CMPE 547 Bayesian Statistics and Machine Learning

A. Taylan Cemgil

Dept. of Computer Engineering

Boğaziçi University

A simple problem

Die 1:
$$\lambda \in \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

Die 2:
$$y \in \{ \square, \square, \square, \square, \square, \square \}$$

$$\mathcal{D} = \lambda + y$$

What is λ when $\mathcal{D} = 9$?

A simple problem

$$\mathcal{D} = \lambda + y = 9$$

$\boxed{\mathcal{D} = \lambda + y}$	$y = \blacksquare$	$y = \blacksquare$	$y = \blacksquare$	$y = \blacksquare$	y = lacktriangle	$y = \blacksquare$
$\lambda = \bullet$	2	3	4	5	6	7
$\lambda = \bullet$	3	4	5	6	7	8
$\lambda = \mathbf{C}$	4	5	6	7	8	9
$\lambda = \square$	5	6	7	8	9	10
$\lambda = \mathbf{\Xi}$	6	7	8	9	10	11
$\lambda = \blacksquare$	7	8	9	10	11	12

Bayes' Theorem

Thomas Bayes (1702-1761)

What you know about a parameter λ after the data \mathcal{D} arrive is what you knew before about λ and what the data \mathcal{D} told you.

$$\begin{array}{ccc} p(\lambda|\mathcal{D}) & = & \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})} \\ \text{Posterior} & = & \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}} \end{array}$$

"Bureaucratical" derivation

Formally we write

$$p(\lambda) = C(\lambda; [1/6 1/6 1/6 1/6 1/6 1/6 1/6])$$

$$p(y) = C(y; [1/6 1/6 1/6 1/6 1/6 1/6])$$

$$p(\mathcal{D}|\lambda, y) = \delta(\mathcal{D} - (\lambda + y))$$

$$p(\lambda, y | \mathcal{D}) = \frac{1}{p(\mathcal{D})} \times p(\mathcal{D} | \lambda, y) \times p(y) p(\lambda)$$

Posterior $= \frac{1}{\text{Evidence}} \times \text{Likelihood} \times \text{Prior}$

Kronecker delta function denoting a degenerate (deterministic) distribution $\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$

Prior

$$p(y)p(\lambda)$$

$p(y) \times p(\lambda)$	y=1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 2$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 3$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 4$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 5$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 6$	1/36	1/36	1/36	1/36	1/36	1/36

- ullet A table with indicies λ and y
- ullet Each cell denotes the probability $p(\lambda,y)$

Likelihood

$$p(\mathcal{D} = 9|\lambda, y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y=1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1
$\lambda = 4$	0	0	0	0	1	0
$\lambda = 5$	0	0	0	1	0	0
$\lambda = 6$	0	0	1	0	0	0

- $\bullet\,$ A table with indicies λ and y
- The likelihood is **not** a probability distribution, but a positive function.

Likelihood × **Prior**

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

$ p(\mathcal{D} = 9 \lambda, y) $	y = 1	y=2	y=3	y=4	y=5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Evidence (= Marginal Likelihood)

$$p(\mathcal{D} = 9) = \sum_{\lambda,y} p(\mathcal{D} = 9|\lambda,y)p(\lambda)p(y)$$

$$= 0 + 0 + \dots + 1/36 + 1/36 + 1/36 + 1/36 + 0 + \dots + 0$$

$$= 1/9$$

$p(\mathcal{D} = 9 \lambda, y)$	y = 1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Posterior

$$p(\lambda, y|\mathcal{D} = 9) = \frac{1}{p(\mathcal{D} = 9)} p(\mathcal{D} = 9|\lambda, y) p(\lambda) p(y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y = 1	y=2	y = 3	y=4	y=5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/4
$\lambda = 4$	0	0	0	0	$\boxed{1/4}$	0
$\lambda = 5$	0	0	0	1/4	0	0
$\lambda = 6$	0	0	1/4	0	0	0

$$1/4 = (1/36)/(1/9)$$

Marginal Posterior

$$p(\lambda|\mathcal{D}=9) = \sum_{y} \frac{1}{p(\mathcal{D}=9)} p(\mathcal{D}=9|\lambda, y) p(\lambda) p(y)$$

	$ p(\lambda \mathcal{D} = 9) $	y = 1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	$\boxed{ 1/4}$	0	0	0	0	0	1/4
$\lambda = 4$	1/4	0	0	0	0	1/4	0
$\lambda = 5$	$\boxed{ 1/4}$	0	0	0	1/4	0	0
$\lambda = 6$	1/4	0	0	1/4	0	0	0

The "proportional to" notation

$$p(\lambda|\mathcal{D}=9) \propto p(\lambda,\mathcal{D}=9) = \sum_{y} p(\mathcal{D}=9|\lambda,y)p(\lambda)p(y)$$

	$p(\lambda, \mathcal{D} = 9)$	y=1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/36	0	0	0	0	0	1/36
$\lambda = 4$	1/36	0	0	0	0	1/36	0
$\lambda = 5$	1/36	0	0	0	1/36	0	0
$\lambda = 6$	1/36	0	0	1/36	0	0	0

Another application of Bayes' Theorem: "Model Selection"

Given an unknown number of fair dice with outcomes $\lambda_1, \lambda_2, \dots, \lambda_n$,

$$\mathcal{D} = \sum_{i=1}^{n} \lambda_i$$

How many dice are there when $\mathcal{D}=9$?

Assume that any number n is equally likely a-priori

Another application of Bayes' Theorem: "Model Selection"

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

$$p(n|\mathcal{D}=9) = \frac{p(\mathcal{D}=9|n)p(n)}{p(\mathcal{D})} \propto p(\mathcal{D}=9|n)$$

$$p(\mathcal{D}|n=1) = \sum_{\lambda_1} p(\mathcal{D}|\lambda_1) p(\lambda_1)$$
$$p(\mathcal{D}|n=2) = \sum_{\lambda_1} \sum_{\lambda_2} p(\mathcal{D}|\lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2)$$

$$p(\mathcal{D}|n=n') = \sum_{\lambda_1,\dots,\lambda_{n'}} p(\mathcal{D}|\lambda_1,\dots,\lambda_{n'}) \prod_{i=1}^{n'} p(\lambda_i)$$

$$p(\mathcal{D}|n) = \sum_{\lambda} p(\mathcal{D}|\lambda, n) p(\lambda|n)$$

Another application of Bayes' Theorem: "Model Selection"

- Complex models are more flexible but they spread their probability mass
- Bayesian inference inherently prefers "simpler models" Occam's razor
- Computational burden: We need to sum over all parameters λ

Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

$$\langle f(x) \rangle = \int_{\mathcal{X}} dx p(x) f(x)$$
 $\langle f(x) \rangle = \sum_{x \in \mathcal{X}} p(x) f(x)$

• modes of functions under probability distributions: Optimization

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x) f(x)$$

any "mix" of the above: e.g.,

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x) = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{Z}} dz p(z) p(x|z)$$

Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

- What to solve : Model Construction
 - Both an Art and Science
 - Highly domain specific
- How to solve : Inference Algorithm
 - Mechanical (In theory! not in practice)
 - Generic

Probability Theory

- Axiomatic development by Kolmogorov during 30'.
- Modern rigorous treatment as a branch of measure theory.
- A huge spectrum of theoretical and practical applications.
- "Probabilist" versus "Statistician"

The meaning of probability

- Frequentist view: Frequencies of outcomes in random experiments,
 - restrict probabilities to refer only to frequencies of outcomes in repeatable random experiments
- Bayesian view: Describe degrees of belief
 - Use probabilities to describe inferences.
 - Tomorrow, it will rain with probability 0.95.
- The Frequentist versus Bayesian debate,
 - Similar questions but require different emphasis in their answer.
 - * Is this drug useful for that disease?
 - * Is this webpage relevant for that query?
 - * Is there a cow in this image?
 - * What is the tempo of this piece of music?

Bayesian interpretation: Degrees of Belief

- Subjective interpretation of probability
- Using Bayes rule does not make one a Bayesian, using it always does.
- Cox' axioms
 - Degrees of belief can be mapped onto probabilities if they satisfy simple consistency rules.
- The rules of probability ensure consistency. Same assumptions and same data will lead to identical conclusions.
- Objective (good) versus Subjective (bad) ?
 - It is not possible to do inference without making assumptions
 - Deductive versus Inductive Reasoning

Deductive versus Inductive Reasoning

• Prove that no three positive integers a, b, and c can satisfy the equation

$$a^n + b^n = c^n$$

for any integer n > 2.

