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A simple problem

Die 1: e {(.06,63,E
Die2: yc (0,8 6 8 8 M

D=X+y

What is A when D =9 ?
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A simple problem

D=X+y=9
D=\+ y=8|y=8|y=08|y=18 = y = (8
A =[] 2 3 4 5 6 7
A =10 3 4 5 6 7 8
A =[] 4 5 6 7 8 9
A= (3 5 6 7 8 9 10
A\ = (] 6 7 8 9 10 11
A\ = (3 7 8 9 10 11 12
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Bayes’ Theorem

Thomas Bayes (1702-1761)

What you know about a parameter A\ after the data D arrive is
what you knew before about A and what the data D told you.

p(DIX)p(A)
AND) =
. Likelihood x Prior
Posterior = :
Evidence
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“Bureaucratical” derivation

Formally we write

p(A) = C(\[1/6 1/6 1/6 1/6 1/6 1/6 )
ply) = C(y;[1/6 1/6 1/6 1/6 1/6 1/6 ])

p(DINy) = 6(D—(A+y))
MylD) = —= x p(DA 1) X py)p(A)
P\, Y p(D) p » Y
Posterior = .1 x Likelihood x Prior
Evidence

1 x=

Kronecker delta function denoting a degenerate (deterministic) distribution  §(x) = { 0 20
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Prior

p(y)p(\)
p(y) xp\) |y=1]y=2|y=3|y=4|y=5|y=
X =1 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
X =2 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
EE 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
\—4 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
=5 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
X =6 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36

e A table with indicies A and y

e Each cell denotes the probability p(), y)
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Likelihood

OO OO O O
Ol=O O O O
OO OO
OO OO

e A table with indicies A and y

e The likelihood is not a probability distribution, but a positive function.
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Likelihood x Prior

(A, y) = p(D = 9|\, y)p(A)p(y)

p(D=9\y) |y=1|y=2|y=3|y=4|y=5|y=6
X =1 0 0 0 0 0 0
X =2 0 0 0 0 0 0
=3 0 0 0 0 0 1/36
) =4 0 0 0 0 1/36 | 0
X=5 0 0 0 1/36 | 0 0
X=6 0 0 1/36 | 0 0 0
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Evidence (= Marginal Likelihood)

9) = Zp = 9|\, y)p(A)p(y)
—~ o+o+--- +1/36+1/36+1/36+1/36+0+ -
= 1/9

pD=9\y) ||y=1|y=2|y=3|y=4|y=5|y==6
) — 0 0 0 0 0 0
X =2 0 0 0 0 0 0
=3 0 0 0 0 0 1/36
=4 0 0 0 0 1/36 0
X=5 0 0 0 1/36 0 0
=6 0 0 1/36 0 0 0

+0

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul



Posterior

1
p(AyD=9) = p(D = 9|\, y)p(A)p(y
(A v ) (D =9) ( A y)p(A)p(y)
pP=9N\y) |y=1|y=2|y=3 |y=4|y=5]y=6
A=1 0 0 0 0 0 0
A =2 0 0 0 0 0 0
A =3 0 0 0 0 0 1/4
A =4 0 0 0 0 1/4 0
A=5 0 0 0 1/4 0 0
A=6 0 0 1/4 0 0 0

1/4 = (1/36)/(1/9)
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Marginal Posterior

PAD=9) = 3 (D = 90 Yp(N)p(1)
Yy

pAD=9) || y= y=>5
A=1 0 0 0
A=2 0 0 0
A =3 1/4 0 0
N =4 1/4 0 1/4
=5 1/4 0 0
A=6 1/4 0 0
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The “proportional to” notation

pAID=9) o p(A,D=9)=> p(D=9\y)p(A)p(y)

pAD=9) [|y=1|y=2|y=3|y=4|y=5
A= 1 0 0 0 0 0 0
X =2 0 0 0 0 0 0
=3 1/36 0 0 0 0 0
) =4 1/36 0 0 0 0 1/36
X=5 1/36 0 0 0 1/36 | 0
=6 1/36 0 0 1/36 | 0 0
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Another application of Bayes’ Theorem: “Model Selection”

Given an unknown number of fair dice with outcomes A1, Ao, ..., A\,

How many dice are there when D =9 ?

Assume that any number n is equally likely a-priori
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Another application of Bayes’ Theorem: “Model Selection”

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

p(D = 9|n)p(n)

p(n|D =9) (D)

x p(D = 9|n)

p(Dln=1) = ZP(DP\l)P()\l)

A1
p(Pn=2) = Z ZP(D\M, A2)p(A1)p(A2)

p(Pln=n') = Y p(D|)\1,...,)\n/)Hp()\i)
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p(DIn=2)  p(D|n=3) p(DIn=4) p(DIn=5)
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p(Dln) = > 5\ p(D|A,n)p(A|n)
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Another application of Bayes’ Theorem: “Model Selection”

051
0.4 o) ¢
T 03
Q
£0.2
o
0 T
(? L4 ® @ ® o
2 3 4 5 6 7 8 9

n = Number of Dice

e Complex models are more flexible but they spread their probability mass
e Bayesian inference inherently prefers “simpler models” — Occam’s razor

e Computational burden: We need to sum over all parameters A
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Probabilistic Inference

A huge spectrum of applications — all boil down to computation of

e expectations of functions under probability distributions: Integration

(f(z)) = /X dap(x) f(x) (@) = 3 p(@) f ()

reX

e modes of functions under probability distributions: Optimization

r* = argmaxp(x)f(x)
reX

e any “mix” of the above: e.g.,

= argmaxp(a:):argma}(/ dzp(z)p(x|2)
rEX reX zZ
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Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear
division between

e What to solve : Model Construction
— Both an Art and Science
— Highly domain specific

e How to solve : Inference Algorithm

— Mechanical (In theory! not in practice)
— Generic
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Probability Theory

e Axiomatic development by Kolmogorov during 30'.
e Modern rigorous treatment as a branch of measure theory.
e A huge spectrum of theoretical and practical applications.

e "Probabilist" versus "Statistician"
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The meaning of probability

e Frequentist view: Frequencies of outcomes in random experiments,

— restrict probabilities to refer only to frequencies of outcomes in repeatable

random experiments

e Bayesian view: Describe degrees of belief

— Use probabilities to describe inferences.
— Tomorrow, it will rain with probability 0.95.

e The Frequentist versus Bayesian debate,

— Similar questions but require different emphasis in their answer.
+ |s this drug useful for that disease?
+ |s this webpage relevant for that query?
* |Is there a cow in this image?
+ What is the tempo of this piece of music?
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Bayesian interpretation: Degrees of Belief

e Subjective interpretation of probability
e Using Bayes rule does not make one a Bayesian, using it always does.

e Cox’ axioms
— Degrees of belief can be mapped onto probabilities if they satisfy simple
consistency rules.

e The rules of probability ensure consistency. Same assumptions and same
data will lead to identical conclusions.
e Objective (good) versus Subjective (bad) ?

— It is not possible to do inference without making assumptions
— Deductive versus Inductive Reasoning
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Deductive versus Inductive Reasoning

e Prove that no three positive integers a, b, and ¢ can satisfy the equation
an _|_ bn — Cn
for any integer n > 2.

e Infer missing samples given observed ones

W W ‘
1 oo 1 50 200 250 300 350 400

450 500

o
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Unappropriate Inductive Reasoning

Example from Borovik

snc(x) = sin(z)/x

/OOO sne(x)dr =

/OOO snc(x) snc(z/3)dx =
/Ooo snc(x) snc(x/3) snc(x/5)dxr =
/Ooo snc(x) sne(x/3) snc(x/5) sne(x/7)dx =

/Ooo snc(x) snc(x/3) snc(x/5) sne(x/7) sne(x/9)dx =

/2
/2
/2
/2

/2
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/OOO snc(z) snc(x/3) snc(x/5) snc(x/7) snc(x/9) snc(x/11)de = m/2

/OOO snc(z) snc(xz/3) snc(x/5) snc(x/7) snc(x/9) snc(x/11) snc(x/13)de =  7w/2

467807924713440738696537864469
935615849440640907310521750000 "

/OOO snc(x) snc(x/3) snc(x/5) snc(x/7) snc(x/9) snc(x/11) snc(x/13) snc(x/15)dx =

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul 23



Discrete Probability Tables, Univariate

e X : The random variable
o X ={&,&,...,&N} : Sample space, Domain
e N : Cardinality

o m; = Pr{X =¢;} : Probabilities
O Ziﬂi=W1+7T2+"'+7TN:1

o m; >0
p(X)
X=& | m
X =§& | m
X =& | 73
X =¢&n | TN
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Discrete Probability Models, Examples

o X = {female,male}, Gender

o X ={A B,...,Z}, First letter of the surname
e XY ={1,...,¢,..., N}, Height category

e X ={1,...,¢e,..., M}, Weight category

e Selecting these categories is known as 'feature engineering’

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

25



Discrete Probability Tables, Bivariate

e X,Y : The random variables
o X c X = {gl,fg,...,fj\[x}, Y e)y= {771,772,...,77Ny}
e N., N, : Cardinalities

o T, ; =Pr{X =¢,Y =n;} : Probabilities

- 2T =1,m;>0

p(xy) |y=m |y=m | .- | y=1n,
xzfl 1,1 1,2 771,Ny
r =& 2.1 T2 2 T2 N,
.93:53 731 3,2 7T3,Ny
r=E&N, | TN,1 TNg,2 | «-+ | TNz Ny
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Probability Tables

e Joint distribution: A N-dimensional array p(z1,xo,...,zx) Where each cell is
positive and > _p(x) =1

Example: p(x1, z2, x3) with N; =4

Each cell is a positive number s.t. > p(z1,72,23) = 1
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Marginalization == Summing over subsets of variables

p($2, $3)

le p(ajla Z2, 333)
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Clamping

#

561,332,333 $1,ZC2,CC3 — $3

p(iﬂl = T, T2, 133) p($1,$2 — 53273?3)
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Conditional Probability

e A collection of probability distributions denoted as p(A|B). For each
configuration of variables in B we have a probability distribution on variables in
A

{p(x3|z1 = 1), p(ws]|z1 = 2), p(xs|z1 = 3), p(x3|z1 = 4)} =  p(xs|T1)
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Conditional Probability (cont)

e We can represent a joint probability distribution as p(A, B) = p(A|B)p(B).

