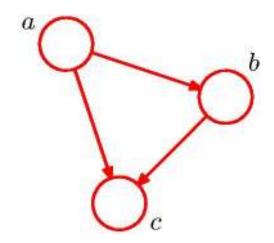


Bayesian Networks

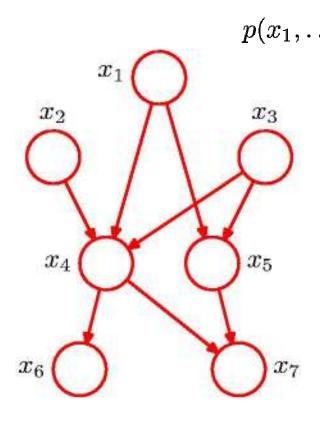
Directed Acyclic Graph (DAG)



$$p(a,b,c) = p(c|a,b)p(a,b) = p(c|a,b)p(b|a)p(a)$$

$$p(x_1,\ldots,x_K) = p(x_K|x_1,\ldots,x_{K-1})\ldots p(x_2|x_1)p(x_1)$$

Bayesian Networks



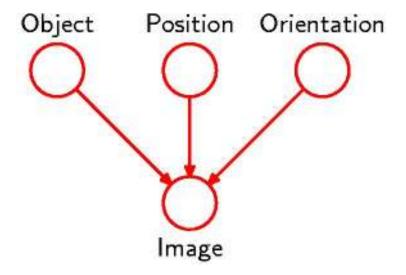
$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^K p(x_k|\mathrm{pa}_k)$$

Generative Models

Causal process for generating images



Discrete Variables (1)

General joint distribution: K^2-1 parameters



$$p(\mathbf{x}_1,\mathbf{x}_2|oldsymbol{\mu}) = \prod_{k=1}^K \prod_{l=1}^K \mu_{kl}^{x_{1k}x_{2l}}$$

Independent joint distribution: 2(K-1) parameters

$$\overset{\mathbf{x}_2}{\bigcirc}$$

$$\hat{p}(\mathbf{x}_1,\mathbf{x}_2|m{\mu}) = \prod_{k=1}^K \mu_{1k}^{x_{1k}} \prod_{l=1}^K \mu_{2l}^{x_{2l}}$$

Discrete Variables (2)

General joint distribution over ${\cal M}$ variables:

 K^M-1 parameters

M-node Markov chain: K-1+(M-1)K(K-1) parameters

Conditional Independence

a is independent of b given c

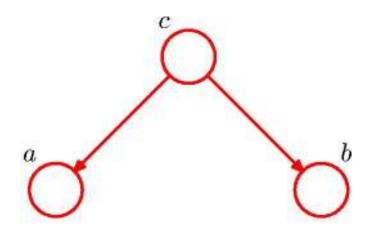
$$p(a|b,c) = p(a|c)$$

Equivalently
$$p(a,b|c) = p(a|b,c)p(b|c)$$

 $= p(a|c)p(b|c)$

Notation

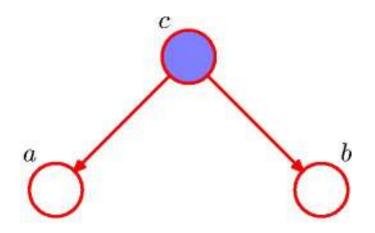
$$a \perp \!\!\! \perp b \mid c$$



$$p(a,b,c) = p(a|c)p(b|c)p(c)$$

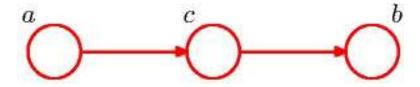
$$p(a,b) = \sum_c p(a|c)p(b|c)p(c)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$



$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

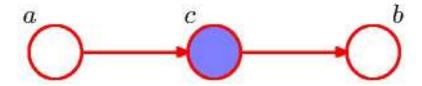
$$= p(a|c)p(b|c)$$
 $a \perp \!\!\!\perp b \mid c$



$$p(a,b,c) = p(a)p(c|a)p(b|c)$$

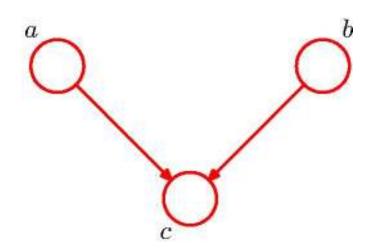
$$p(a,b) = p(a) \sum_{c} p(c|a) p(b|c) = p(a) p(b|a)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$