• Infer missing samples given observed ones

Unappropriate Inductive Reasoning

Example from Borovik

$$\operatorname{snc}(x) \equiv \sin(x)/x$$

$$\int_0^\infty \operatorname{snc}(x) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) \operatorname{snc}(x/9) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) \operatorname{snc}(x/9) \operatorname{snc}(x/11) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) \operatorname{snc}(x/9) \operatorname{snc}(x/11) \operatorname{snc}(x/13) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) \operatorname{snc}(x/9) \operatorname{snc}(x/11) \operatorname{snc}(x/13) \operatorname{snc}(x/15) dx = \frac{467807924713440738696537864469}{935615849440640907310521750000} \cdot \pi$$

Discrete Probability Tables, Univariate

- X: The random variable
- $\mathcal{X} = \{\xi_1, \xi_2, \dots, \xi_N\}$: Sample space, Domain
- *N* : Cardinality
- $\pi_i = \Pr\{X = \xi_i\}$: Probabilities

$$\circ \sum_{i} \pi_{i} = \pi_{1} + \pi_{2} + \dots + \pi_{N} = 1$$

$$\circ \pi_i \geq 0$$

p(X)	
$X = \xi_1$	π_1
$X = \xi_2$	π_2
$X = \xi_3$	π_3
i	i
$X = \xi_N$	π_N

Discrete Probability Models, Examples

- $\mathcal{X} = \{\text{female}, \text{male}\}, \text{Gender}$
- $\mathcal{X} = \{A, B, \dots, Z\}$, First letter of the surname
- $\mathcal{X} = \{1, \dots, e, \dots, N\}$, Height category
- $\mathcal{X} = \{1, \dots, e, \dots, M\}$, Weight category
- Selecting these categories is known as 'feature engineering'

Discrete Probability Tables, Bivariate

• *X*, *Y* : The random variables

•
$$X \in \mathcal{X} = \{\xi_1, \xi_2, \dots, \xi_{N_x}\}, Y \in \mathcal{Y} = \{\eta_1, \eta_2, \dots, \eta_{N_y}\}$$

• N_x, N_y : Cardinalities

• $\pi_{i,j} = \Pr\{X = \xi_i, Y = \eta_j\}$: Probabilities

$$-\sum_{i,j} \pi_{i,j} = 1, \, \pi_{i,j} \geq 0$$

p(x,y)	$y = \eta_1$	$y = \eta_2$	• • •	$y = \eta_{N_y}$
$x = \xi_1$	$\pi_{1,1}$	$\pi_{1,2}$		π_{1,N_y}
$x = \xi_2$	$\pi_{2,1}$	$\pi_{2,2}$		π_{2,N_y}
$x = \xi_3$	$\pi_{3,1}$	$\pi_{3,2}$		π_{3,N_y}
:	;			
$\overline{x = \xi_{N_x}}$	$\pi_{N_x,1}$	$\pi_{N_x,2}$		π_{N_x,N_y}

Probability Tables

• Joint distribution: A N-dimensional array $p(x_1, x_2, \dots, x_N)$ where each cell is positive and $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$

Example: $p(x_1, x_2, x_3)$ with $N_i = 4$

Each cell is a positive number s.t. $\sum_{x_1,x_2,x_3} p(x_1,x_2,x_3) = 1$

Marginalization == Summing over subsets of variables

$$p(A) = \sum_{B} p(A, B)$$

Clamping

$$p(x_1, x_2, x_3)$$

$$p(x_1, x_2, x_3 = \hat{x}_3)$$

$$p(x_1 = \hat{x}_1, x_2, x_3)$$

$$p(x_1, x_2 = \hat{x}_2, x_3)$$

Conditional Probability

ullet A **collection** of probability distributions denoted as p(A|B). For each configuration of variables in B we have a probability distribution on variables in A

Conditional Probability (cont)

• We can represent a joint probability distribution as p(A,B) = p(A|B)p(B).

Properties of Conditional Probabilities

• p(A, B) = p(B|A)p(A) = p(A|B)p(B).

•
$$p(A) = \sum_{B} p(A|B)p(B)$$

Bayes Theorem Repeated

$$\begin{array}{ccc} p(B|A) & = & \frac{p(A|B) \times p(B)}{\sum_B p(A|B) p(B)} \\ \\ \text{Posterior} & = & \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}} \end{array}$$

- Think of A as an observation and B as its hidden cause.
- ullet Bayes theorem says how to update our prior belief p(B) given a new observation A. This gives a way of "reversing" the conditional probability p(A|B).

Bayes Theorem Repeated

- This rather simple looking formula has surprisingly many applications
 - Medical Diagnosis (Symptoms/Diseases)
 - Speech Recognition (Signal/Phoneme)
 - Music Transcription (Audio/Score)
 - Computer Vision (Image/Object)
 - Robotics (Sensor/Position)
 - Finance (Past Price/Future Price)
- A natural way of combining prior knowledge with data ⇒ Learning

Exercise

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

1. Find the following quantities

- Marginals: $p(x_1)$, $p(x_2)$
- Conditionals: $p(x_1|x_2)$, $p(x_2|x_1)$
- Posterior: $p(x_1, x_2 = 2)$, $p(x_1|x_2 = 2)$
- Evidence: $p(x_2 = 2)$
- $p(\{\})$
- Max: $p(x_1^*) = \max_{x_1} p(x_1|x_2 = 1)$
- Mode: $x_1^* = \arg \max_{x_1} p(x_1|x_2 = 1)$
- Max-marginal: $\max_{x_1} p(x_1, x_2)$
- 2. Are x_1 and x_2 independent ? (i.e., Is $p(x_1, x_2) = p(x_1)p(x_2)$?)

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Marginals:

$$\begin{array}{c|cc}
p(x_1) & & \\
x_1 = 1 & 0.6 \\
\hline
x_1 = 2 & 0.4
\end{array}$$

$p(x_2)$	$x_2 = 1$	$x_2 = 2$
	0.4	0.6

• Conditionals:

$p(x_1 x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.75	0.5
$x_1 = 2$	0.25	0.5

$p(x_2 x_1)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.5	0.5
$x_1 = 2$	0.25	0.75

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$\overline{x_1 = 2}$	0.1	0.3

Posterior:

$p(x_1, x_2 = 2)$	$x_2=2$
$x_1 = 1$	0.3
$x_1 = 2$	0.3

$p(x_1 x_2=2)$	$x_2=2$	
$x_1 = 1$	0.5	
$x_1 = 2$	0.5	

• Evidence:

$$p(x_2 = 2) = \sum_{x_1} p(x_1, x_2 = 2) = 0.6$$

• Normalisation constant:

$$p(\{\}) = \sum_{x_1} \sum_{x_2} p(x_1, x_2) = 1$$

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

Max: (get the value)

$$\max_{x_1} p(x_1|x_2=1) = 0.75$$

Mode: (get the index)

$$\operatorname*{argmax}_{x_1} p(x_1 | x_2 = 1) = 1$$

• Max-marginal: (get the "skyline") $\max_{x_1} p(x_1, x_2)$

$\max_{x_1} p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
	0.3	0.3

Inference and Learning

- Maximum Likelihood,
- Penalised Likelihood,
- Bayesian Learning

Maximum Likelihood

Data set

$$\mathcal{D} = \{x_1, \dots x_N\}$$

• Model with parameter λ

$$p(\mathcal{D}|\lambda)$$

Maximum Likelihood (ML)

$$\lambda^{\mathsf{ML}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda)$$

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{ML}})$$

Regularisation

Prior

$$p(\lambda)$$

• Maximum a-posteriori (MAP): Regularised Maximum Likelihood

$$\lambda^{\mathsf{MAP}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda) p(\lambda)$$

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{MAP}})$$

- Treats parameters on the same footing as all other variables
- Integrate over unknown parameters rather than using point estimates
 - 'Self-regularisation', avoids overfitting
 - Natural setup for online adaptation
 - Model selection

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) = \int d\lambda \ p(x_{N+1}|\lambda)p(\lambda|\mathcal{D})$$

• Bayesian learning is just inference ...

Bayesian Learning,
$$\lambda = p(x = \text{Tail})$$

?

T, ?

T, T, ?

T, T, T, ?

?

$$p(\lambda|x_1)$$

T, ?

$$p(\lambda|x_1,x_2)$$

T, T, ?

$$p(\lambda|x_{1:3})$$

T, T, T, ?

$$p(\lambda|x_{1:4})$$

T, T, T, T, ?

$$p(\lambda|x_{1:5})$$

T, T, T, T, T, ?

$$p(\lambda|x_{1:6})$$

T, T, T, T, T, Y, ?

$$p(\lambda|x_{1:7})$$

T, T, T, T, T, Y, T, ?

$$p(\lambda|x_{1:8})$$

T, T, T, T, T, Y, T, T, ?