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Properties of Conditional Probabilities

e p(A,B) = p(B|A)p(A) = p(A|B)p(B).

Ty

p(z1) X

e p(A) =) pp(A|B)p(B)

X

=
=

N
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Bayes Theorem Repeated

p(A|B) x p(B)

p(B|A
BIA) = S TABWB)
. Likelihood x Prior
Posterior = .
Evidence

e Think of A as an observation and B as its hidden cause.

e Bayes theorem says how to update our prior belief p(B) given a new
observation A. This gives a way of “reversing” the conditional probability
p(A[B).
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Bayes Theorem Repeated

e This rather simple looking formula has surprisingly many applications

— Medical Diagnosis (Symptoms/Diseases)
— Speech Recognition (Signal/Phoneme)
— Music Transcription (Audio/Score)

— Computer Vision (Image/Object)

— Robotics (Sensor/Position)

— Finance (Past Price/Future Price)

e A natural way of combining prior knowledge with data = Learning

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Exercise

p(ri,x2) | x2=1| x2 =2
r1 =1 0.3 0.3
T1 = 2 0.1 0.3

1. Find the following quantities

Marginals: p(x1), p(z2)
Conditionals: p(z1|z2), p(xa|z1)
Posterior: p(x1, 2 = 2), p(x1|xe = 2)
Evidence: p(z2 = 2)

p({})

Max: p(z}) = max,, p(x1]|ze = 1)
Mode: =] = argmax,, p(z1]|ze = 1)
Max-marginal: max,, p(x1, z2)

2. Are x1 and x5 independent ? (i.e., Is p(x1,z2) = p(x1)p(x2) ?)
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Answers

p(r1,22) | T2 =1 | 292 =2
r1 =1 0.3 0.3
x] =2 0.1 0.3
e Marginals:
p(aj_l) p(iCQ) aj2 — :[;2 p—
x1=2104 ' :
e Conditionals:
p(xi]zs) | 22 =1 | 22 = p(a2|®1) | o =1 | w3 =
1 =1 0.75 0.5 T = 0.5 0.5
=2 | 0.25 0.5 =2 | 0.25 0.75
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e Posterior:

e Evidence:

Answers

p(r1,x2) | zo =1 | 20 =2
1 =1 0.3 0.3
T] = 2 0.1 0.3
p(r1, 20 =2) | x9 = p(ri|re =2) | 29 =
T = 0.3 T1 = 0.5

e Normalisation constant:

p({) =S plar,ez) = 1

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Answers

p(ri,x2) | x2=1| x2 =2
r1 =1 0.3 0.3
1 = 2 0.1 0.3

e Max: (get the value)

max p(xi|re = 1) = 0.75
T

e Mode: (get the index)

argmax p(zri|lre =1) =1

L1

e Max-marginal: (get the “skyline”) max,, p(x1,z2)

maxy, p(r1,22) | To =1 | x9 =

0.3

0.3

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Inference and Learning

e Maximum Likelihood,
e Penalised Likelihood,

e Bayesian Learning

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Maximum Likelihood

e Data set
D=A{xy,...xN}

e Model with parameter A
p(D[A)

e Maximum Likelihood (ML)

ML — arg max log p(D|\)

e Predictive distribution

p(zn+1|D) ~ p(xn+1|AM)

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Regularisation

e Prior
p(A)

e Maximum a-posteriori (MAP) : Regularised Maximum Likelihood

AMAP — arg max log p(D|X)p(N)

e Predictive distribution

p(n-+1|D) = pla 1 |AMF)
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Bayesian Learning

e [reats parameters on the same footing as all other variables

e Integrate over unknown parameters rather than using point
estimates

— 'Self-regularisation’, avoids overfitting
— Natural setup for online adaptation
— Model selection
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Bayesian Learning

e Predictive distribution

p(zn41|D) = / dX plan 1| \p(D)

e Bayesian learning is just inference ...

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Bayesian Learning, A\ = p(x = Tail)
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Bayesian Learning
1,7
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Bayesian Learning
717
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Bayesian Learning
LTT7
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Bayesian Learning
LTLTT?
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Bayesian Learning
LLLTT?
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Bayesian Learning
LLLTTY,?
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Bayesian Learning
LLLLLY,T?

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

51



Bayesian Learning
LLLLLY,TT?
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1/1
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T, 17

p(>\’flﬁ'1, Z13'2)

2/2
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LT, T,7?

p(Alr1:3)

3/3
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LTLT,T?

P(Alz1:4)

4/4
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LTLTTT?

p(AlT1:5)

5/5

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

58



LLLLTLY?

p(AlT1:6)

5/6
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LLLLLYT?

p(Alz1:7)

6/7
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LLLLLY,TT?

p(Alr1:s)

7/8
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Probabilistic Modelling
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Probability Distributions

e Following distributions are used often as elementary building
blocks:

— Discrete
x Categorical, Bernoulli, Binomial, Multinomial, Poisson
— Continuous
*x Gaussian,
+ Beta, Dirichlet
x Gamma, Inverse Gamma, Exponential, Chi-square, Wishart
* Student-t, von-Mises
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Exponential Family

e Many of those distributions can be written as

p(z|0) = h(z)exp{d i (z) — A(0)}

A0) =1log [, dz h(z)exp(d' ¥ (z))

A(#) log-partition function

6 canonical parameters
Y(x) sufficient statistics
h(x) weighting function

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Maximum Entropy Principle

What is the least informative distribution that has the given expectations?

maximize H [p]
subject to

/ p(z)dx =1 Normalizasyon
X

/ Y(x)p(r)dr = s Moment Esleme
X

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Lagrange Functional

pla) og(p(a))do + A(1 = | pla)de) +0(s = [ wla)p(o)da)

X

Apin0) = [

X

—A[p,\, 0] = —log(p(x)) —1+AX+0¢(x)=0

p(xz) = exp(0y(z))exp(A—1)

/Xp(a:)da: = 1:exp()\—1)/ exp(0y(x))dx

X
1

[ exp(6v(x))dx

exp(A—1) =

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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get rid of A

AB) = log/)(exp(ew(x))da:

Solution: The exponential family (Gibbs distribution)

p(z) = exp(0v(x)— A(0))

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Bernoulli. BE(c; w)

Bernoulli ¢ = {0, 1} with success probability w

plc=1lw) = w plc=0lw)=1—w

plelw) = w(l—w)°

= exp(clogw + (1 —¢)log(1l — w))

- exp ot e+ )

BE(c; w)

w

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Is Bernoulli a exponential family?

w

BE(;w) = exp <log(1 )C—|—log(1—w)>

p(cld) = h(c)exp{d () — A(0)}

6 = log(l—) canonical parameters

A(f) = —log(1 + %)  log-partition function
c sufficient statistics
hic) =1 weighting function
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Binomial Distribution. BZ(s; N, w)

s i1s the number of successful outcomes in N independent Bernoulli trials with
success probability w

BZ(s;N,w) = (N)ws(l_w)N—s

S

N!
= exp(slogw + (N — s)log(1 — w))

sl(N — s)!
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Poisson Distribution. PO(s; \)

6—)\

PO(s;\) = —A° =exp(slogh — X\ —log(s!))

s!
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Beta. B(w;a,b)

wa—l(l . w)b—l

B(w;a,b) =

= exp((a—1)logw+ (b—1)log(1 — w) — A(a,b))

— exp((a—1 b—1) ( logl(olgiuw) ) — A(a, b))

(w)p = a/(a+D)
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Beta. B(w;a,b)

2 »
1.5}
B
o
1
0.5
a=03b=04
0 | | | |
0 0.2 0.4 0.6 0.8
w
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Gauss. N (x;m,S)
Gauss mean m and variance S