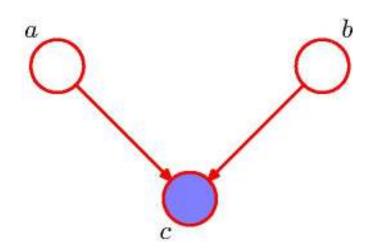
$$\begin{array}{lcl} p(a,b|c) & = & \displaystyle \frac{p(a,b,c)}{p(c)} \\ & = & \displaystyle \frac{p(a)p(c|a)p(b|c)}{p(c)} \\ & = & \displaystyle p(a|c)p(b|c) \end{array}$$

$$a \perp\!\!\!\perp b \mid c$$



$$p(a,b,c) = p(a)p(b)p(c|a,b)$$
 $p(a,b) = p(a)p(b)$ $a \perp \!\!\! \perp b \mid \emptyset$

Note: this is the opposite of Example 1, with c unobserved.



$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

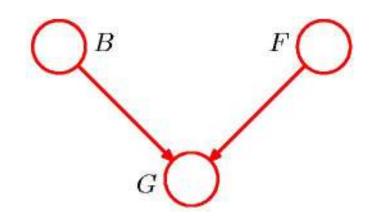
$$a \not\perp\!\!\!\perp b \mid c$$

Note: this is the opposite of Example 1, with c observed.

"Am I out of fuel?"

$$p(G = 1|B = 1, F = 1) = 0.8$$

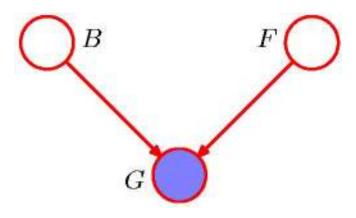
 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$



$$p(B=1) = 0.9$$
 $p(F=1) = 0.9$ and hence $p(F=0) = 0.1$

$$B = Battery$$
 (0=flat, 1=fully charged)
 $F = Fuel Tank$ (0=empty, 1=full)
 $G = Fuel Gauge Reading$ (0=empty, 1=full)

"Am I out of fuel?"

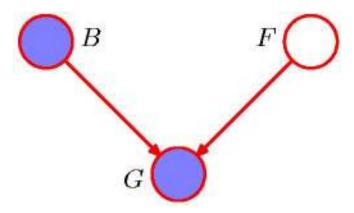


$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)}$$

\$\sim 0.257\$

Probability of an empty tank increased by observing G=0.

"Am I out of fuel?"



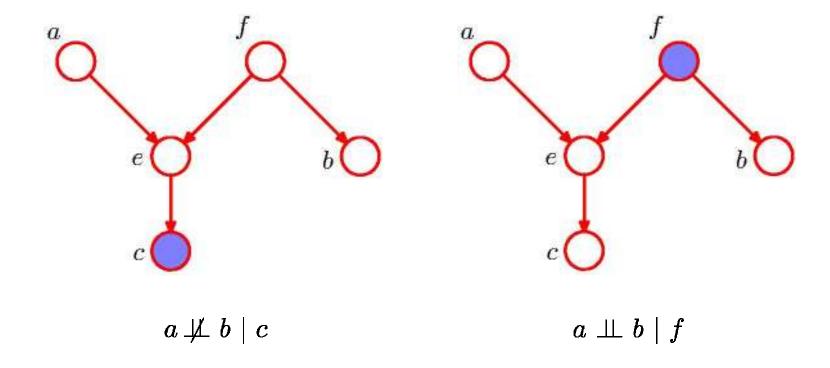
$$\begin{array}{ll} p(F=0|G=0,B=0) & = & \frac{p(G=0|B=0,F=0)p(F=0)}{\sum_{F\in\{0.1\}}p(G=0|B=0,F)p(F)} \\ & \simeq & 0.111 \end{array}$$

Probability of an empty tank reduced by observing B=0. This referred to as "explaining away".

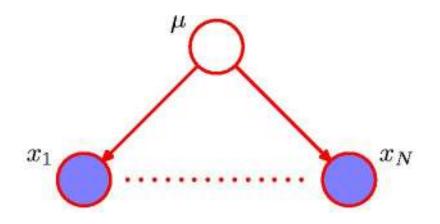
D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- \bullet A path from A to B is blocked if it contains a node such that either
 - a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set ${\cal C}.$
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$.

