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Read each question carefully and show all your work. Underline your final answer to each question.
There are 6 questions. Point values are given in parentheses.

You have 180 minutes to do all the problems.
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Name: 2

Q.1 By using Jensens equality, show that the variance of a random variable is always positive.
(10 points)



Name: 3

Q.2 The KL (Kullback-Leibler) divergence is defined as
KL(PIQ) = [ po)ogp(e)/ala)

Derive an expression for K L(p||q) and K L(q||p) in terms of V and ¥ when p(x) = N (x;0,V)
and ¢(z) = N(z;0,%). N(x;m,S) denotes a multivariate Gaussian with mean vector m and
covariance matrix S.

(10 points)



Name: 4

Q.3 (Bayesian Networks) A distribution admits the following factorisation
p(A, B, D, F,T,L,M, X) = p(F|T, L)p(M)p(T|A)p(B|M)p(X|F)p(L|M)p(D|F, B)p(A)
where A, B, D, F,T, L, M, X are are discrete random variables with N states.

(a) Draw the corresponding directed graphical model.
(b) How many parameters in total need to be specified 7

(c) Verify the following conditional independence statements using d-separation. State if they
are true or false and explain why.

AL M0
AL M|IX
ii. T 1L L|X
iv. X L L|F
v. X L L|D



Name: 5

Q.4 (Undirected Graphical Models) Consider the following probability model:

p(:L‘) 21TWm+th

where x € {—1,1}* and W and h are known parameters as given below

10 0 O
01 0 O
W= 00 1 -1
00 -1 2

A = (-1 10 —1)

(a) Draw the associated undirected graphical model
(b) Draw the associated factor graph and write the expression for each factor node

(¢) Find the marginals p(x;) fori=1...4

(20 points)



Name: 6

Q.5 (AR(1) Model) Consider the following model very similar to the one discussed in detail during
the lectures.

A ~ N(A;0,P)
A~ G(Aiw,b)
rplzr-1, AN~ N(zg; Az, 1/A)

where N is a Gaussian and
G(z;a,b) = exp((a—1)logx —bx —logT'(a) + alogb)

is the gamma distribution. Assume that you know the hyperparameters 6 = (v, b, P). Suppose
we observe xg, x1,... Tk = To.k.

(a) Derive a variational Bayes algorithm to approximate
p(A7 A|x0:K7 6)

with an approximating distribution of form ¢(A)g(A) and give the update rules.
(b) Derive an EM algorithm for finding the MAP estimate

A" = argmax p(Alzo.x,0)
A

(20 points)



Name:

7

Q.6 (Model Selection) A possible generative model for clustering N data points x; fori =1... N

is given as follows:

K
itk ™~ H(l/K)Ti‘k
k=1
K
$i|7“z',1:K ~ HN’(%‘;Mkal)ri’k
k=1

(a) Draw the directed graphical model for this problem.
(b) How would you determine K?

(20 points)