N(z;m,S) = (2n8)"1/2 exp{—%(x —m)?/S}

1 1
= exp{—§(ac2 +m? —2xm)/S — 510g(27r5)}

1 1 1
= €xp {%x — %ﬁ — (5 log(27S) + %m?) }

- eni( ) (&) -0

N\ 7\ 7

¢ ()

Coefficient matching

exp{—3Kz’+hz+g} & S=K"' m=K"h
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Gaussian.
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Inverse Gamma. ZG(r; a, b)

The inverse Gamma distribution with shape a and scale b

1 p—(atl) b

IG(r;a,b) = T(a) b exp(—;)

b
— exp (—(a + 1)logr — — —logI'(a) + alog b)
r

exp (( *“_Z D >T< lﬁf ) “logT'(a) —I—alogb)

Match coefficients

1
exp{alogr+ﬁ——|—c}(:>a:—oz—1 b= —p
?/3
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Inverse Gamma

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Gamma Distribution. G(\; a, b)
The Gamma distribution with shape « and inverse scale b

G(\;a,b) = F(la)b"’A(a‘l) exp(—b\)

= exp((a—1)logA — b\ —logI'(a) + alogb)
= exp (( (a_—bl) ) ( 10§A ) —logI'(a) —|—alogb>

Hence by matching coefficients, we have

1
exp{ozlog’r—l—ﬂ—Jrc}(:)a:aJrl b= —0
7’.
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Random number generation

e Bernoulli: BE(x; p)
X = double (rand<p);
e Binomial: BZ(x;p, N)
x = sum(double (rand (N, 1)<p));
Not efficient for large N
e Poisson: PO(x; )
x = polssrnd (lambda) ;
e Beta: B(z;a,b)

X = betarnd(a, b);
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e Gaussian: N (x;pu, S)

X = sqgrt (S) .randn(size(S))
e Gamma: x ~ G(z;a,b)

x = gamrnd(a, 1./b);

or more securely

x = gamrnd(a, 1)./b;

which is also

x = gamrnd (a) ./b;
e Inverse Gamma x ~ ZG(x; a,b)

x = b./gamrnd(a) ;

+ mu;

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul
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Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the probability of success w of a binary
(Bernoulli) random variable ¢
p(clw) = BE(c;w)=exp(clogw + (1 —¢)log(l —w))
p(w) = B(w;a,D)

p(wlc) o< p(clw)p(w)
x exp(clogw + (1 —¢)log(l — w))
x exp ((a —1)logw + (b — 1) log(1 — w))
x B(w;a+c,b+ (1 —rc¢))

(wle) = Bw;a+1,b) c=1
prwle) = B(w;a,b+1) ¢=0
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Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance R of a zero mean Gaussian.

p(z|R) = N(z;0,R)
p(R) = ZG(R;a,b)

p(Rlz) o p(R)p(z|R)

1 1 1
X exp (—(a + 1)log R — bﬁ) exp (—(xQ/Z)E - ilog R)

- oo (518 ) (5F))
x ZG(R;a+ % b+ z?/2)

Like the prior, this is an inverse-Gamma distribution.
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Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x4, ...,z y.

p(Rlz) o« p(R) Hp<xi|R)

X exp (—(a + 1)log R — b%) exp <— (% Z xf)% — glog R)
B —(a+14+Y) \' [ logR To(Riat Y b—|—lz 2
= exp —(b+%2¢$§) 1/R X ; a 5 5 i Z;

Sufficient statistics are additive
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Inverse Gamma, > .z =10 N =10

zixi2=1o N=10
1.4 T T T T

0.8

0.6

0.4

0.2

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul



Inverse Gamma, > 27 =100 N = 100

zixf=1oo N = 100
3 T T T T

2.5

0.5
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Inverse Gamma, > 27 = 1000 N = 1000

zixf=1ooo N = 1000
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Example: AR(1) model

0.5 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

T = Axp_1 + € k=1...K

e 1S 1.1.d., zero mean and normal with variance R.

Estimation problem:

Given z, ..., zx, determine coefficient A and variance R (both scalars).
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AR(1) model, Generative Model notation

A ~ N(A4;0,P)
R ~ IG(R;v,B/v)
Tplrk—1, A, R ~ N(xg; Arg—1, R) o = Lo

Observed variables are shown with double circles
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AR(1) Model. Bayesian Posterior Inference

p(Aa R’l’o, L1y .- 733K) X p(ajla <. 7xK‘x07 A7 R)p(A7 R)
Posterior o Likelihood x Prior

Using the Markovian (conditional independence) structure we have

p(A, Rlzg, x1,...,TK) (H p(rr|rr_1, A, R)) p(A)p(R)
k=1

2 R
O \}
o Lo o
N\ ]
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Numerical Example

Suppose K =1,

(42

By Bayes’ Theorem and the structure of AR(1) model

p(AaR’waxl) X p(xl‘x())Aa R)p(A)p(R)
= N(z1; Azo, R)N(4;0, P)IG(R; v, B/v)
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Numerical Example

p(A,R|CCO,CC1) X p($1’$0,A,R)p(A)p(R)
= N(x1; Azo, R)N(A;0, P)IG(R; v, B/v)

122 A 1z3A% 1
X exp (—551 + 580331E — 507 —3 log 27TR>

1 A2 1
exp <—§?> exp (—(1/ +1)log R — %E)

This posterior has a nonstandard form

1 A A?
exp (Ozlﬁ - agﬁ — &3§ + ayglog R + a5A2>
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Numerical Example, the prior p(A, R)
Equiprobability contour of p(A)p(R)

10" 1

10"

10" 1

10 "

10

A~ N(A;0,1.2) R ~ IG(R;0.4,250)

SUppOSG: o =1 r1 = —0 X1 ~ N(lel; ALIZ(),R)

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

92



Numerical Example, the posterior p(A, R|x)

Note the bimodal posterior with xtg = 1, ;1 = —6

e A~ —6 <« low noise variance R.
e A =~ 0 < high noise variance R.

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

93



Remarks

e The point estimates such as ML or MAP are not always
representative about the solution

e (Unfortunately), exact posterior inference is only possible for few
special cases

e Even very simple models can lead easily to complicated posterior
distributions

e Ambiguous data usually leads to a multimodal posterior, each
mode corresponding to one possible explanation
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Remarks

e A-priori independent variables often become dependent a-
posteriori (“Explaining away”)

e The difficulty of an inference problem depends, among others,
upon the particular “parameter regime” and observed data
sequence
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Graphical Models

e formal languages for specification of probability models and
associated inference algorithms

e historically, introduced in probabilistic expert systems (Pearl 1988)
as a visual guide for representing expert knowledge

e today, a standard tool in machine learning, statistics and signal
processing
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Graphical Models

e provide graph based algorithms for derivations and computation

e pedagogical insight/motivation for model/algorithm construction

— Statistics:
“Kalman filter models and hidden Markov models (HMM) are equivalent upto
parametrisation”

— Signal processing:
“Fast Fourier transform is an instance of sum-product algorithm on a factor
graph”

— Computer Science:
“Backtracking in Prolog is equivalent to inference in Bayesian networks with
deterministic tables”

e Automated tools for code generation start to emerge, making the
design/implement/test cycle shorter

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul 97



Important types of Graphical Models

e Useful for Model Construction

— Directed Acyclic Graphs (DAG), Bayesian Networks
— Undirected Graphs, Markov Networks, Random Fields
— Influence diagrams

e Useful for Inference

— Factor Graphs
— Junction/Clique graphs
— Region graphs
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Directed Graphical models (DAG)
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Directed Graphical models

e Each random variable is associated with a node in the graph,
e Wedrawanarrowfrom A — Bifp(B|...,A,...) (A € parent(B)),

e The edges tell us qualitatively about the factorization of the joint
probability

e For N random variables z1, ..., x N, the distribution admits

N
p(ry,...,xN) = Hp(:ci]parent(a:i))
i=1

e Describes in a compact way an algorithm to “generate” the data —
“Generative models”
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DAG Example: Two dice

p(A)

A

N

p(DIA, y)

p(D,\y) =

p(y)

Y

D

p(DIA, y)p(M)p(y)
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DAG with observations
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Examples

Model Structure factorization
Full @'@ D@ p(z1)p(wa|x1)p(z3|T1, x2)p(T4|T1, T2, T3)

Markov(2) G DD p(x1)p(aa|zy)p(xs|ey, z2)p(xs|ze, 23)

Markov(1) @O—E&—E—C p(z1)p(z2|r1)p(ws|2)p(Ta|23)
@ p(x1)p(x2|z1)p(Ts|r1)p(ay)
Factorized @ @ p(z1)p(z2)p(w3)p(T4)

Removing edges eliminates a term from the conditional probability factors.
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Undirected Graphical Models
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Undirected Graphical Models

e Define a distribution by non-negative local compatibility functions ¢(x.,)
1
p(x) =~ [] ¢(wa)

where « runs over cliques : fully connected subsets

e Examples

p(X) — %¢($17 $2)¢($17 $3)¢(CIZ‘2, $4)¢($37 374) p(X) — %¢($17 X2, $3)¢($27 X3, 334)
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Factor graphs
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Factor graphs [?]

e A bipartite graph. A powerful graphical representation of the inference problem

— Factor nodes: Black squares. Factor potentials (local functions) defining
the posterior.