D-separation: Example



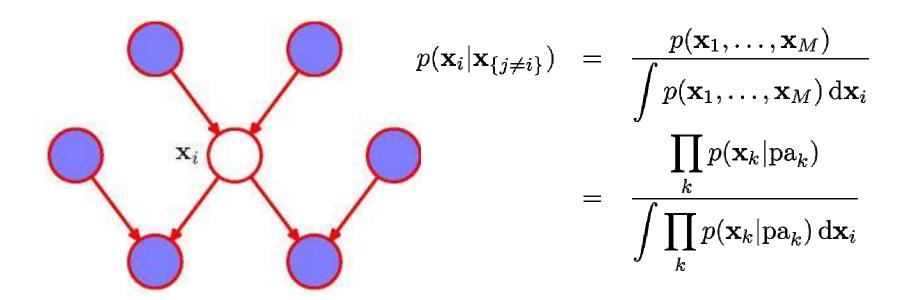
D-separation: I.I.D. Data



$$p(\mathcal{D}|\mu) = \prod_{n=1}^N p(x_n|\mu)$$

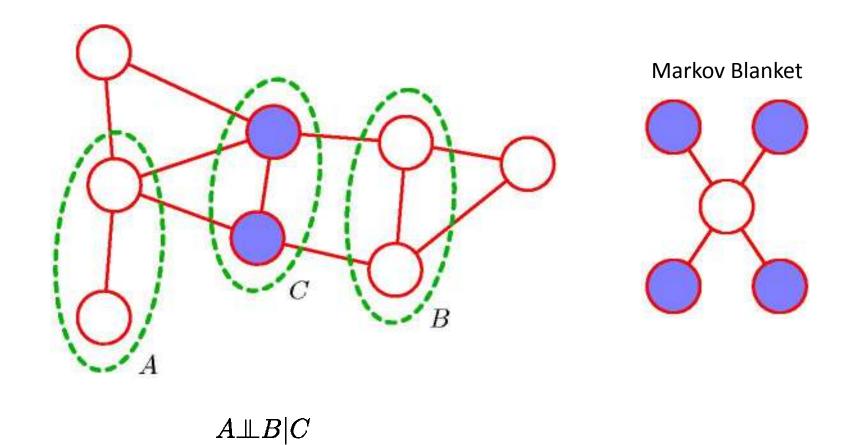
$$p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu) p(\mu) d\mu \neq \prod_{n=1}^{N} p(x_n)$$

The Markov Blanket

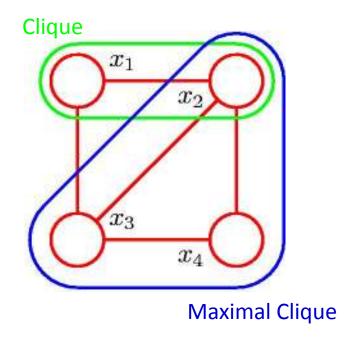


Factors independent of \mathbf{x}_i cancel between numerator and denominator.

Markov Random Fields



Cliques and Maximal Cliques



Joint Distribution

$$p(\mathbf{x}) = rac{1}{Z} \prod_C \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient; note: MK-state variables $\to K^M$ terms in Z.

Energies and the Boltzmann distribution

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Illustration: Image De-Noising (1)



Original Image

Noisy Image

Illustration: Image De-Noising (2)