Probabilistic Modelling

Probability Distributions

- Following distributions are used often as elementary building blocks:
 - Discrete
 - * Categorical, Bernoulli, Binomial, Multinomial, Poisson
 - Continuous
 - * Gaussian,
 - * Beta, Dirichlet
 - * Gamma, Inverse Gamma, Exponential, Chi-square, Wishart
 - * Student-t, von-Mises

Exponential Family

Many of those distributions can be written as

$$p(x|\theta) = h(x) \exp\{\theta^{\top} \psi(x) - A(\theta)\}$$

$$A(\theta) = \log \int_{\mathcal{X}^n} dx \ h(x) \exp(\theta^{\top} \psi(x))$$

- $A(\theta)$ log-partition function
 - canonical parameters
- $\psi(x)$ sufficient statistics
- h(x) weighting function

Maximum Entropy Principle

What is the least informative distribution that has the given expectations?

$$H[p] = -\int_{\mathcal{X}} p(x) \log(p(x)) dx$$

maximize H[p]

subject to

$$\int_{\mathcal{X}} p(x)dx = 1$$
 Normally $\int_{\mathcal{X}} \psi(x)p(x)dx = s$ Mome

Normalizasyon

Moment Eşleme

Lagrange Functional

$$\Lambda(p; \lambda, \boldsymbol{\theta}) = -\int_{\mathcal{X}} p(x) \log(p(x)) dx + \lambda (1 - \int_{\mathcal{X}} p(x) dx) + \boldsymbol{\theta}(s - \int_{\mathcal{X}} \boldsymbol{\psi}(\boldsymbol{x}) p(x) dx)$$

$$\frac{\delta}{\delta p} \Lambda[p, \lambda, \theta] = -\log(p(x)) - 1 + \lambda + \theta \phi(x) = 0$$
$$p(x) = \exp(\theta \psi(x)) \exp(\lambda - 1)$$

Normalization constraint

$$\int_{\mathcal{X}} p(x)dx = 1 = \exp(\lambda - 1) \int_{\mathcal{X}} \exp(\theta \psi(x)) dx$$
$$\exp(\lambda - 1) = \frac{1}{\int \exp(\theta \psi(x)) dx}$$

get rid of λ

$$A(\theta) \equiv \log \int_{\mathcal{X}} \exp(\theta \psi(x)) dx$$

Solution: The exponential family (Gibbs distribution)

$$p(x) = \exp(\theta \psi(x) - A(\theta)) \tag{1}$$

Bernoulli. $\mathcal{BE}(c; w)$

Bernoulli $c = \{0, 1\}$ with success probability w

$$p(c = 1|w) = w$$
 $p(c = 0|w) = 1 - w$

$$p(c|w) = w^{c}(1-w)^{1-c}$$

$$= \exp(c\log w + (1-c)\log(1-w))$$

$$= \exp\left(\log(\frac{w}{1-w})c + \log(1-w)\right)$$

$$\equiv \mathcal{B}\mathcal{E}(c;w)$$

Is Bernoulli a exponential family?

$$\mathcal{BE}(c; w) = \exp\left(\log(\frac{w}{1-w})c + \log(1-w)\right)$$

$$p(c|\theta) = h(c) \exp\{\theta^{\top} \psi(c) - A(\theta)\}$$

$$heta = \log(rac{w}{1-w})$$
 canonical parameters $A(heta) = -\log(1+e^{ heta})$ log-partition function $\psi(c) = c$ sufficient statistics $h(c) = 1$ weighting function

Binomial Distribution. $\mathcal{BI}(s; N, w)$

s is the number of successful outcomes in N independent Bernoulli trials with success probability w

$$\mathcal{BI}(s; N, w) = \binom{N}{s} w^s (1 - w)^{N-s}$$
$$= \frac{N!}{s!(N-s)!} \exp(s \log w + (N-s) \log(1-w))$$

Poisson Distribution. $\mathcal{PO}(s; \lambda)$

$$\mathcal{PO}(s;\lambda) = \frac{e^{-\lambda}}{s!}\lambda^s = \exp(s\log\lambda - \lambda - \log(s!))$$

Beta. $\mathcal{B}(w; a, b)$

$$\mathcal{B}(w; a, b) \equiv \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} w^{a-1} (1-w)^{b-1}$$

$$= \exp\left((a-1)\log w + (b-1)\log(1-w) - A(a,b)\right)$$

$$= \exp\left(\left(a-1 \ b-1\right) \left(\frac{\log w}{\log(1-w)}\right) - A(a,b)\right)$$

$$A(a,b) = \log\Gamma(a) + \log\Gamma(b) - \log\Gamma(a+b)$$

Mean:

$$\langle w \rangle_{\mathcal{B}} = a/(a+b)$$

Beta. $\mathcal{B}(w; a, b)$

Gauss. $\mathcal{N}(x; m, S)$

Gauss mean m and variance S

$$\mathcal{N}(x; m, S) = (2\pi S)^{-1/2} \exp\{-\frac{1}{2}(x - m)^2/S\}$$

$$= \exp\{-\frac{1}{2}(x^2 + m^2 - 2xm)/S - \frac{1}{2}\log(2\pi S)\}$$

$$= \exp\{\frac{m}{S}x - \frac{1}{2S}x^2 - \left(\frac{1}{2}\log(2\pi S) + \frac{1}{2S}m^2\right)\}$$

$$= \exp\{\underbrace{\left(\frac{m/S}{-\frac{1}{2}/S}\right)^{\top}}_{\theta}\underbrace{\left(\frac{x}{x^2}\right)}_{\psi(x)} - A(\theta)\}$$

Coefficient matching

$$\exp\left\{-\frac{1}{2}Kx^2 + hx + g\right\} \Leftrightarrow S = K^{-1} \quad m = K^{-1}h$$

Gaussian.

Inverse Gamma. $\mathcal{IG}(r; a, b)$

The inverse Gamma distribution with shape a and scale b

$$\mathcal{IG}(r; a, b) = \frac{1}{\Gamma(a)} \frac{r^{-(a+1)}}{b^{-a}} \exp(-\frac{b}{r})$$

$$= \exp\left(-(a+1)\log r - \frac{b}{r} - \log\Gamma(a) + a\log b\right)$$

$$= \exp\left(\begin{pmatrix} -(a+1) \\ -b \end{pmatrix}^{\top} \begin{pmatrix} \log r \\ 1/r \end{pmatrix} - \log\Gamma(a) + a\log b\right)$$

Match coefficients

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = -\alpha - 1 \qquad b = -\beta$$

Inverse Gamma

Gamma Distribution. $G(\lambda; a, b)$

The Gamma distribution with shape a and **inverse scale** b

$$\mathcal{G}(\lambda; a, b) = \frac{1}{\Gamma(a)} b^a \lambda^{(a-1)} \exp(-b\lambda)$$

$$= \exp((a-1)\log \lambda - b\lambda - \log \Gamma(a) + a\log b)$$

$$= \exp\left(\left(\frac{(a-1)}{-b}\right)^{\top} \left(\frac{\log \lambda}{\lambda}\right) - \log \Gamma(a) + a\log b\right)$$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = \alpha + 1 \quad b = -\beta$$

Random number generation

```
• Bernoulli: \mathcal{BE}(x;p)
  x = double(rand < p);
• Binomial: \mathcal{BI}(x; p, N)
  x = sum(double(rand(N, 1) < p));
  Not efficient for large N
• Poisson: \mathcal{PO}(x;\lambda)
  x = poissrnd(lambda);
• Beta: \mathcal{B}(x;a,b)
  x = betarnd(a, b);
```

• Gaussian: $\mathcal{N}(x; \mu, S)$

```
x = sqrt(S) . *randn(size(S)) + mu;
```

• Gamma: $x \sim \mathcal{G}(x; a, b)$

```
x = gamrnd(a, 1./b);
```

or more securely

$$x = gamrnd(a, 1)./b;$$

which is also

$$x = gamrnd(a)./b;$$

• Inverse Gamma $x \sim \mathcal{IG}(x; a, b)$

$$x = b./gamrnd(a);$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the probability of success w of a binary (Bernoulli) random variable c

$$p(c|w) = \mathcal{B}\mathcal{E}(c;w) = \exp(c\log w + (1-c)\log(1-w))$$
$$p(w) = \mathcal{B}(w;a,b)$$

$$p(w|c) \propto p(c|w)p(w)$$

$$\propto \exp(c\log w + (1-c)\log(1-w))$$

$$\times \exp((a-1)\log w + (b-1)\log(1-w))$$

$$\propto \mathcal{B}(w; a+c, b+(1-c))$$

$$p(w|c) = \begin{cases} \mathcal{B}(w; a+1, b) & c=1\\ \mathcal{B}(w; a, b+1) & c=0 \end{cases}$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance R of a zero mean Gaussian.

$$p(x|R) = \mathcal{N}(x;0,R)$$

 $p(R) = \mathcal{IG}(R;a,b)$

$$p(R|x) \propto p(R)p(x|R)$$

$$\propto \exp\left(-(a+1)\log R - b\frac{1}{R}\right) \exp\left(-(x^2/2)\frac{1}{R} - \frac{1}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c} -(a+1+\frac{1}{2})\\ -(b+x^2/2) \end{array}\right)^{\top} \left(\begin{array}{c} \log R\\ 1/R \end{array}\right)\right)$$

$$\propto \mathcal{IG}(R; a+\frac{1}{2}, b+x^2/2)$$

Like the prior, this is an inverse-Gamma distribution.