— Variable nodes: White Nodes. Define collections of random variables

— Edges: denote membership. A variable node is connected to a factor node
if a member variable is an argument of the local function.

p(A) p(y)
A I

W

p(D = 9|\ y)

op(N,y) = p(D =9\ y)p(N)p(y) = d1(A, y)P2(N)P3(y)
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Exercise

e For the following Graphical models, write down the factors of the joint
distribution and plot an equivalent factor graph and an undirected graph.

Ul G —EF— Markov(1)

FA @ & Factorized @& @& @&
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Answer (Markov(1))

p(z1) p(z2lz1) p(z3|z2) p(z4lz3)

De SO= SO 3¢

O—O—O—0C

p(z1)p (5132\33‘1) plws|xa) p(w4|rs)
</5(x1 r2) ¢(x2,x3) P(x3,74)
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Answer (IFA - Factorial)
OWo

/"9‘
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Answer (IFA - Factorial)

e We can also cluster nodes together
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Probability Tables

e Assume all z; are discrete with |z;| = k. If N is large, a naive table
representation is HUGE: £V entries

Example: p(x1, z2, x3) with |z;| = 4

Each cell is a positive number s.t. > p(z1,72,23) =1

e We need efficient data structures to represent joint distributions p(z1, za, ...,z N)
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Independence Assumption == Complete Factorization

o Assume p(z1,z2,...,2n) =[], p(zk).

Ty g 3

p(1) X p(x2) X  plxs) = p(z1, T2, 3)

We need to store 4 x 3 numbers instead of 43 |

e However, complete independence is too restrictive and not very useful.
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An alternative Factorization

p(z1, T2) X p(x3)

We need to store 42 + 4 numbers instead of 43.

e Still some variables are independent from rest.
independence assumptions instead.

p(fCla X2, 333)

We will make conditional
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Conditional Independence

e Two disjoint sets of variables A and B are conditionally independent given a
third disjoint set C if

p(A,B|C) = p(A|C)p(B|C)

e This is equivalent to

p(A[BC) = p(A|C)

e We denote this relationship with (L)

A L B|C
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Conditional Independence

e Conditional Independence is a key concept in probabilistic models

e Conceptual and Computational simplifications

— Understanding key factors in a domain
— Reducing computational burden for inference
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Conditional Independence Properties
e Directed Graphical Models
— d-separation

e Markov Random Fields (MRF’s : Undirected Graphical Models)
— Path Blocking

e Testing for conditional independence in MRF is simpler
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d-Separation

e Three disjoint sets of variables A, B and C
A 1 B|C

e A path from A to B is blocked by C'if

a the arrows on the path meet either head-to-tail or tail-to-tail at the node, and
the node is in the set C, or

b the arrows meet head-to-head at the node, and neither the node, nor any of
its descendants, is in the set C.
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Sequential Data: Models, Inference, Terminology

In signal processing, machine learning, robotics, statistics many
phenomena are modelled by dynamical models

~ P xk]xk 1) Transition Model
yr ~  p(yk|lrr) Observation Model

e 1 is the latent state (tempo, pitch, velocity, attitude, class label, ...)
e y are observations (samples, onsets, sensor reading, pixels, features, ... )

¢ In a full Bayesian setting, = includes unknown model parameters
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Online Inference, Terminology

e Filtering: p(zr|y1.x)

— Distribution of current state given all past information
— Realtime/Online/Sequential Processing

{$0—>$1—> —>$k1—> —)SUK

S e

e Potentially confusing misnomer:

— More general than “digital filtering” (convolution) in DSP — but
algoritmically related for some models (KFM)
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Online Inference, Terminology

e Prediction p(yi.x, Tk k|y1:6—1)

— evaluation of possible future outcomes; like filtering without
observations

{x0—>5L‘1: . )xk 1——): ajk: :

e Accompaniment, Tracking, Restoration
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Offline Inference, Terminology

e Smoothing p(zo.x|y1.x),
Most likely trajectory — Viterbi path arg max, . p(zo.x|y1:x)
better estimate of past states, essential for learning

—>

o Interpolation p(y., T |y1:k—1, Yk+1:K)
fill in lost observations given past and future

S
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e Mixture model evolving in time

To [—>| x1

Hidden Markov Model [?]

Lk—1

—> | .. /| Tk

e Observations y;. are continuous or discrete

e Latent variables x; are discrete

— Represents the fading memory of the process

e Exact inference possible if x;, has a “small” number of states
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Example: Hidden Markov Model

e State transition model (a NV by N matrix)

€ €
1 — €

00 1 1 0 0
1 —c l—c (1—e)| 100 |+€e|l 010
010 0 0 1

(

€
e Observation model p(yx|xk)

ye ~ wo(yr —xk) + (1 —w)u(l,N)
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Example: Hidden Markov Model

True State X

10 I I I I I [ I [ T |
= 8 -
c
0
= 6F |
2
[0
2 4r .
@)

2 _

| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Time k
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Example: Hidden Markov Model

10F ' | | E ' '
8 lF -I

= g

Z 6 [ N

E

k5 4—I-

T -i-' 5
| | | | | | |
10 20 30 40 50 60 70

Smoothed p(xkly1 :K)

10 20 30 40 50 60 70
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Exact Inference in HMM, Forward/Backward Algorithm

p(as1 3:2\931 :Eglarz x4\x3
p(y1]z1) p(y2|r2) p(y3|rs) p(yalrs)
e Forward Pass
p(ylzK) — Z p(ylzlelzK)p(xlzK)
1:K
0‘2|1 a1|0
= Zp(yK|$K) > plzgleg_1) - ZP($3|m2)p(y2|$2)Zp(wzlxl)p(wlm)p(xl)
2 TR 1 J \ , ay
aK O‘2
e Backward Pass
plyrx) = Y _plOplyiler). .. > plex alex 2)p(yk-1lzx—1) Y pleklzr 1)p(yrlerx) 1
TK-1 IK P
/3[2,_2 5[?—1
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Exact Inference in HMM, Viterbi Algorithm

p(z1) p(flrz\xl) 953|5L’2 :r:4\:r:3
) ? ) f f ?
p(y1|r1) p(y2|r2) p(ys|zs) p(ya|z4)

e Merely replace sum by max, equivalent to dynamic programming

e Forward Pass
p(yr.xlrl.x) = gi?b;p(yLKWl:K)p(xLK)

2|1 110

7 N /-/\
= rgclaXp(yTleK) max p(ri|rig_1)...maxp(z3|ze) p(y2|z2) max p(za|xy) p(y1|z1) p(z1)
K TR T T ~ v Z

\ . 7
N/

Vo

aK a2

e Backward Pass

P(M:KWT:K):Ualj?xp(xl)p(yﬂxl)- - max pPrg_1lrr_2)P(Yk—1]lTK— 1)m?<><p(93K|CEK DP(yklrr) L
(. /. 4 EK
BK—2 Br—1
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Implementation of Forward-Backward

1. Setup a parameter structure
2. Generate data from the true model
3. Inference given true model parameters

4. Test and Visualisation
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Example: Hidden Markov Model

e State transition model (a NV by N matrix)

€ €
1 — €

00 1 1 0 0
¢ l—e (1—e)| 100 |+€e|l 010
010 0 0 1

(

€
e Observation model p(yx|xk)

ye ~ wo(yr —xk) + (1 —w)u(l,N)
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1. Setup a parameter structure
N = 50; % Number of states

% Transition model;

ep = 0.5; % Probability of not-moving

E = eye(N);

A = epxE + (l-ep)*E(:, [2:N 1]); % Transition Matrix

% Observation model
w = 0.3; % Probability of observing true state
C = w«E + (1l-w)*ones(N)/N; % Observation matrix

% Prior p(x_1)
pri = ones (N, 1)/N;

% Create a parameter structure
hm = struct (A", A, 'C', C, "p_x1", pri);
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2. Generate data from the true model
O CHOEENG

Tp|lrk—1 ~ plTr|rr—1)

yrlTr ~ pyrlor)
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2. Generate data from the true model

function [obs, state] = hmm_generate_data (hm, K)
Inputs

hm : A HMM parameter structure

K : Number of time slices to simulate

o° o° o© o o

Outputs
obs, state : Observations and the state trajectory
state = zeros(l, K);
obs = zeros(1l, K);
for k=1:K,
if k==1,
state (k) = randgen (hm.p_x1);
else
state (k) = randgen(hm.A(:, state(k-1)));
end;
obs (k) = randgen(hm.C(:, state(k)));
end;
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2. Generate data from the true model

i | | | ! T T ‘ - T ® T
45+~ ° : _
40+ |
n
| | i
- e .. 1
0%30 ..
§25__”. ...... .- _
2 o
gZO—‘ ) _
T
4—'15_ _
» 10+ o [ ] — _
® observations
! i
| | | | | | | | | |
2 4 6 8 10 12 ” - - n
time
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3. Inference. Forward pass

p(z2|xy1) p(xs3|x2) x4]:r3

rabara

p(yilz1) p(y2|z2) p(ys|zs) p(yalra)

e Predict

lk—1(TK) = PY1:k—1,Tk) = Zp(l‘k\wk—l)p(ylzk—1,$k—1)
Th—1
= Zp($k|$k—1)@k—1|k—1($k—1)