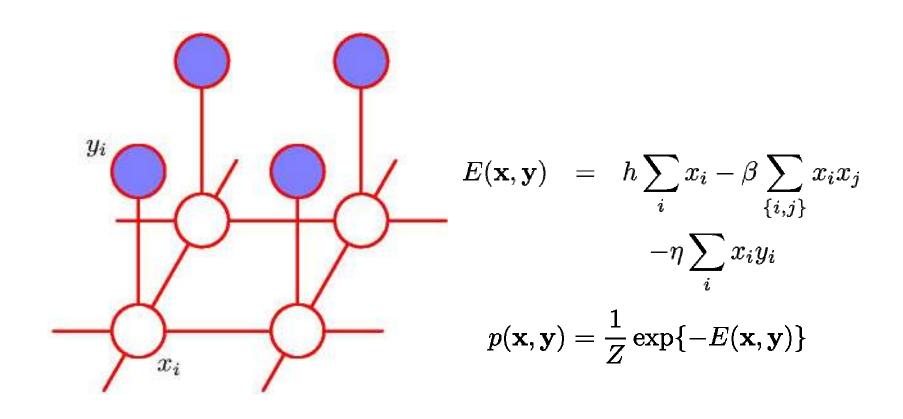
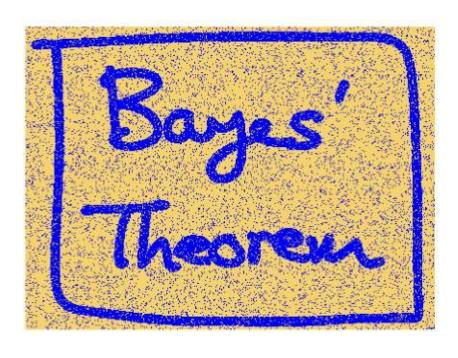
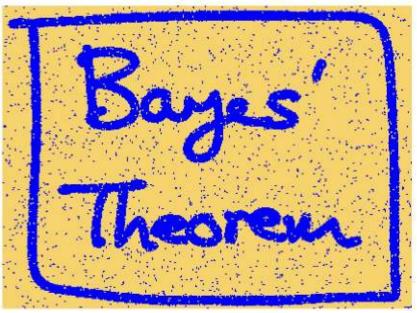


Illustration: Image De-Noising (3)

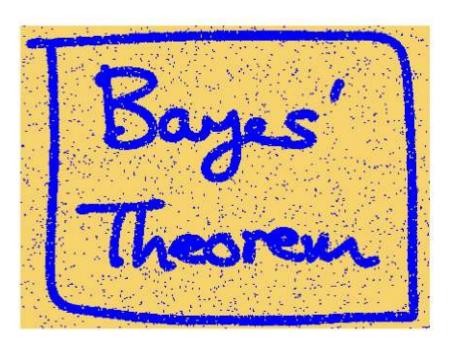




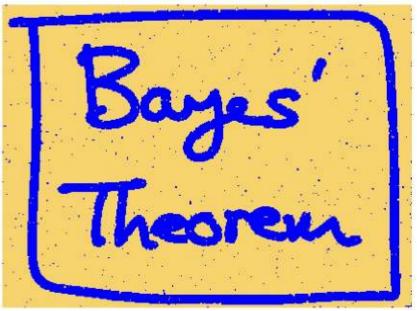
Noisy Image

Restored Image (ICM)

Illustration: Image De-Noising (4)

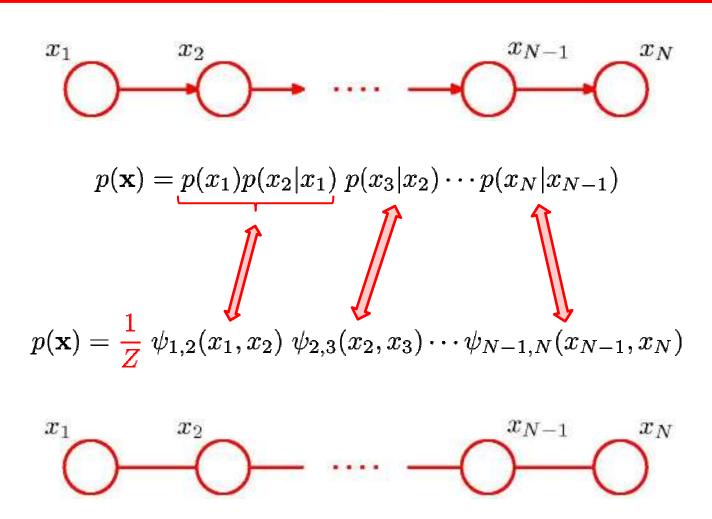






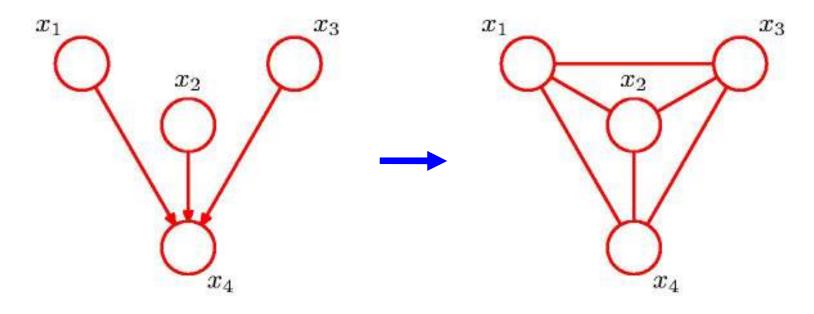
Restored Image (Graph cuts)