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x_1, \ldots, x_N .

$$p(R|x) \propto p(R) \prod_{i=1}^{N} p(x_i|R)$$

$$\propto \exp\left(-(a+1)\log R - b\frac{1}{R}\right) \exp\left(-\left(\frac{1}{2}\sum_{i}x_i^2\right)\frac{1}{R} - \frac{N}{2}\log R\right)$$

$$= \exp\left(\left(\frac{-(a+1+\frac{N}{2})}{-(b+\frac{1}{2}\sum_{i}x_i^2)}\right)^{\top} {\log R \choose 1/R}\right) \propto \mathcal{IG}(R; a+\frac{N}{2}, b+\frac{1}{2}\sum_{i}x_i^2)$$

Sufficient statistics are additive

Inverse Gamma, $\sum_i x_i^2 = 10$ N = 10

Inverse Gamma, $\sum_i x_i^2 = 100$ N = 100

Inverse Gamma, $\sum_i x_i^2 = 1000$ N = 1000

Example: AR(1) model

$$x_k = Ax_{k-1} + \epsilon_k$$

$$k = 1 \dots K$$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$
 $R \sim \mathcal{IG}(R; \nu, \beta/\nu)$
 $x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; Ax_{k-1}, R)$ $x_0 = \hat{x}_0$

Observed variables are shown with double circles

AR(1) Model. Bayesian Posterior Inference

$$p(A, R|x_0, x_1, \dots, x_K) \propto p(x_1, \dots, x_K|x_0, A, R)p(A, R)$$

Posterior \propto Likelihood \times Prior

Using the Markovian (conditional independence) structure we have

$$p(A, R|x_0, x_1, \dots, x_K) \propto \left(\prod_{k=1}^K p(x_k|x_{k-1}, A, R)\right) p(A)p(R)$$

Numerical Example

Suppose K = 1,

By Bayes' Theorem and the structure of AR(1) model

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$$

Numerical Example

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{I}\mathcal{G}(R; \nu, \beta/\nu)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0x_1\frac{A}{R} - \frac{1}{2}\frac{x_0^2A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

$$\exp\left(-\frac{1}{2}\frac{A^2}{P}\right)\exp\left(-(\nu+1)\log R - \frac{\nu}{\beta}\frac{1}{R}\right)$$

This posterior has a nonstandard form

$$\exp\left(\alpha_1 \frac{1}{R} + \alpha_2 \frac{A}{R} + \alpha_3 \frac{A^2}{R} + \alpha_4 \log R + \alpha_5 A^2\right)$$

Numerical Example, the prior p(A, R)

Equiprobability contour of p(A)p(R)

$$A \sim \mathcal{N}(A; 0, 1.2)$$

$$A \sim \mathcal{N}(A; 0, 1.2)$$
 $R \sim \mathcal{IG}(R; 0.4, 250)$

$$x_1 = -6$$

Suppose:
$$x_0 = 1$$
 $x_1 = -6$ $x_1 \sim \mathcal{N}(x_1; Ax_0, R)$

Numerical Example, the posterior p(A, R|x)

Note the bimodal posterior with $x_0 = 1, x_1 = -6$

- $A \approx -6 \Leftrightarrow$ low noise variance R.
- $A \approx 0 \Leftrightarrow$ high noise variance R.

Remarks

- The point estimates such as ML or MAP are not always representative about the solution
- (Unfortunately), exact posterior inference is only possible for few special cases
- Even very simple models can lead easily to complicated posterior distributions
- Ambiguous data usually leads to a multimodal posterior, each mode corresponding to one possible explanation

Remarks

- A-priori independent variables often become dependent aposteriori ("Explaining away")
- The difficulty of an inference problem depends, among others, upon the particular "parameter regime" and observed data sequence

Graphical Models

- formal languages for specification of probability models and associated inference algorithms
- historically, introduced in probabilistic expert systems (Pearl 1988)
 as a visual guide for representing expert knowledge
- today, a standard tool in machine learning, statistics and signal processing

Graphical Models

- provide graph based algorithms for derivations and computation
- pedagogical insight/motivation for model/algorithm construction
 - Statistics:
 - "Kalman filter models and hidden Markov models (HMM) are equivalent upto parametrisation"
 - Signal processing:
 - "Fast Fourier transform is an instance of sum-product algorithm on a factor graph"
 - Computer Science:
 - "Backtracking in Prolog is equivalent to inference in Bayesian networks with deterministic tables"
- Automated tools for code generation start to emerge, making the design/implement/test cycle shorter

Important types of Graphical Models

- Useful for Model Construction
 - Directed Acyclic Graphs (DAG), Bayesian Networks
 - Undirected Graphs, Markov Networks, Random Fields
 - Influence diagrams
 - **—** ...
- Useful for Inference
 - Factor Graphs
 - Junction/Clique graphs
 - Region graphs
 - - ...

Directed Graphical models (DAG)

Directed Graphical models

- Each random variable is associated with a node in the graph,
- We draw an arrow from $A \to B$ if $p(B|\ldots,A,\ldots)$ ($A \in \mathsf{parent}(B)$),
- The edges tell us qualitatively about the factorization of the joint probability
- For N random variables x_1, \ldots, x_N , the distribution admits

$$p(x_1, \dots, x_N) = \prod_{i=1}^N p(x_i|\mathsf{parent}(x_i))$$

Describes in a compact way an algorithm to "generate" the data –
 "Generative models"

DAG Example: Two dice

$$p(\mathcal{D}, \lambda, y) = p(\mathcal{D}|\lambda, y)p(\lambda)p(y)$$

DAG with observations

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

Examples

Removing edges eliminates a term from the conditional probability factors.

Undirected Graphical Models

Undirected Graphical Models

Define a distribution by non-negative *local compatibility functions* $\phi(x_{\alpha})$

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{\alpha} \phi(x_{\alpha})$$

where α runs over **cliques** : fully connected subsets

Examples

$$p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2)\phi(x_1, x_3)\phi(x_2, x_4)\phi(x_3, x_4) \qquad p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2, x_3)\phi(x_2, x_3, x_4)$$

$$p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2, x_3)\phi(x_2, x_3, x_4)$$

Factor graphs

Factor graphs [?]

- A bipartite graph. A powerful graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior.
 - Variable nodes: White Nodes. Define collections of random variables
 - Edges: denote membership. A variable node is connected to a factor node
 if a member variable is an argument of the local function.

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y) = \phi_1(\lambda, y)\phi_2(\lambda)\phi_3(y)$$

Exercise

• For the following Graphical models, write down the factors of the joint distribution and plot an equivalent factor graph and an undirected graph.

Answer (Markov(1))

$$\underbrace{p(x_1)p(x_2|x_1)}_{\phi(x_1,x_2)}\underbrace{p(x_3|x_2)}_{\phi(x_2,x_3)}\underbrace{p(x_4|x_3)}_{\phi(x_3,x_4)}$$

Answer (IFA – Factorial)

$$p(h_1)p(h_2)\prod_{i=1}^4 p(x_i|h_1,h_2)$$

Answer (IFA – Factorial)

• We can also cluster nodes together

Probability Tables

• Assume all x_i are discrete with $|x_i|=k$. If N is large, a naive table representation is HUGE: k^N entries

Example: $p(x_1, x_2, x_3)$ with $|x_i| = 4$

Each cell is a positive number s.t. $\sum_{x_1,x_2,x_3} p(x_1,x_2,x_3) = 1$

• We need efficient data structures to represent joint distributions $p(x_1, x_2, \dots, x_N)$

Independence Assumption == Complete Factorization

• Assume $p(x_1, x_2, \dots, x_N) = \prod_k p(x_k)$.

We need to store 4×3 numbers instead of 4^3 !

However, complete independence is too restrictive and not very useful.

An alternative Factorization

We need to store $4^2 + 4$ numbers instead of 4^3 .

 Still some variables are independent from rest. We will make conditional independence assumptions instead.

Conditional Independence

ullet Two disjoint sets of variables A and B are conditionally independent given a third disjoint set C if

$$p(A, B|C) = p(A|C)p(B|C)$$

This is equivalent to

$$p(A|BC) = p(A|C)$$

We denote this relationship with (⊥)

$$A \perp \!\!\! \perp B|C$$

Conditional Independence

- Conditional Independence is a key concept in probabilistic models
- Conceptual and Computational simplifications
 - Understanding key factors in a domain
 - Reducing computational burden for inference

Conditional Independence Properties

- Directed Graphical Models
 - d-separation
- Markov Random Fields (MRF's: Undirected Graphical Models)
 - Path Blocking
- Testing for conditional independence in MRF is simpler

d-Separation

• Three disjoint sets of variables A, B and C

$$A \perp \!\!\! \perp B|C$$

- A path from A to B is blocked by C if
 - a the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - b the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C.

Sequential Data: Models, Inference, Terminology

In signal processing, machine learning, robotics, statistics many phenomena are modelled by dynamical models

- x is the latent state (tempo, pitch, velocity, attitude, class label, ...)
- y are observations (samples, onsets, sensor reading, pixels, features, ...)
- In a full Bayesian setting, x includes unknown model parameters

Online Inference, Terminology

- Filtering: $p(x_k|y_{1:k})$
 - Distribution of current state given all past information
 - Realtime/Online/Sequential Processing

- Potentially confusing misnomer:
 - More general than "digital filtering" (convolution) in DSP but algoritmically related for some models (KFM)

Online Inference, Terminology

- Prediction $p(y_{k:K}, x_{k:K}|y_{1:k-1})$
 - evaluation of possible future outcomes; like filtering without observations

Accompaniment, Tracking, Restoration

Offline Inference, Terminology

• Smoothing $p(x_{0:K}|y_{1:K})$, Most likely trajectory – Viterbi path $\arg\max_{x_{0:K}} p(x_{0:K}|y_{1:K})$ better estimate of past states, essential for learning

• Interpolation $p(y_k, x_k | y_{1:k-1}, y_{k+1:K})$ fill in lost observations given past and future

Hidden Markov Model [?]