Lk—1

e Update

p(ylzk, xk) = p(yk|$k)p(y1:k—1, xk)

= pWklzr)ok -1 (k)

Oék\k(ﬂfk)
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p(ylzK) — Z p(yl;K|x1;K)p(Q?1;K>
T1:K

= ZP(?JK|37K) > plegleg_1)--

TK—1

= ZP(?JK|$K) > pleklrg—_1)--

TK—1

— Zp(yK|£L’K Z p(rrlTrr_1) "

TK—-1

= Zp(yKll‘K) > plekleg—1)--

TK—1

— ZP(?JKWK) Z p(zglzg—1)--

TK—1

0‘1|0

: zp($3|$2)p(y2|x2)z p(z2|z1) p(y1|$1) p(aﬁl)

a1|1

> p(xslz2)p(yele2) D plas|zr)ay); (1)
x9 x1

> p(@slze)p(yz|z)ag) (w2)

> p(xslma)ags(ws)
9

- az)2(23)
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3. Inference: Forward pass

log_alpha = zeros (N, K);
log_alpha_predict = zeros (N, K);
for k=1:K,
if k==1,
log_alpha_predict (:,k) = log(hm.p_x1);
else
log_alpha_predict (:, k)
= state_predict (hm.A, log_alpha(:, k-1));
end;
log_alpha(:, k)
= state_update (hm.C(y(k), :), log_alpha_predict(:,k));
end;
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3. Inference. Predict

function [lpp] = state_predict (A, log_p)
STATE_PREDICT Computes Axp 1n log domain

[lpp] = state_predict (A, log_p)
Inputs
A : State transition matrix

log_p : log p(x_{k-1}, yv_{1:k-1}) Filtered potential

Outputs
lpp : log p(x_{k}, y_{1:k-1}); Predicted potential

o° o o0 o° o° o° o° o o° o°

[¢)

mx = max (log_p(:)); % Stable computation

p = exp(log_p - mx);
lpp = log(Axp) + mx;
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Numerically Stable computation of log(} . exp(l;)))

e Derivation

— log(exp(l*) Z exp(l; — 1))

= " +log(> _exp(l; — %))

e We take [* as the maximum [* = max; [;

e Assignment: Implement above as a function logsumexp (1)
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3. Inference. Update

function [lup] = state_update (obs, log_p)
STATE_UPDATE State update in log domain

[lup] = state_update (obs, log_p)

Inputs
obs : p(y_k| =x_k)
log_p : log p(x_k, y_{1, k-1})

Outputs
lup : log p(x_k, y_{1, k-1}) p(y_k| x_k)

o° o o° o° o° o° o° o o° o°

lup = log(obs(:)) + log_p;
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3. Inference. Forward pass.

Aplk = P(ylzk, iEk)
50F T T T T T T T T T ™
a0 .
:'3 ol _;r__
i
2
><_~< 20 .
10F .
| | | | | | | | | |
2 4 6 8 10 12 14 16 18 20
k (time)

0.8

0.6

10.4

10.2
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3. Inference. Forward pass

Aklk—1 = P(Y1:k—1, k)
50F T T T T T T T T T T 1
40+ . 0.8
r -
T 30f S - 0.6
g
L
< 20 i 0.4
10 - 10.2
] ] ] ] ] ] ] ] ] ] 0
2 4 6 8 10 12 14 16 18 20
k (time)
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3. Inference. Backward pass

p(z2|xy1) p(xs3|x2) x4]:r3

rabara

p(yilz1) p(y2|z2) p(ys|zs) p(yalra)

e “Postdict”
Brik+1(xk) = PWk+1:K|TE) = Zp($k+1!$k)p(yk+1:f<!$k+1)
Lh+1

— Z p($k+1‘$k)5k+1|k+1($k+1)

Lk+1
e Update

Brik(Tr) P(Yr:k|TK) = P(Yk|Tk)D(Yk+1: K |2k

p(yk|$k)5k|k+1($k)

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul 143



p(yi.x) = D _p@)p(yilzl)... Y plEx_i1lzx_2)p(yk-1lzx-1)Y  plrklzrx_1)p(YklTK) L
] TK—1 TK 6K|K+1

_ Zp(wl)p(yﬂxl) . Z p(er_1lrrk_2)P(WK_1lTK_1) Zp(xK|$K—1)5K|K
T

TR 1 TK

= > _ple)pyilz) -+ > plrx_1lek—2)P(Yx—11TK-1)BK_1|K
xq TK—-1

= > ple)pilz) -~ > plek 1lek—2)Br 1x-1
7

TK—1

= > p()p(ile1) - Br_ojx—1
71
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3. Inference. Backward pass

log_beta = zeros (N, T);
log_beta_postdict = zeros (N, T);
for t=T:-1:1,
1f t==T,
log_beta_postdict(:,t) = zeros(N,1);
else
log_beta_postdict(:,t)
= state_postdict (hm.A, log_beta(:, t+1));
end;
log_beta(:, t)
= state_update (hm.C(y(t), :), log_beta_postdict(:,t));
end;
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3. Inference. Postdict.

function [lpp] = state_postdict (A, log_p)
STATE_POSTDICT Computes A’ *p 1in log domain

$ [lpp] = state_postdict (A, log_p)

% Inputs

% A : State transition matrix

% log_p : log p(y_{k+1:K}|x_{k+1}) Updated potential
% Outputs

% lpp : log p(y_{k+1:K}| =x_k) Postdicted potential

mx = max (log_p(:)); % Stable computation

p = exp(log_p - mx);
lpp = log (A’ *p) + mx;
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3. Inference. Backward pass

5k|k+1(33k) — p(yk+1:K|33k)
50F T T T T T T T T T - 1
40 - 0.8
— S
T 30f — - 0.6
E — |
L [
x 20r . 0.4
10 - 10.2
| | | | | | | | | | 0
2 4 6 8 10 12 14 16 18 20
k (time)

We visualise 8 Brik+1(Tr)u(zk)
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3. Inference. Backward pass

5k|k($k) — p(yk:K\xk)

B5OF T T T T T T T T T - 1
40 . 0.8
I
@ 301 _——__-_ - 0.6
S e —
2 [ T —
< 20 . 0.4
10 . 10.2
! ! ! ! ! ! ! ! ! ! 0
2 4 6 8 10 12 14 16 18 20
k (time)
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3. Inference. Smoothing.

p(ylzKa Ik) — p(ylzka xk)p(yk—HK’xk)
— Oék|k($k)5k|k+1(5€k)

= Yie(7r)

Alternatives

Ve(Tr) = Oékyk—1($k)5k\k($k)

Oék\k—1(iﬁk)p(yk!%)ﬁk\kﬂ(wk)
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3. Inference. Smoothing.

p(wrlyr:x) o pyik, Tk) = arpr(vr) Bejkr1(Tk)

(&)
o
I

—_
o
I

10
k (time)

12

14

16

18

20

0.8

0.6

10.4

10.2
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3. Inference. Smoothing.

log_gamma = log_alpha + log_beta_postdict
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4. Test and Visualisation

imagesc (normalize_exp(log_gamma, 1));

set (gca, ’'ydir’, 'n’);

colormap (flipud(gray)) ;

xlabel ("k (time)’); vyvlabel('x_k (state)’);
caxis ([0 171);

colorbar

% This has to be constant !! (why)

plot (log_sum_exp (log_gamma, 1));
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4. Test and Visualise. Filter.

50F | T T T T T T @ T T T

Y L d ¢
(]

40 4

¢ * _‘_‘__‘___-‘-_‘-.-
30 o .

...... o ¢
20 ¢ -

P ]
® I true states

10 O  observations| ]

| | | | | | | | | |

2 4 6 8 10 12 14 16 18 20
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4. Test and Visualise. Smoother.

50F | | | | | | | | | T

10

- true states

2 4 6 8 10 12 14 16 18 20
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The Multivariate Gaussian Distribution
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The Multivariate Gaussian Distribution. A/ (s; i, P)

1 is the mean and P is the covariance:

N(s;p, P) =

log N (s;p, P) =

1

2P 2exp (505 =) P - )

1 1 1
exp | —=s' P s+ pu' P ls——p' P71y — = |27 P
2 2 2
1
—§STP_1S + ' P71s + const

1
—3 Tr P 'ss' + ' P~ 1ls+ const

1
—3 Tr P lss' +pu' P ls

Notation: log f(z) =" g(z) <= f(z) x exp(g(x)) <= Ic € R: f(x) = cexp(g(x))
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Gaussian potentials

Consider a Gaussian potential with mean p and covariance X on x.

