result. The acceptance probability α2→1 is found as
follows:

α2→1 = min{1, φ1(r)p1
φ2(x, y)p2

q1→2(1/2π)

q2→1

|J2→1|} (24)
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Figure 26: The mapping (x, y) = g(r, u). For trans-dimensional jumps between the spaces E1 (top,
right) and E2 (bottom), to match the dimensions, we draw an angle uniformly u ∼ q(u) = U(0, 2π)
and construct a one-to-one mapping g. A proposal f1 on E1 translates to a proposal f2 on E2 as
f2(x, y) = f1(r(x, y))q(u(x, y))|J2→1|. The acceptance probability does not depend on f1 or f2 as
these cancel out; only the term q(u(x, y))|J2→1| remains.

7 Open issues and problems

In this tutorial, we have sketched in a self contained manner the basic techniques and the principles
of Monte Carlo computation, along with several examples. Monte Carlo computation is a very broad
topic and with the available computing power, researchers are tackling increasingly more complex
models and problems. The need for extracting structure from large datasets forces the researchers
to devise increasingly more complicated models that ask for more efficient inference methodologies.
In some research communities, most notably machine learning, the MC methods are considered not
very scalable to very large data sets due to their heavy computational requirements. It is an open
issue in research for developing MC methods for such datasets. The research frontier, at the time of
this writing, is swiftly moving. Researchers deal with techniques such as adaptive methods that learn
suitable proposals[2], combining sequential Mote Carlo with MCMC [6], likelihood free inference [3]
or exploiting parallel computation [23] for scalability.

8 Further Reading

To investigate topics more deeper, we suggest a few key references. For basic probability theory,
Grimmet and Stirzaker [18] is a very good reference. More rigorous material, needed for a deeper
understanding of advanced subjects is covered in Rosenthal [32] and for the theory of Markov chains
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Figure 27: Illustration of the RJ-MCMC algorithm on the toy problem. The dotted lines corresponds
to accepted moves within the same space, and arrows correspond to transdimensional moves. The
algorithm proceeds as follows: Suppose at step τ , the chain is in space Ek(τ). We first propose the
next index k′ with probability qk(τ)→k′. If k′ = k(τ), we use an ordinary MH move. Otherwise, we

draw a new u ∼ p(u) and propose a new point θk′(θ
(τ)

k(τ)
, u) ∈ Ek′ and accept it with probability

αk(τ)→k. If the move is accepted we set (k(τ+1), θ
(τ+1)

k(τ+1))← (k′, θk′). Otherwise, the chain stays at the

same point point is equal to the old point (k(τ+1), θ
(τ+1)

k(τ+1))← (k(τ), θ
(τ)

k(τ)
).
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Norris is a key reference [30]. A very gentle introduction to basic Monte Carlo methods from a
machine learning perspective is in MacKay’s book [26]. A good tutorial introduction to Markov
chain Monte Carlo methods can be found in [16, 3]. There are also excellent tutorials on sequential
Monte Carlo methods, most notably by Doucet et. al. [10, 11] or Liu et. al. [25, 24].

Glossary

acceptance probability . 17

aperiodic (chain) . 14

Box-Müller method . 11

CDF Cummulative Density function. 8

central limit theorem . 4

CLT Central Limit Theorem. 2

detailed balance . 19

deterministic sca . 25

ergodic chain . 14

full conditional density . 23

generalised inverse . 8

Gibbs sampler . 23

inversion method . 8

irreducible (chain) . 14

IS importance sampling. 29

Jacobian . 10

law of large numbers . 4

LCG Linear Congruential Generator. 7

Linear Congruential Generator A method for generating pseudorandom numbers based on a
recursive formula. 47

LLN Law of Large Numbers. 2

Markov Chain Monte Carlo A Monte Carlo method that depends on simulating from a ergodic
Markov chain to generate estimates of a stationary distribution. 14
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MCMC Markov Chain Monte Carlo. 1

Mersenne Twister A Linear Congruential Generator with a provably very long period. 7

MH Metropolis-Hastings. 17

Monte Carlo (method) A family of numerical techniques for computing approximate estimates
via random sampling. 1

Multinomial resampling . 31

particle filtering . 27

pseudo-random numbers . 7

random scan . 25

rejection probability . 18

resampling . 29, 30

RJ-MCMC reversible jump MCMC. 36, 38, 40

RJ-MCMC acceptance probability . 40

SIS sequential importance sampling. 27

SMC Sequential Monte Carlo. 27, 29

spectral gap . 20

Systematic resampling . 31

total variation norm . 16

transformation method . 10

transition kernel . 16

transition matrix . 15
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