Boğaziçi University, Dept. of Computer Engineering

CMPE 547, BAYESIAN STATISTICS AND MACHINE LEARNING

Fall 2015, Midterm

Name: ________________________________

Student ID: __________________________

Signature: ____________________________

• Please print your name and student ID number and write your signature to indicate that you accept the University honour code.

• During this examination, you may not use any notes, books or calculators. You may use one A4 cheat sheet prepared with your own hand writing.

• Read each question carefully and show all your work. Underline your final answer to each question.

• There are 6 questions. Point values are given in parentheses.

• You have 180 minutes to do all the problems.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
Q.1 By using Jensens equality, show that the variance of a random variable is always positive.

(10 points)
Q.2 The KL (Kullback-Leibler) divergence is defined as

\[KL(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} \]

Derive an expression for \(KL(p||q) \) and \(KL(q||p) \) in terms of \(V \) and \(\Sigma \) when \(p(x) = \mathcal{N}(x; 0, V) \) and \(q(x) = \mathcal{N}(x; 0, \Sigma) \). \(\mathcal{N}(x; m, S) \) denotes a multivariate Gaussian with mean vector \(m \) and covariance matrix \(S \).

(10 points)
Q.3 (Bayesian Networks) A distribution admits the following factorisation

\[p(A, B, D, F, T, L, M, X) = p(F|T, L)p(M)p(T|A)p(B|M)p(X|F)p(L|M)p(D|F, B)p(A) \]

where \(A, B, D, F, T, L, M, X \) are discrete random variables with \(N \) states.

(a) Draw the corresponding directed graphical model.

(b) How many parameters in total need to be specified?

(c) Verify the following conditional independence statements using d-separation. State if they are true or false and explain why.

i. \(A \perp \!\!\!\!\perp M | \emptyset \)

ii. \(A \perp \!\!\!\!\perp M | X \)

iii. \(T \perp \!\!\!\!\perp L | X \)

iv. \(X \perp \!\!\!\!\perp L | F \)

v. \(X \perp \!\!\!\!\perp L | D \)
Q.4 (Undirected Graphical Models) Consider the following probability model:

\[
p(x) \propto 2^{x^\top W x + h^\top x}
\]

where \(x \in \{-1, 1\}^4 \) and \(W \) and \(h \) are known parameters as given below

\[
W = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 2
\end{pmatrix}
\]

\[
h^\top = \begin{pmatrix}
-1 & 1 & 0 & -1
\end{pmatrix}
\]

(a) Draw the associated undirected graphical model

(b) Draw the associated factor graph and write the expression for each factor node

(c) Find the marginals \(p(x_i) \) for \(i = 1 \ldots 4 \)

(20 points)
Q.5 (AR(1) Model) Consider the following model very similar to the one discussed in detail during the lectures.

\[
\begin{align*}
A & \sim \mathcal{N}(A; 0, P) \\
\Lambda & \sim \mathcal{G}(\Lambda; \nu, b) \\
x_k | x_{k-1}, A, \Lambda & \sim \mathcal{N}(x_k; Ax_{k-1}, 1/\Lambda)
\end{align*}
\]

where \(\mathcal{N} \) is a Gaussian and

\[
\mathcal{G}(x; a, b) = \exp \left((a - 1) \log x - bx - \log \Gamma(a) + a \log b\right)
\]

is the gamma distribution. Assume that you know the hyperparameters \(\theta = (\nu, b, P) \). Suppose we observe \(x_0, x_1, \ldots, x_K \equiv x_{0:K} \).

(a) Derive a variational Bayes algorithm to approximate

\[p(A, \Lambda | x_{0:K}, \theta)\]

with an approximating distribution of form \(q(A)q(\Lambda) \) and give the update rules.

(b) Derive an EM algorithm for finding the MAP estimate

\[
\Lambda^* = \arg\max_{\Lambda} p(\Lambda | x_{0:K}, \theta)
\]

\((20 \text{ points})\)
Q.6 (Model Selection) A possible generative model for clustering N data points x_i for $i = 1 \ldots N$ is given as follows:

$$r_{i,1:K} \sim \prod_{k=1}^{K} \left(\frac{1}{K} \right)^{r_{i,k}}$$

$$x_i | r_{i,1:K} \sim \prod_{k=1}^{K} \mathcal{N} (x_i; \mu_k, 1)^{r_{i,k}}$$

(a) Draw the directed graphical model for this problem.
(b) How would you determine K?

(20 points)