¢(r) = aN(u,) (2)

= al2r|Fexp(—5(z — w75 (= — p) 3)

where [ dz¢(z) = « and |27%] is a short notation for (27)? det 32, where Y is d x d..

o If « = 1 the potential is normalized.

e A general Gaussian potential ¢ need not to be normalized so « is in fact an
arbitrary positive constant.

e The exponent is just a quadratic form.
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Canonical Form
1 | A Ty—1 1 re1
o(r) = exp({loga—§log|27r§]|—§,u Y ut+pt Y T =St ¥ )

1
= exp(g+h'z— §£CTKCC)

e Alternative to the conventional and intuitive moment form.
e Here we represent the potential by the polynomial coefficients h and K.

e Coefficients h and K as natural parameters.
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Canonical and Moment parametrisations

The moment parameters and canonical parameters are related by

— y!
h = X7
1 1
g = loga — §log 273 — §,LLTZ_1EZ_1ILL
1

K 1
= 1 “log|—| — =hTK~th
ogatglogly | =3
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Jointly Gaussian Vectors

e Moment form

| 1 Y11 X g [
— a2 T exp(—= ( 74 — ro — 11 2412 1— M1
0 127372 exp( 2( 1= 1 Ty — ) ( S0 Noo T — 1o )

e Canonical form
B x| 1 K11 Kio T
(z1,72) —exp(g+< fir he ) ( X9 ) 2( S ) ( Ko1 Koo ) ( 9 >)

e need to find a parametric representation of K = X~! in terms of the partitions
2011, 2412, 2421, 2422
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Partitioned Matrix Inverse

e Strategy: We will find two matrices X and Z such that W becomes block
diagonal.

IYXR = W
Y = L 'WR!
> = RW'L=K
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Gauss Transformations

e Add a multiple of row s to row ¢

e Premultiply X with L(s,t) where

I, 1=
Li’j(S,t) = v, r=sand j =t
0, o/w

e Example: s=2,t=1

1 a b B a—+vyc b+ ~vyd
0 1 c d - c d

e The inverse just subtracts what is added

-G
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Gauss Transformations

e Given X, add a multiple of column s to column ¢

e Postmultiply > with R(s,t) where

I, 1=93
Ri,j(s,t) = v, j:sandz’:t
0, o/w

e Example: s=2,t=1

a b I 0 B a+vb b
¢ d v 1 - c+~yd d
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Scalar example

LY. =

(
(
o~ (
(
(
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Scalar example (cont)

= (e ) S0 )

B (@ —bd~tc)™1 0 1 —bd!
N —d te(a —bd~ )™t d71 0 1
(@ —bd~tc)™1 —(a —bd~tc)"tod!
B —d te(a—bd )™t dt+de(a—bdte) T bd
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Scalar example

We could also use
I

LY =

(
(
= (e 1) (20) (0 0
(
(

a4+ a1b (d — ccz_lb)_1 ca” ! —a b (d — ca_lb)_1 )

RW™L = _ _
— (d — ca_lb) ! ca”! (d — ca_lb) !
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Partitioned Matrix Inverse

In matrix case, this leads to following dual factorizations of > as

- I %185, 11— Y12(B22) 181 0 I 0
0 I 0 Moo N N YR

. I 0 211 0 I _21_11212 )
N S )DL 0 Yoo —Yo1(X11) 1210 0 I
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The Schur Complement

We will introduce the notation

N/¥0 = i1 — Bi12(BVag) 180
Y/ = Yo —Y01(Z11) 'S0
Determinant
Xl = [X/E0|[B1] = |3/ 822|322

Vs ( —2521221 ? ) ( (2/2022)_1 22_21 ) (

() CF )

I —Y1%5)
0 I

I 0
B YSPIT |

)
)
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Partitioned Matrix Inverse

_1
K11 Klz _ Z11 Z12
K21 K22 E21 E22
( (3/%22)~ " —(2/22) 7181085, )
— 355 521(5/22) 7t B35 + B3y B21(8/T02) T E1255,

) (21—11+21_11212(2/211>_1221sz —2;11212@/211)_1)
—(3/211) 1SS (/%)

e Quite complicated looking formulas, but straightforward to implement

e Caution: ;' # Ky, in general!

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul 169



Matrix Inversion Lemma

e Read the diagonal entries

(B11 — 212(B22) 1 80) 7t = I IS (E/20) S 2
(A-BC™'D)"' = A'+A'B(C-DA'B) DA™
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Factorisation of Multivariate Gaussians

Consider the joint distribution over the variable
(%)
€T p—
)
where the joint distribution is Gaussian p(z) = N (x; u, X3) with
_ 241
o ( po )

21 212 )
P—
( Yy B9
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Factorisation of Multivariate Gaussians

Find the following

1. Conditionals

(a) p(z1]z2)
(b) p(za|z1)

2. Marginals

(a) p(z1)
(b) p(x2)
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Factorisation of Multivariate Gaussians

Using the partitioned inverse equations, we rearrange

T —1
1 r1 — U1 21 22 L1 — U1
p(xr1,x2) eXp( 2 ( To — s ) ( Yy o To — U2

bring the expression in form of p(x1)p(x2|z1) (O p(z2)p(x1|x2)) Where the marginal
and conditional can be easily identified. (See also Bishop, section 2.3.)
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Factorisation of Multivariate Gaussians

We have the two decompositions

—1
w1 ( X X2 )
— T
iy 22
_ —1 _ —1 _
_ (21 — 2122, 121T2) . _ (21 — 2122, 1212) 211220 '
— B = B B N B i B
_22 121T2 (21 _ E1222 1212) 22 ' + Z:2 1E1Tz (21 _ 21222 1212) Z:1222 '

_ _ _ —1 _ N _ ~1
2 ' + 2 1212 (22 - Z1T221 11212) E1T221 ' —2 1212 (22 - ZszZl 1212)
- - - - _ —1
— (Z2 = 2,5 ') =L (Ze — 2,37150)

We let s; = x; — pu; and use the first decomposition.

T —1
1/ s 21 212 S1
p(817 82) X exp _5 < So ) ( EIQ 22 So
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—1

1T —1-T\ ™ —1 \
— exp | 2 ( 51 )T (21 — X122y Z12) - (21 — X123, 212) X122 ( 51
= —5 1 -1
2\ 82 —x;1n], (21 - 2122—121@) syt vesis], (21 - 2122—121T2) S5 1 52 .

2 2

1 _ ~1
= eXP(_§31T (Zl — 2122 12?2) 51

_ _ —1
S5 55 150 (31 — T1285 ' 8,) s

1 B . —1 _
—53522 T (1 - T1eE'Eh) SeEs s
1 B
_55522 152)

X N(Sl; 21222_182, 21 — 21222_12]_2)./\/’(82; 0, 22)
= N(xl; U1 + 21222_1(5132 — H2), 21 — E1222_121T2)/\[(f’32; fh2, X2)

This leads to a factorisation of form p(x2)p(x1|x2). The second decomposition will
lead to the other factorisation p(x1)p(x2|z1).
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Approximate Inference
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Variational Formulation

A simple but very powerful idea:

e Represent the solution of a problem as the minimum of some cost
function

e Example: Solving a system of linear equations p € X

Ap = b
e Variational formulation

p = argmin{%(b—AQ)T(b—AQ)}

Ao
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Variational Formulation

e We can also find approximate solutions

e Suppose we constrain g to a subset

ge X, C X

e We trivially have
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Example: Computing Marginals

e Consider a joint distribution i, j € {0,1}

p(rr =i,20=7) = m
p(z1,22) | 22=0 | 22 =1
x1 =0 70,0 0,1
r1 =1 1,0 11
e Marginals
pzy) p(x2) | 22=0 rg =1

21 =0 | mo,0 + To,1
x1=1| mo+m11

70,0 + 71,0 | 70,1 + 71,1

e How can we express the marginals of a density variationally ?
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Example: Computing Marginals

e [ake a factorised Distribution

¢(z1 =1,22=7J) = q(z1 =1)q(z2,=])
gxr1=1) = @
gz =1) = qo
q(z1, x2) To =0 To =1
r1 =20 (1 — C]1)(1 — C]Q) (1 — Q1>QQ
1 =1 q1(1 — q2) q1G2

e Compute the “distance” between p and ¢ via Kullback-Leibler (KL)
Divergence
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Kullback-Leibler (KL) Divergence

e A “quasi-distance” between two distributions P = p(x) and Q = q(z).