Mixture model evolving in time

- Observations y_k are continuous or discrete
- Latent variables x_k are discrete
 - Represents the fading memory of the process
- ullet Exact inference possible if x_k has a "small" number of states

State transition model (a N by N matrix)

• Observation model $p(y_k|x_k)$

$$y_k \sim w\delta(y_k - x_k) + (1 - w)u(1, N)$$

Exact Inference in HMM, Forward/Backward Algorithm

Forward Pass

$$p(y_{1:K}) = \sum_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K})$$

$$= \underbrace{\sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2}) p(y_{2}|x_{2}) \sum_{x_{1}} \underbrace{\sum_{x_{1}} p(x_{2}|x_{1})}_{\alpha_{2}} \underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}$$

Backward Pass

$$p(y_{1:K}) = \sum_{x_1} p(x_1)p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1}) \underbrace{\sum_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\sum_{x_K} p(x_K|x_{K-1})p(x_K|x_K)}_{\beta_{K-1}} \underbrace{\sum_{x_K} p(x_K|x_{K-1})p(x_K|x_K)}_{\beta_{K-1}} \underbrace{\sum_{x_K} p(x_K|x_K)}_{\beta_{K-1}} \underbrace{\sum_{x_K} p(x$$

Exact Inference in HMM, Viterbi Algorithm

- Merely replace sum by max, equivalent to dynamic programming
- Forward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_{1:K}} p(y_{1:K}|x_{1:K}) p(x_{1:K})$$

$$= \max_{x_K} p(y_T|x_K) \max_{x_{K-1}} p(x_K|x_{K-1}) \dots \max_{x_2} p(x_3|x_2) \underbrace{p(y_2|x_2) \underbrace{\max_{x_1} p(x_2|x_1)}_{\alpha_1} \underbrace{p(y_1|x_1) p(x_1)}_{\alpha_1}}_{\alpha_1} \underbrace{p(y_1|x_1) \underbrace{p(y_1|x_1) p(x_1)}_{\alpha_1}}_{\alpha_1}$$

Backward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\max_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\max_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\underbrace{\prod_{x_{K-1}} p(x_K|x_K)}_{\beta_{K-1}} \underbrace{\underbrace{\prod_{x_{K-1}} p(x_K|x_K)}_{\beta_{K-1}$$

Implementation of Forward-Backward

- 1. Setup a parameter structure
- 2. Generate data from the true model
- 3. Inference given true model parameters
- 4. Test and Visualisation

State transition model (a N by N matrix)

• Observation model $p(y_k|x_k)$

$$y_k \sim w\delta(y_k - x_k) + (1 - w)u(1, N)$$

1. Setup a parameter structure

```
N = 50; % Number of states
% Transition model;
ep = 0.5; % Probability of not-moving
E = eve(N);
A = ep*E + (1-ep)*E(:, [2:N 1]); % Transition Matrix
% Observation model
w = 0.3; % Probability of observing true state
C = w*E + (1-w)*ones(N)/N; % Observation matrix
% Prior p(x_1)
pri = ones(N, 1)/N;
% Create a parameter structure
hm = struct('A', A, 'C', C, 'p_x1', pri);
```

2. Generate data from the true model

$$x_k | x_{k-1} \sim p(x_k | x_{k-1})$$
 $y_k | x_k \sim p(y_k | x_k)$

2. Generate data from the true model

```
function [obs, state] = hmm_generate_data(hm, K)
 Inputs:
          hm: A HMM parameter structure
응
           K: Number of time slices to simulate
% Outputs:
%
           obs, state: Observations and the state trajectory
state = zeros(1, K);
obs = zeros(1, K);
for k=1:K,
    if k==1.
        state(k) = randgen(hm.p_x1);
   else
        state(k) = randgen(hm.A(:, state(k-1)));
    end;
    obs(k) = randgen(hm.C(:, state(k)));
end;
```

2. Generate data from the true model

3. Inference. Forward pass

Predict

$$\alpha_{k|k-1}(x_k) = p(y_{1:k-1}, x_k) = \sum_{x_{k-1}} p(x_k|x_{k-1})p(y_{1:k-1}, x_{k-1})$$

$$= \sum_{x_{k-1}} p(x_k|x_{k-1})\alpha_{k-1|k-1}(x_{k-1})$$

Update

$$\alpha_{k|k}(x_k) = p(y_{1:k}, x_k) = p(y_k|x_k)p(y_{1:k-1}, x_k)
= p(y_k|x_k)\alpha_{k|k-1}(x_k)$$

$$\begin{array}{lll} p(y_{1:K}) & = & \displaystyle \sum_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K}) \\ \\ & = & \displaystyle \sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2})p(y_{2}|x_{2}) \sum_{x_{1}} p(x_{2}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}|1} \underbrace{p(x_{1})}_{\alpha_{1}|1} \\ \\ & = & \displaystyle \sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2})p(y_{2}|x_{2}) \sum_{x_{1}} p(x_{2}|x_{1}) \underbrace{\alpha_{1}|1}_{\alpha_{1}|1} (x_{1}) \\ \\ & = & \displaystyle \sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2})p(y_{2}|x_{2}) \underbrace{\alpha_{2}|1}_{\alpha_{2}|1} (x_{2}) \\ \\ & = & \displaystyle \sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2}) \underbrace{\alpha_{2}|2}_{\alpha_{2}|2} (x_{2}) \\ \\ & = & \displaystyle \sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \underbrace{\alpha_{3}|2}_{\alpha_{3}|2} (x_{3}) \end{array}$$

3. Inference: Forward pass

3. Inference. Predict

```
function [lpp] = state\_predict(A, log\_p)
% STATE PREDICT Computes A*p in log domain
양
응
   [lpp] = state\_predict(A, log\_p)
응
  Inputs:
 A : State transition matrix
응
   log_p : log p(x_{k-1}, y_{1:k-1}) Filtered potential
%
% Outputs:
    lpp: log p(x_{k}, y_{1:k-1}); Predicted potential
mx = max(log_p(:)); % Stable computation
p = \exp(\log_p - mx);
lpp = loq(A*p) + mx;
```

Numerically Stable computation of $\log(\sum_i \exp(l_i))$

Derivation

$$L = \log(\sum_{i} \exp(l_{i}))$$

$$= \log(\sum_{i} \exp(l_{i}) \frac{\exp(l^{*})}{\exp(l^{*})})$$

$$= \log(\exp(l^{*}) \sum_{i} \exp(l_{i} - l^{*}))$$

$$= l^{*} + \log(\sum_{i} \exp(l_{i} - l^{*}))$$

- We take l^* as the maximum $l^* = \max_i l_i$
- Assignment: Implement above as a function logsumexp(1)

3. Inference. Update

```
function [lup] = state_update(obs, log_p)
 STATE_UPDATE State update in log domain
응
응
   [lup] = state_update(obs, log_p)
응
 Inputs:
응
           obs : p(y_k \mid x_k)
응
           log_p : log p(x_k, y_{1, k-1})
응
% Outputs:
 lup: log p(x_k, y_{1, k-1}) p(y_k | x_k)
lup = log(obs(:)) + log_p;
```

3. Inference. Forward pass.

$$\alpha_{k|k} \equiv p(y_{1:k}, x_k)$$

3. Inference. Forward pass

$$\alpha_{k|k-1} \equiv p(y_{1:k-1}, x_k)$$

3. Inference. Backward pass

"Postdict"

$$\beta_{k|k+1}(x_k) = p(y_{k+1:K}|x_k) = \sum_{x_{k+1}} p(x_{k+1}|x_k) p(y_{k+1:K}|x_{k+1})$$

$$= \sum_{x_{k+1}} p(x_{k+1}|x_k) \beta_{k+1|k+1}(x_{k+1})$$

Update

$$\beta_{k|k}(x_k) = p(y_{k:K}|x_k) = p(y_k|x_k)p(y_{k+1:K}|x_k)
= p(y_k|x_k)\beta_{k|k+1}(x_k)$$

$$\begin{array}{lll} p(y_{1:K}) & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) p(y_K|x_K) \underbrace{1}_{\beta_K|K+1} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) \beta_{K|K} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \beta_{K-1|K} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) \beta_{K-1|K-1} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \beta_{K-2|K-1} \end{array}$$

3. Inference. Backward pass

3. Inference. Postdict.

```
function [lpp] = state_postdict(A, log_p)
 STATE_POSTDICT Computes A'*p in log domain
응
응
   [lpp] = state_postdict(A, log_p)
응
  Inputs:
 A: State transition matrix
응
           log_p : log p(y_{k+1:K}|x_{k+1}) Updated potential
응
% Outputs:
% lpp : log p(y_{k+1:K} | x_k) Postdicted potential
mx = max(log_p(:)); % Stable computation
p = \exp(\log_p - mx);
lpp = loq(A'*p) + mx;
```

3. Inference. Backward pass

$$\beta_{k|k+1}(x_k) = p(y_{k+1:K}|x_k)$$

We visualise $\hat{\beta} \propto \beta_{k|k+1}(x_k) u(x_k)$

3. Inference. Backward pass

$$\beta_{k|k}(x_k) = p(y_{k:K}|x_k)$$

3. Inference. Smoothing.

$$p(y_{1:K}, x_k) = p(y_{1:k}, x_k) p(y_{k+1:K} | x_k)$$

$$= \alpha_{k|k}(x_k) \beta_{k|k+1}(x_k)$$

$$\equiv \gamma_k(x_k)$$

Alternatives

$$\gamma_k(x_k) = \alpha_{k|k-1}(x_k)\beta_{k|k}(x_k)$$
$$= \alpha_{k|k-1}(x_k)p(y_k|x_k)\beta_{k|k+1}(x_k)$$

3. Inference. Smoothing.

$$p(x_k|y_{1:K}) \propto p(y_{1:K}, x_k) = \alpha_{k|k}(x_k)\beta_{k|k+1}(x_k) \equiv \gamma_k(x_k)$$