Converting Directed to Undirected Graphs (1)



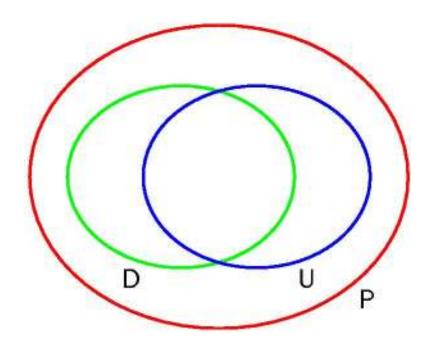
Converting Directed to Undirected Graphs (2)

Additional links

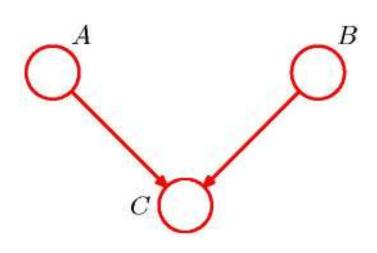


$$p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$= \frac{1}{Z}\psi_A(x_1, x_2, x_3)\psi_B(x_2, x_3, x_4)\psi_C(x_1, x_2, x_4)$$

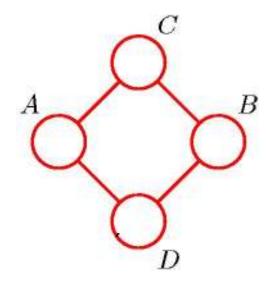
Directed vs. Undirected Graphs (1)



Directed vs. Undirected Graphs (2)

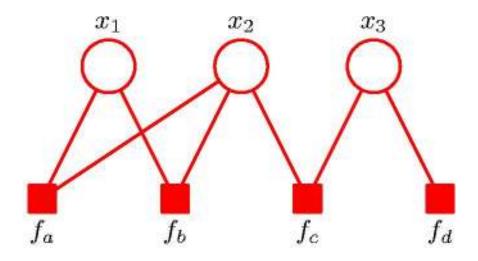


$$egin{array}{ccccccc} A \perp\!\!\!\perp B \mid \emptyset \\ A \not\!\perp\!\!\!\perp B \mid C \end{array}$$



$$A \perp \!\!\! \perp B \mid \emptyset$$
 $A \perp \!\!\! \perp B \mid C \cup D$ $C \perp \!\!\! \perp D \mid A \cup B$

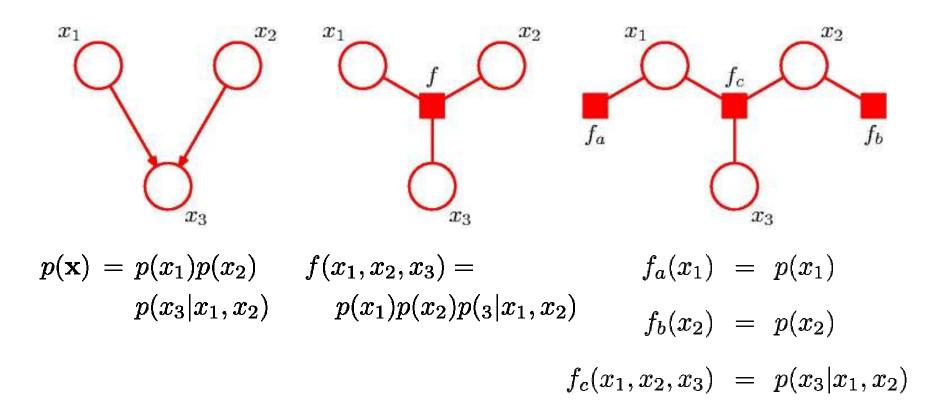
Factor Graphs



$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

$$p(\mathbf{x}) = \prod_s f_s(\mathbf{x}_s)$$

Factor Graphs from Directed Graphs



Factor Graphs from Undirected Graphs