KLPIQ) = [ dap(o)log” 3 = ogP)y — (05 Q)

e Unlike a metric, (in general) it is not symmetric,

KL(P||Q) # KL(Q||P)

e But it is non-negative (by Jensen’s Inequality)

q(z)
p(z)

> —log/ dxp(x )%——bg/){dxq(x):—logl:()

KL(P|Q) = - /X dzp(x) log
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Kullback-Leibler (KL) Divergence

p(x1,x2) | 22 =0 | 29 =1 q(x1,x2) xo =0 To =
x1 =20 70,0 0,1 r1=0 | (1—q1)(1—q2) | (1 —q1)q2
Ir1 = 71,0 1,1 Ir1 = Q1(1 — QQ) qd142

KL@llg) = 33 pler,w2)log (p('”“’“))

£, To Q<xlax2)
(o)
P Q(xl =1, L2 = )
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Kullback-Leibler (KL) Divergence

e Let us minimise the KL divergence w.r.t. ¢;

KL(pllg) = —moolog(l—q)+log(l—q2))—mio(logg: +log(l—¢q2))
—mo,1(log(1l — ¢1) + log g2) — 71,1 (log ¢1 + log g2)

+ Z Z i, log m;
U

e We take the derivative and set to zero

OKL(pllq) O

Oq1 (9—611

(—7T0,010g(1 - Q1) — 7T1,010g q1 — 70,1 log(l — Ql) — 71,1 log Q1)
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The marginal is the minimiser of K L(p||q)

0 = Moo 1 _7T10i‘|‘7T01 : —7r11i
,(1— 1) g1 ’(1_q1) 1
! 1
= (mo,0 + m0,1) I—q) (1.0 + Wl’l)_l
T1,0+ 71,1
o (70,0 +(7TO,1 + 71,0)+ 1) = T1,0+ 71,1 = p(r1 =1)
l—-q1 = 1—(mo+m,1)=m00+m01=1—¢q =p(x1=0)

The derivation for ¢ is identical.
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The “other” one: K L(q||p)

KL(qllp) = > > qlw1,2)log (Q(xl’x2)>

p(z1, r2)
= ZZQ T1 = 1,72 —J)log( el :7:;;2 :j)>
= (1—aq)(1—go)log ((1 —al - QQ)) +q1(1 — g2) log (ql(l — QQ))

1,0
1 — q19
+(1 — q1)g2 log <( 014 ) + q1g2 log ( . 2)
7i8 1,1
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The “other” one: K L(q||p)

= (—log(l —q1) +logmg o+ logq — logm o)

d2 (— log 7'('0,0 + log 7T1,0 + lOg 7'('0’1 — 10g 7'('1,1)
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The “other” one: K L(q||p)

0, — ( Il —aq1 > _ 1 W(g,lo_%)ﬂg?l
a Zi\ g Pt
( exp((1 — g2) log mo.0 + q2log mp 1)
X
exp((1 — ¢2)logm1 0 + g2 log my 1)
B ( exp((1 — g2) log mo,0 + g2 log 7o, 1)
(( ) )

exp((1 — g2)logm 0 + g2log 71 1

exp((logm),,)

Qo eXP(<10g7T>Ql)
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K L(q||p) versus K L(p||q)

KL(allp) KL(plla)
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Toy Model : “One sample source separation (OSSS)”
p(Sl) p(52)

&)

p(z|s1, s2)
This graph encodes the joint: p(x, s1, s2) = p(x|s1, s2)p(s1)p(s2)
s1 ~ p(s1) =N(s1;p1, Pr)

sa ~ p(s2) = N(s2; u2, %)
r|s1,s2 ~ p(x|si,s2) = N(x;s1+ s2, R)
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The Gaussian Distribution

1 is the mean and P is the covariance:

N(siiP) = |2nP|"2exp (—§<s—mTP—1<s—u>)

1 1 1
= exp <—§STP_1S - ,uTP_ls—i,uTP_l,u — §|27TP\)

1
log N (s;u, P) = —isTP_ls + u'P~1s 4+ const

1
= -3 Tr P 'ss + u' P~ 's 4+ const

1
=+ —§TI‘P_188T + P 1s

Notation: log f(z) =" g(z) <= f(z) x exp(g(z)) < Ic € R : f(z) = cexp(g(x))
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OSSS example

Suppose, we observe r = .

p(s1) p(s2)

p(x = Z|s1, $2)
e By Bayes’ theorem, the posterior is given by:

1 1

P =p(s1, 82010 = &) = ——p(x = 2[s1, 52)p(51)p(52) =

7 Z_@¢(81’ 52)

e The function ¢(s1, s2) is proportional to the exact posterior. (Z; = p(z = 2))
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OSSS example, cont.

1

logp(sy)) = piPts — isfPl_lsl + const
1
logp(ss) = paPytsy — §S2TP2—152 + const
AT »—1 1 T p—1
logp(z|sy,se) = "R "(s1+ s2) — 5(31 + s9)" R™"(s1 + s2) + const
log §(s1,82) = logp(z = &s1,s2) +logp(s1) + logp(sz)

=T (uf Py Ly TR Ys14 (us Py L4 2TR™ ") 59

—%Tr (Pl_1 + R~ ) s1s1 — 51 TR sy —% Tr (P2_1 + R_l) 5253
(+)

e The (*) term is the cross correlation term that makes s; and s, a-posteriori
dependent.
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OSSS example, cont.

Completing the square
+ Pl_l,ul + Rz ! S1
P2_1,u2 + R 1z S9

_1 S1 ! Pl_l + R_l R_l S1
2\ 8o R7! Pyt +R1

S92

1
Remember: logN(s;m, %) =t (Z7'm)'s— QSTE_ls
5 _ Pl_l _|_ R—l R—l —1 s Pl_llufl _|_ R_lj\j
R Pyt + R Py 'us + R™'%
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Variational Bayes (VB), mean field

We will approximate the posterior P with a simpler distribution O.

1

_ Z—xp(x = Z|s1, s2)p(s1)p(s2)

Q = q(s1)q(s2)

Here, we choose

q(s1) = N(s1;mq, S1) q(s2) = N (s2;ma, S2)

A “measure of fit” between distributions is the KL divergence

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul

194



Kullback-Leibler (KL) Divergence

e A “quasi-distance” between two distributions P = p(x) and Q = q(z).

KLPIQ) = [ dap(o)log” 3 = ogP)y — (05 Q)

e Unlike a metric, (in general) it is not symmetric,

KL(P||Q) # KL(Q||P)

e But it is non-negative (by Jensen’s Inequality)

q(z)
p(z)

> —log/ dxp(x )%——bg/){dxq(x):—logl:()

KL(P|Q) = - /X dzp(x) log
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OSSS example, cont.

Let the approximating distribution be factorized as

Q = q(s1)q(s2)

C](Sl) — N(Sl; mi, 51) C](SQ) — N(Sz; ma, 52)

The m; and S; are the variational parameters to be optimized to minimize

1

KL(QP) = <1ogQ>Q—<1ogZ¢<sl,82>> @

\ . 7

> o
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The form of the mean field solution

0

IA

(log 4(51)a(52)) 4 (s, )g(s9) + 108 Zu — (108 (51, 52)) 4 (51 )g(50)
(log ¢(51,52)) g (s1)q(s2) — 108 A(51)a(52)) 45 )q(50)
~F(p;q) + H(q) )

Vv

log Z,

Here, F' is the energy and H is the entropy. We need to maximize the right hand
side.

Evidence > —Energy + Entropy

Note r.h.s. is a lower bound [?]. The mean field equations monotonically
increase this bound. Good for assessing convergence and debugging computer
code.
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Details of derivation

e Define the Lagrangian

A = /d81Q(81)10gCI(81)+/d82Q(S2)10gQ(82)+10me —/d81d82Q(81)Q(82)10g¢(81,82)
211 [ dsiglsn) +ra(1 = [ dspa(s:) ©
e Calculate the functional derivatives w.r.t. ¢(s1) and set to zero
)
5q(31)A = logq(s1) + 1 — (log d(s1,52))4(sy) — A1
e Solve for q(s1),
logq(s1) = A1 — 14 (logo(s1,52))4(s,)
q(s1) = exp(A1 —1)exp((log ¢(s1,52))¢(s,)) (7)
e Use the fact that
1= [ dsials) = exp(ha = 1) [ dsyexp((log é(s1,52))g(sy)
A = 1-—log / ds1 exp((log ¢(s1, 82)>q(32))
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The form of the solution

e No direct analytical solution

e We obtain fixed point equations in closed form

q(s1) o< exp((log @(s1,52)),(sy))

q(s2) o< exp((logo(si, S2)>q(81))

Note the nice symmetry
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OSSS: Factor Graph

p(s1) p(s2)

o) (o) (%) ale)

p(x = 2|sq1, s2)

e A graphical representation of the inference problem

— Factor nodes: Black squares. Factor potentials (local functions) defining
the posterior P.

— Variable nodes: Circles. Think of them as “factors” of the approximating
distribution O. (Caution — non standard interpretation!)