3. Inference. Smoothing.

log_gamma = log_alpha + log_beta_postdict

4. Test and Visualisation

```
imagesc(normalize_exp(log_gamma, 1));
set(gca, 'ydir', 'n');
colormap(flipud(gray));
xlabel('k (time)'); ylabel('x_k (state)');
caxis([0 1]);
colorbar

% This has to be constant !! (why)
plot(log_sum_exp(log_gamma, 1));
```

4. Test and Visualise. Filter.

4. Test and Visualise. Smoother.

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution. $\mathcal{N}(s; \mu, P)$

 μ is the mean and P is the covariance:

$$\mathcal{N}(s;\mu,P) = |2\pi P|^{-1/2} \exp\left(-\frac{1}{2}(s-\mu)^{\top} P^{-1}(s-\mu)\right)$$

$$= \exp\left(-\frac{1}{2}s^{\top} P^{-1} s + \mu^{\top} P^{-1} s - \frac{1}{2}\mu^{\top} P^{-1} \mu - \frac{1}{2}|2\pi P|\right)$$

$$\log \mathcal{N}(s;\mu,P) = -\frac{1}{2}s^{\top} P^{-1} s + \mu^{\top} P^{-1} s + \text{const}$$

$$= -\frac{1}{2} \operatorname{Tr} P^{-1} s s^{\top} + \mu^{\top} P^{-1} s + \text{const}$$

$$=^{+} -\frac{1}{2} \operatorname{Tr} P^{-1} s s^{\top} + \mu^{\top} P^{-1} s$$

Notation: $\log f(x) = g(x) \iff f(x) \propto \exp(g(x)) \iff \exists c \in \mathbb{R} : f(x) = c \exp(g(x))$

Gaussian potentials

Consider a Gaussian potential with mean μ and covariance Σ on x.

$$\phi(x) = \alpha \mathcal{N}(\mu, \Sigma) \tag{2}$$

$$= \alpha |2\pi\Sigma|^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$
 (3)

where $\int dx \phi(x) = \alpha$ and $|2\pi\Sigma|$ is a short notation for $(2\pi)^d \det \Sigma$, where Σ is $d \times d$..

- If $\alpha = 1$ the potential is normalized.
- A general Gaussian potential ϕ need not to be normalized so α is in fact an arbitrary positive constant.
- The exponent is just a quadratic form.

Canonical Form

$$\phi(x) = \exp(\{\log \alpha - \frac{1}{2}\log|2\pi\Sigma| - \frac{1}{2}\mu^T\Sigma^{-1}\mu\} + \mu^T\Sigma^{-1}x - \frac{1}{2}x^T\Sigma^{-1}x)$$
$$= \exp(g + h^Tx - \frac{1}{2}x^TKx)$$

- Alternative to the conventional and intuitive moment form.
- Here we represent the potential by the polynomial coefficients h and K.
- Coefficients h and K as natural parameters.

Canonical and Moment parametrisations

The moment parameters and canonical parameters are related by

$$K = \Sigma^{-1}$$

$$h = \Sigma^{-1}\mu$$

$$g = \log \alpha - \frac{1}{2}\log|2\pi\Sigma| - \frac{1}{2}\mu^{T}\Sigma^{-1}\Sigma\Sigma^{-1}\mu$$

$$= \log \alpha + \frac{1}{2}\log|\frac{K}{2\pi}| - \frac{1}{2}h^{T}K^{-1}h$$

Jointly Gaussian Vectors

Moment form

$$\phi(x_1, x_2) = \alpha \mathcal{N}\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right)$$

$$\phi = \alpha |2\pi\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \begin{pmatrix} x_1 - \mu_1 & x_2 - \mu_2 \end{pmatrix} \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}\right)$$

Canonical form

$$\phi(x_1, x_2) = \exp(g + (h_1 \ h_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \frac{1}{2} (x_1 \ x_2) \begin{pmatrix} K_{11} \ K_{21} \ K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix})$$

• need to find a parametric representation of $K = \Sigma^{-1}$ in terms of the partitions $\Sigma_{11}, \Sigma_{12}, \Sigma_{21}, \Sigma_{22}$.

Partitioned Matrix Inverse

ullet Strategy: We will find two matrices X and Z such that W becomes block diagonal.

$$L\Sigma R = W$$

$$\Sigma = L^{-1}WR^{-1}$$

$$\Sigma^{-1} = RW^{-1}L = K$$

Gauss Transformations

- Add a multiple of row s to row t
- Premultiply Σ with L(s,t) where

$$L_{i,j}(s,t) = \left\{ egin{array}{ll} 1, & i=j \ \gamma, & i=s ext{ and } j=t \ 0, & ext{o/w} \end{array}
ight.$$

• Example: s = 2, t = 1

$$\begin{pmatrix} 1 & \gamma \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + \gamma c & b + \gamma d \\ c & d \end{pmatrix}$$

The inverse just subtracts what is added

$$\left(\begin{array}{cc} 1 & \gamma \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & -\gamma \\ 0 & 1 \end{array}\right)$$

Gauss Transformations

- Given Σ , add a multiple of column s to column t
- Postmultiply Σ with R(s,t) where

$$R_{i,j}(s,t) = \left\{ egin{array}{ll} 1, & i=j \ \gamma, & j=s \ ext{and} \ i=t \ 0, & ext{o/w} \end{array}
ight.$$

• Example: s = 2, t = 1

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix} = \begin{pmatrix} a + \gamma b & b \\ c + \gamma d & d \end{pmatrix}$$

Scalar example

$$\Sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$L\Sigma = \begin{pmatrix} 1 & -bd^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a - bd^{-1}c & b - bd^{-1}d \\ c & d \end{pmatrix}$$

$$L\Sigma R = \begin{pmatrix} 1 & -bd^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -d^{-1}c & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a - bd^{-1}c & 0 \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -d^{-1}c & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a - bd^{-1}c & 0 \\ c - dd^{-1}c & d \end{pmatrix} = \begin{pmatrix} a - bd^{-1}c & 0 \\ 0 & d \end{pmatrix} = W$$

Scalar example (cont)

$$\Sigma = L^{-1}WR^{-1}$$

$$\Sigma^{-1} = RW^{-1}L$$

$$= \begin{pmatrix} 1 & 0 \\ -d^{-1}c & 1 \end{pmatrix} \begin{pmatrix} (a-bd^{-1}c)^{-1} & 0 \\ 0 & d^{-1} \end{pmatrix} \begin{pmatrix} 1 & -bd^{-1} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} (a-bd^{-1}c)^{-1} & 0 \\ -d^{-1}c(a-bd^{-1}c)^{-1} & d^{-1} \end{pmatrix} \begin{pmatrix} 1 & -bd^{-1} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} (a-bd^{-1}c)^{-1} & -(a-bd^{-1}c)^{-1}bd^{-1} \\ -d^{-1}c(a-bd^{-1}c)^{-1} & d^{-1} + d^{-1}c(a-bd^{-1}c)^{-1}bd^{-1} \end{pmatrix}$$

Scalar example

We could also use

$$\Sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$L\Sigma = \begin{pmatrix} 1 & 0 \\ -ca^{-1} & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$L\Sigma R = \begin{pmatrix} 1 & 0 \\ -ca^{-1} & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -a^{-1}b \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a & 0 \\ 0 & d - ca^{-1}b \end{pmatrix} = W$$

$$RW^{-1}L = \begin{pmatrix} a^{-1} + a^{-1}b (d - ca^{-1}b)^{-1} ca^{-1} & -a^{-1}b (d - ca^{-1}b)^{-1} \\ -(d - ca^{-1}b)^{-1} ca^{-1} & (d - ca^{-1}b)^{-1} \end{pmatrix}$$

Partitioned Matrix Inverse

In matrix case, this leads to following dual factorizations of Σ as

$$\Sigma = \begin{pmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{11} - \Sigma_{12}(\Sigma_{22})^{-1}\Sigma_{21} & 0 \\ 0 & \Sigma_{22} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ -\Sigma_{21}\Sigma_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} - \Sigma_{21}(\Sigma_{11})^{-1}\Sigma_{12} \end{pmatrix} \begin{pmatrix} I & -\Sigma_{11}^{-1}\Sigma_{12} \\ 0 & I \end{pmatrix}$$

The Schur Complement

We will introduce the notation

$$\Sigma/\Sigma_{22} = \Sigma_{11} - \Sigma_{12}(\Sigma_{22})^{-1}\Sigma_{21}$$

$$\Sigma/\Sigma_{11} = \Sigma_{22} - \Sigma_{21}(\Sigma_{11})^{-1}\Sigma_{12}$$

Determinant

$$|\Sigma| = |\Sigma/\Sigma_{11}||\Sigma_{11}| = |\Sigma/\Sigma_{22}||\Sigma_{22}|$$

$$\Sigma^{-1} = \begin{pmatrix} I & 0 \\ -\Sigma_{22}^{-1}\Sigma_{21} & I \end{pmatrix} \begin{pmatrix} (\Sigma/\Sigma_{22})^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I \end{pmatrix}$$
$$= \begin{pmatrix} I & -\Sigma_{11}^{-1}\Sigma_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & (\Sigma/\Sigma_{11})^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\Sigma_{21}\Sigma_{11}^{-1} & I \end{pmatrix}$$

Partitioned Matrix Inverse

$$\begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Sigma/\Sigma_{22})^{-1} & -(\Sigma/\Sigma_{22})^{-1}\Sigma_{12}\Sigma_{22}^{-1} \\ -\Sigma_{22}^{-1}\Sigma_{21}(\Sigma/\Sigma_{22})^{-1} & \Sigma_{22}^{-1} + \Sigma_{22}^{-1}\Sigma_{21}(\Sigma/\Sigma_{22})^{-1}\Sigma_{12}\Sigma_{22}^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} \Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{12}(\Sigma/\Sigma_{11})^{-1}\Sigma_{21}\Sigma_{11}^{-1} & -\Sigma_{11}^{-1}\Sigma_{12}(\Sigma/\Sigma_{11})^{-1} \\ -(\Sigma/\Sigma_{11})^{-1}\Sigma_{21}\Sigma_{11}^{-1} & (\Sigma/\Sigma_{11})^{-1} \end{pmatrix}$$

- Quite complicated looking formulas, but straightforward to implement
- Caution: $\Sigma_{11}^{-1} \neq K_{11}$ in general!

Matrix Inversion Lemma

Read the diagonal entries

$$(\Sigma_{11} - \Sigma_{12}(\Sigma_{22})^{-1}\Sigma_{21})^{-1} = \Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{12}(\Sigma/\Sigma_{11})^{-1}\Sigma_{21}\Sigma_{11}^{-1}$$
$$(A - BC^{-1}D)^{-1} = A^{-1} + A^{-1}B(C - DA^{-1}B)^{-1}DA^{-1}$$

Consider the joint distribution over the variable

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where the joint distribution is Gaussian $p(x) = \mathcal{N}(x; \mu, \Sigma)$ with

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^\top & \Sigma_2 \end{pmatrix}$$

Find the following

1. Conditionals

- (a) $p(x_1|x_2)$
- (b) $p(x_2|x_1)$

2. Marginals

- (a) $p(x_1)$
- (b) $p(x_2)$

Using the partitioned inverse equations, we rearrange

$$p(x_1, x_2) \propto \exp\left(-\frac{1}{2} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}^{\top} \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^{\top} & \Sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}\right)$$

bring the expression in form of $p(x_1)p(x_2|x_1)$ (or $p(x_2)p(x_1|x_2)$) where the marginal and conditional can be easily identified. (See also Bishop, section 2.3.)

We have the two decompositions

$$\Sigma^{-1} = \begin{pmatrix} \Sigma_{1} & \Sigma_{12} \\ \Sigma_{12}^{\top} & \Sigma_{2} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top})^{-1} & -(\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top})^{-1}\Sigma_{12}\Sigma_{2}^{-1} \\ -\Sigma_{2}^{-1}\Sigma_{12}^{\top} (\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top})^{-1} & \Sigma_{2}^{-1} + \Sigma_{2}^{-1}\Sigma_{12}^{\top} (\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top})^{-1}\Sigma_{12}\Sigma_{2}^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} \Sigma_{1}^{-1} + \Sigma_{1}^{-1}\Sigma_{12} (\Sigma_{2} - \Sigma_{12}^{\top}\Sigma_{1}^{-1}\Sigma_{12})^{-1} \Sigma_{12}^{\top}\Sigma_{1}^{-1} & -\Sigma_{1}^{-1}\Sigma_{12} (\Sigma_{2} - \Sigma_{12}^{\top}\Sigma_{1}^{-1}\Sigma_{12})^{-1} \\ -(\Sigma_{2} - \Sigma_{12}^{\top}\Sigma_{1}^{-1}\Sigma_{12})^{-1}\Sigma_{12}^{\top}\Sigma_{1}^{-1} & (\Sigma_{2} - \Sigma_{12}^{\top}\Sigma_{1}^{-1}\Sigma_{12})^{-1} \end{pmatrix}$$

We let $s_i = x_i - \mu_i$ and use the first decomposition.

$$p(s_1, s_2) \propto \exp\left(-\frac{1}{2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^{\top} \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^{\top} & \Sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}\right)$$

$$= \exp\left(-\frac{1}{2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^{\top} \begin{pmatrix} (\Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{12}^{\top})^{-1} & -(\Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{12}^{\top})^{-1} \Sigma_{12}\Sigma_2^{-1} \\ -\Sigma_2^{-1}\Sigma_{12}^{\top} (\Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{12}^{\top})^{-1} & \Sigma_2^{-1} + \Sigma_2^{-1}\Sigma_{12}^{\top} (\Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{12}^{\top})^{-1} \Sigma_{12}\Sigma_2^{-1} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

$$= \exp(-\frac{1}{2}s_{1}^{\top} \left(\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top}\right)^{-1} s_{1}$$

$$s_{2}^{\top}\Sigma_{2}^{-1}\Sigma_{12}^{\top} \left(\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top}\right)^{-1} s_{1}$$

$$-\frac{1}{2}s_{2}^{\top}\Sigma_{2}^{-1}\Sigma_{12}^{\top} \left(\Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top}\right)^{-1} \Sigma_{12}\Sigma_{2}^{-1} s_{2}$$

$$-\frac{1}{2}s_{2}^{\top}\Sigma_{2}^{-1} s_{2} \right)$$

$$\propto \mathcal{N}(s_{1}; \Sigma_{12}\Sigma_{2}^{-1} s_{2}, \Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top}) \mathcal{N}(s_{2}; 0, \Sigma_{2})$$

$$= \mathcal{N}(x_{1}; \mu_{1} + \Sigma_{12}\Sigma_{2}^{-1} (x_{2} - \mu_{2}), \Sigma_{1} - \Sigma_{12}\Sigma_{2}^{-1}\Sigma_{12}^{\top}) \mathcal{N}(x_{2}; \mu_{2}, \Sigma_{2})$$

This leads to a factorisation of form $p(x_2)p(x_1|x_2)$. The second decomposition will lead to the other factorisation $p(x_1)p(x_2|x_1)$.

Approximate Inference

Variational Formulation

A simple but very powerful idea:

- Represent the solution of a problem as the minimum of some cost function
- Example: Solving a system of linear equations $p \in \mathcal{X}$

$$Ap = b$$

Variational formulation

$$p = \underset{q}{\operatorname{argmin}} \underbrace{\left\{ \frac{1}{2} (b - Aq)^{\top} (b - Aq) \right\}}_{q}$$

Variational Formulation

- We can also find approximate solutions
- Suppose we constrain q to a subset

$$q \in \mathcal{X}_q \subset \mathcal{X}$$

We trivially have

$$\mathcal{F}(p) = \min_{q \in \mathcal{X}} \left\{ \mathcal{F}(q) \right\} \le \min_{q \in \mathcal{X}_q} \left\{ \mathcal{F}(q) \right\}$$

Example: Computing Marginals

• Consider a joint distribution $i, j \in \{0, 1\}$

$$p(x_1 = i, x_2 = j) = \pi_{i,j}$$

$p(x_1, x_2)$	$x_2 = 0$	$x_2 = 1$
$x_1 = 0$	$\pi_{0,0}$	$\pi_{0,1}$
$x_1 = 1$	$\pi_{1,0}$	$\pi_{1,1}$

Marginals

$$\begin{array}{c|cc} p(x_1) & & \\ \hline x_1 = 0 & \pi_{0,0} + \pi_{0,1} \\ \hline x_1 = 1 & \pi_{1,0} + \pi_{1,1} \\ \end{array}$$

$$\begin{array}{c|ccc} p(x_2) & x_2 = 0 & x_2 = 1 \\ \hline & \pi_{0,0} + \pi_{1,0} & \pi_{0,1} + \pi_{1,1} \end{array}$$

• How can we express the marginals of a density variationally?

Example: Computing Marginals

Take a factorised Distribution

$$q(x_1 = i, x_2 = j) = q(x_1 = i)q(x_2, = j)$$
 $q(x_1 = 1) = q_1$
 $q(x_2 = 1) = q_2$

$$q(x_1, x_2)$$
 $x_2 = 0$ $x_2 = 1$
 $x_1 = 0$ $(1 - q_1)(1 - q_2)$ $(1 - q_1)q_2$
 $x_1 = 1$ $q_1(1 - q_2)$ q_1q_2

ullet Compute the "distance" between p and q via Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P}=p(x)$ and $\mathcal{Q}=q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

$p(x_1, x_2)$	$x_2 = 0$	$x_2 = 1$
$x_1 = 0$	$\pi_{0,0}$	$\pi_{0,1}$
$x_1 = 1$	$\pi_{1,0}$	$\pi_{1,1}$

$$KL(p||q) = \sum_{x_1} \sum_{x_2} p(x_1, x_2) \log \left(\frac{p(x_1, x_2)}{q(x_1, x_2)} \right)$$

$$= \sum_{i} \sum_{j} \pi_{i,j} \log \left(\frac{\pi_{i,j}}{q(x_1 = i, x_2 = j)} \right)$$

$$= \pi_{0,0} \log \left(\frac{\pi_{0,0}}{(1 - q_1)(1 - q_2)} \right) + \pi_{1,0} \log \left(\frac{\pi_{1,0}}{q_1(1 - q_2)} \right)$$

$$+ \pi_{0,1} \log \left(\frac{\pi_{0,1}}{(1 - q_1)q_2} \right) + \pi_{1,1} \log \left(\frac{\pi_{1,1}}{q_1q_2} \right)$$