— Edges: denote membership. A variable is connected to a factor if it is a
variable of the local function.
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Fixed Point Iteration for OSSS

p(s1) p(s2)

logq(s1) < logp(si)+ (logp(z = &|s1,52))y(s,)

log q(s2) <« logp(sz) + (logp(w = &s1,52)) s
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Fixed Point lteration for the Gaussian Case

1 _ _
logq(s1) <« —3 Tr (P, '+ R7') s18{ —s{ R~ <32>q(52) +(p P+ 2 R s
N —

:m2

_ 1 _ _ 1 AT e
logq(se) « -— <31>qT(31) R sy — 5 Tr (P '+ R 5259 + (1o Py '+ 2" R71) s

N—_——

S
_m1

Remember ¢(s) = N (s;m, S)
1 T, 2T
logq(s) =T —?I‘rKss +h's
$
S =K1 m=K 1h
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Fixed Point Equations for the Gaussian Case

Covariances are obtained directly

Sy =P +R )

So=(Py '+ R

To compute the means, we should iterate:

Intuitive algorithm:

— Substract from the observation z the prediction of the other factors of O.

mi

ma

Sl (Pl_l,ul + R_l (QA? — mg))
SQ <P2_1,LL2 + R_l (5% — m1)>

— Compute a fit to this residual (e.g. “fit” mq to £ — my).

—1

Equivalent to Gauss-Seidel, an iterative method for solving linear systems of

equations.
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OSSS example, cont.

exact posterior

factorized MF
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Direct Link to Expectation-Maximisation (EM) [?]
Suppose we choose one of the distributions degenerate, i.e.
G(s2) = 0(s2—m)

where m corresponds to the “location parameter” of ¢(s2). We need to find the
closest degenerate distribution to the actual mean field solution ¢(s2), hence we
take one more KL and minimize

m = arggninKL@(SQ—ﬁ)HQ(Sz))

It can be shown that this leads exactly to the EM fixed point iterations.
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Ilterated Conditional Modes (ICM) [?, ?]

If we choose both distributions degenerate, i.e.

5(81 — ml)

R
/N
(¥a)

[
N——"
|

G(s2) = 0d(s2 —my)

It can be shown that this leads exactly to the ICM fixed point iterations. This
algorithm is equivalent to coordinate ascent in the original posterior surface

¢(817 82)'

mi = argmax @(sy, sy = ma)
S1

my = argmax @(s; = my, s2)
59
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ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences
in terms of fixed points.

10" b
10° |
10° b
107}

107

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

10* |

10° |

10° |

1072

107
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Convergence Issues
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OSSS example, Slow Convergence

exact posterior

\ factorized MF
o

N
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Annealing, Bridging, Relaxation, Tempering
Main idea:
e If the original target P is too complex, relax it.
e First solve a simple version P.,. Call the solution m,

e Make the problem little bit harder P, — P.,, and improve the solution m,, —
Moy
e While P, — P,,,...,— Pr =P, we hope to get better and better solutions.

The sequence 1, 1, ..., 7 is called annealing schedule if

Pr o P
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OSSS example: Annealing, Bridging, ...

e Remember the cross term (x) of the posterior:

— TR sy
()

e When the noise variance is low, the coupling is strong.

e If we choose a decreasing sequence of noise covariances
R >R.\>--->R;,, =R

we increase correlations gradually.
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OSSS example: Annealing, Bridging, ...
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Fixed Point Iterations

Let # denote the parameter vector of O.

e Given the fixed point equation F and an initial parameter (9, the inference
algorithm is simply

o+l F(eW)

For OSSS 0 = (my,m») ' (S1, S> were constant, so we exclude them). The update
equations were

mi"" e Pi(my)

mgt—kl) — F (mgt—l-l))

This is a deterministic dynamical system in the parameter space.
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OSSS: Fixed Point iteration for m,

R (Previous)
(@)

(t
1
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Derivation of Variational Bayes
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Derivation of a Variational Bayes algorithm

1. Write down the log of the full joint (unnormalised) posterior log ¢(v1, ..., vN)

2. Decide the individual factors of the approximating distribution, i.e., find a set of
mutually exclusive clusters

{Ul,...,’UN} = UCa

(Mean field is {v1,...,on} ={v1} U{v} U---U{on})
3. Draw the factor graph and assign each term of log ¢ to individual factors

4. Derive the factors of @), the approximating distribution @) = [ [, @~ as a function
of the sulfficient statistics of {Q_.}
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Variational Bayes

5. Initialise the (variational parameters of the) factors of () to reasonable values

6. Visit each factor of ), and update it as a function of {Q)_.} until convergence

Qo o exp (<log¢>Q_a)
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AR(1) Model

xk\a:k_l,A,R ~ N(ZCk;AZEk_l,R)

o — 1 r1 = —6
Caution: (Wikipedia compatible definition of ZG)

b
ZG(R;a,b) = exp (—(a + 1)log R — I logI'(a) + alog b)
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Step 1: Write down the log of the full joint (unnormalised)
pOSterior log gb(A, R,z = QAﬁl‘ZL‘Q — 5;30)

¢ — p(A7 Raxl — :%1’330 — 'C%O) X p(xl‘x())A?R)p(A)p(R)
= N(z1; Azo, R)N (4;0, P)ZG(R;v,v/p)

3 1x%_|_ A 1x3A? 11 0 R
x exp|—== ———— — =
PN 2R TR 2R 2787
14% 1
—— — =1
exp( 5P 3 0g\27rP|)
1
exp (—(V + 1) log R — %E —logI'(v) + Vlog(u/5)>
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Step 2. Choose the individual factors of ()

Q = q(A)q(R)
q(4) = N(4;m, %)
q(R) = ZIG(R;a,b)

Clusters

C = {AjUL{R}
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Step 2. Choose the individual factors of ()

Sufficient statistics and modes
° q(A) = N(A; m, E)

(A) = m (A*) =X +m? A" =m
e ¢(R) =ZG(R;a,b)

(1/R) = afb (log R) = log(b) — ¥(a)

R* b/(a+1)
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Step 3. Draw the factor graph and assign each term of log ¢ to
individual factors

_ ATf —(1/—|—1+1/2)1ogR—(%+%x%)%

1
2

l)’l‘ ‘\‘“
|
\} O
AR 2 42
A 1 x25A
ToT1R — 27 R

122 A 12242 1 142 1
1
—(v+1)logR — %E —logT'(v) + vlog(v/B)
122 A 1z24% 1 1 A% v 1
—+ -~ i Vel | _ = 1)1 _ =
oR TP o g gl WAl R-ar
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Step 4. Derive the factors of () the approximating distribution
as a function of the sufficient statistics of {Q)_,}

A ~(v+14+1/2)log R — (4 + 577) %
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Step 4. Derive the factors @),
o q(A) =N(A;m, %)

q(A) o exp((logd(4, R)), (r))

1 A2 1 1 51
= ——— —A— ZxiA?
P ( 2P ' <3705’71R 2xOR >q(R)>

_ i,/ 1 2 1
i eXP( 2 <P+xO<R>q<R>>A +moxl<R>q<1~z>A>
1 1 - 1 -1
a
(P R/ yr P b

1
m = XTI <—> — Exoxlg
R q(R) b
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Step 4. Derive the factors of ()
e ¢(R) =ZG(R;a,b)

g(R) o< exp({log¢(A, R)>q(A))

1 1 1
= exp(—(r+1+1/2)logR — (% - §$% + <—£L'0£E‘1A - 51}%A2> )ﬁ)
q(A)
v 1 4 YT 1
= exp(—(+1+1/2)log R — (5 + 5af — womn (A} + 508 (4%), 1)) )
a = v+1/2
v 1, 1 o) 42
b = 3 + o1 ol <A>q(A) T 510 <A >q(A)
1 1
— % + 53@% — Tox1m + 533%(777,2 + )

Cemgil Bayesian Machine Learning. Spring 2017, Istanbul 225



Variational Bayes

9(A)7 = exp((log (A, R)),py-)
¢(R)™ = exp({log $(A, R)), 1)
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Variational Bayes (Implementation)

nu = 0.4; beta = 100; nu_beta = nu/beta;

P=1.2; x 0 =1, x1 = —-6;
T = 300; % Number of iterations
E A = —6; E_ A2 = E_A"2;

E_invR = 1/0.00001; % Initial Sufficient stats

for t=2:T,
$ Update g(A)
Sig = 1/(1/P + x_072*E_invR);

mu = Sigx*x_0xx_1xE_invR;
E_A = mu; E_A2 = mu.”2 + Sig;
% Update g(R)

a = nu+0.5;
b = 0.5x(x_1.7%2 — 2+x_1xx_0xE_A + x_0.72«E_A2) + nu_beta;

E_invR = a/b;
end;
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Variational Bayes
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EM - Expectation Maximisation algorithm

e Variational Bayes and Gibbs are for full Bayesian learning

e EM :Maximum likelihood (ML) or Maximum a-posteriori parameter estimation
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EM, Case 1

Maximise over the variance R

q(A)(T) _ exp(log ¢(A, R = R(T—l))) — p(A’R(T—l))
R — arg max (log ¢(A, R)>q(A)(T)
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EM, Case 2

Maximise over regression coefficient A

AT = argmax (log ¢(A4, R)>q(R)(T_1)
g(R)™ = exp(logp(A = A" R))=p(R|A™)
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lterative Conditional Modes

Maximise over the variance R and the regression coefficient A

AT = argmax(10g¢(A,R)>q(R)(T_1)

= argmaxlog ¢(A, R = R(T_l))
R(T)  — arg max (log ¢(A, R)>q(A)(T)

= argmaxlog (A = A7) R)
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