• Let us minimise the KL divergence w.r.t. q_1

$$KL(p||q) = -\pi_{0,0}(\log(1-q_1) + \log(1-q_2)) - \pi_{1,0}(\log q_1 + \log(1-q_2))$$
$$-\pi_{0,1}(\log(1-q_1) + \log q_2) - \pi_{1,1}(\log q_1 + \log q_2)$$
$$+\sum_{i} \sum_{j} \pi_{i,j} \log \pi_{i,j}$$

We take the derivative and set to zero

$$\frac{\partial KL(p||q)}{\partial q_1} = \frac{\partial}{\partial q_1} \left(-\pi_{0,0} \log(1 - q_1) - \pi_{1,0} \log q_1 - \pi_{0,1} \log(1 - q_1) - \pi_{1,1} \log q_1 \right)$$

The marginal is the minimiser of KL(p||q)

$$0 = \pi_{0,0} \frac{1}{(1-q_1)} - \pi_{1,0} \frac{1}{q_1} + \pi_{0,1} \frac{1}{(1-q_1)} - \pi_{1,1} \frac{1}{q_1}$$
$$= (\pi_{0,0} + \pi_{0,1}) \frac{1}{(1-q_1)} - (\pi_{1,0} + \pi_{1,1}) \frac{1}{q_1}$$

$$q_1 = \frac{(\pi_{1,0} + \pi_{1,1})}{(\pi_{0,0} + \pi_{0,1} + \pi_{1,0} + \pi_{1,1})} = \pi_{1,0} + \pi_{1,1} = p(x_1 = 1)$$

$$1 - q_1 = 1 - (\pi_{1,0} + \pi_{1,1}) = \pi_{0,0} + \pi_{0,1} = 1 - q_1 = p(x_1 = 0)$$

The derivation for q_2 is identical.

The "other" one: KL(q||p)

$$KL(q||p) = \sum_{x_1} \sum_{x_2} q(x_1, x_2) \log \left(\frac{q(x_1, x_2)}{p(x_1, x_2)} \right)$$

$$= \sum_{i} \sum_{j} q(x_1 = i, x_2 = j) \log \left(\frac{q(x_1 = i, x_2 = j)}{\pi_{i,j}} \right)$$

$$= (1 - q_1)(1 - q_2) \log \left(\frac{(1 - q_1)(1 - q_2)}{\pi_{0,0}} \right) + q_1(1 - q_2) \log \left(\frac{q_1(1 - q_2)}{\pi_{1,0}} \right)$$

$$+ (1 - q_1)q_2 \log \left(\frac{(1 - q_1)q_2}{\pi_{0,1}} \right) + q_1q_2 \log \left(\frac{q_1q_2}{\pi_{1,1}} \right)$$

The "other" one: KL(q||p)

$$\frac{\partial KL(q||p)}{\partial q_1} = (-\log(1-q_1) + \log \pi_{0,0} + \log q_1 - \log \pi_{1,0})$$
$$q_2(-\log \pi_{0,0} + \log \pi_{1,0} + \log \pi_{0,1} - \log \pi_{1,1})$$

The "other" one: KL(q||p)

$$Q_{1} = \begin{pmatrix} 1 - q_{1} \\ q_{1} \end{pmatrix} = \frac{1}{Z_{1}} \begin{pmatrix} \pi_{0,0}^{(1-q_{2})} \pi_{0,1}^{q_{2}} \\ \pi_{1,0}^{(1-q_{2})} \pi_{1,1}^{q_{2}} \end{pmatrix}$$

$$\propto \begin{pmatrix} \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{1,0} + q_{2} \log \pi_{1,1}) \end{pmatrix}$$

$$= \begin{pmatrix} \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{1,0} + q_{2} \log \pi_{1,1}) \end{pmatrix}$$

$$\equiv \exp(\langle \log \pi \rangle_{Q_{2}})$$

$$Q_2 \propto \exp(\langle \log \pi \rangle_{Q_1})$$

KL(q||p) versus KL(p||q)

Toy Model: "One sample source separation (OSSS)"

This graph encodes the joint: $p(x, s_1, s_2) = p(x|s_1, s_2)p(s_1)p(s_2)$

$$s_1 \sim p(s_1) = \mathcal{N}(s_1; \mu_1, P_1)$$

 $s_2 \sim p(s_2) = \mathcal{N}(s_2; \mu_2, P_2)$
 $x|s_1, s_2 \sim p(x|s_1, s_2) = \mathcal{N}(x; s_1 + s_2, R)$

The Gaussian Distribution

 μ is the mean and P is the covariance:

$$\mathcal{N}(s;\mu,P) = |2\pi P|^{-1/2} \exp\left(-\frac{1}{2}(s-\mu)^T P^{-1}(s-\mu)\right)$$

$$= \exp\left(-\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s - \frac{1}{2}\mu^T P^{-1}\mu - \frac{1}{2}|2\pi P|\right)$$

$$\log \mathcal{N}(s;\mu,P) = -\frac{1}{2}s^T P^{-1}s + \mu^T P^{-1}s + \text{const}$$

$$= -\frac{1}{2}\operatorname{Tr} P^{-1}ss^T + \mu^T P^{-1}s + \text{const}$$

$$=^+ -\frac{1}{2}\operatorname{Tr} P^{-1}ss^T + \mu^T P^{-1}s$$

Notation: $\log f(x) = g(x) \iff f(x) \propto \exp(g(x)) \iff \exists c \in \mathbb{R} : f(x) = c \exp(g(x))$

OSSS example

Suppose, we observe $x = \hat{x}$.

• By Bayes' theorem, the posterior is given by:

$$\mathcal{P} \equiv p(s_1, s_2 | x = \hat{x}) = \frac{1}{Z_{\hat{x}}} p(x = \hat{x} | s_1, s_2) p(s_1) p(s_2) \equiv \frac{1}{Z_{\hat{x}}} \phi(s_1, s_2)$$

• The function $\phi(s_1, s_2)$ is proportional to the exact posterior. $(Z_{\hat{x}} \equiv p(x = \hat{x}))$

OSSS example, cont.

$$\begin{split} \log p(s_1) &= \mu_1^T P_1^{-1} s_1 - \frac{1}{2} s_1^T P_1^{-1} s_1 + \text{const} \\ \log p(s_2) &= \mu_2^T P_2^{-1} s_2 - \frac{1}{2} s_2^T P_2^{-1} s_2 + \text{const} \\ \log p(x|s_1,s_2) &= \hat{x}^T R^{-1} (s_1+s_2) - \frac{1}{2} (s_1+s_2)^T R^{-1} (s_1+s_2) + \text{const} \end{split}$$

$$\log \phi(s_1, s_2) = \log p(x = \hat{x}|s_1, s_2) + \log p(s_1) + \log p(s_2)$$

$$=^+ \left(\mu_1^T P_1^{-1} + \hat{x}^T R^{-1}\right) s_1 + \left(\mu_2^T P_2^{-1} + \hat{x}^T R^{-1}\right) s_2$$

$$-\frac{1}{2} \operatorname{Tr} \left(P_1^{-1} + R^{-1}\right) s_1 s_1^T - \underbrace{s_1^T R^{-1} s_2}_{(*)} - \frac{1}{2} \operatorname{Tr} \left(P_2^{-1} + R^{-1}\right) s_2 s_2^T$$

• The (*) term is the cross correlation term that makes s_1 and s_2 a-posteriori dependent.

OSSS example, cont.

Completing the square

$$\log \phi(s_1, s_2) =^+ \begin{pmatrix} P_1^{-1} \mu_1 + R^{-1} \hat{x} \\ P_2^{-1} \mu_2 + R^{-1} \hat{x} \end{pmatrix}^{\top} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$
$$-\frac{1}{2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}^{\top} \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

Remember:
$$\log \mathcal{N}(s; m, \Sigma) = (\Sigma^{-1}m)^{\top} s - \frac{1}{2} s^{\top} \Sigma^{-1} s$$

$$\Sigma = \begin{pmatrix} P_1^{-1} + R^{-1} & R^{-1} \\ R^{-1} & P_2^{-1} + R^{-1} \end{pmatrix}^{-1} \qquad m = \Sigma \qquad \begin{pmatrix} P_1^{-1}\mu_1 + R^{-1}\hat{x} \\ P_2^{-1}\mu_2 + R^{-1}\hat{x} \end{pmatrix}$$

Variational Bayes (VB), mean field

We will approximate the posterior \mathcal{P} with a simpler distribution \mathcal{Q} .

$$\mathcal{P} = \frac{1}{Z_x} p(x = \hat{x}|s_1, s_2) p(s_1) p(s_2)$$

$$\mathcal{Q} = q(s_1) q(s_2)$$

Here, we choose

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

A "measure of fit" between distributions is the KL divergence

• A "quasi-distance" between two distributions $\mathcal{P}=p(x)$ and $\mathcal{Q}=q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

OSSS example, cont.

Let the approximating distribution be factorized as

$$Q = q(s_1)q(s_2)$$

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

The m_i and S_i are the *variational* parameters to be optimized to minimize

$$KL(\mathcal{Q}||\mathcal{P}) = \left\langle \log \mathcal{Q} \right\rangle_{\mathcal{Q}} - \left\langle \log \frac{1}{Z_x} \phi(s_1, s_2) \right\rangle_{\mathcal{Q}} \tag{4}$$

The form of the mean field solution

$$0 \leq \langle \log q(s_1)q(s_2)\rangle_{q(s_1)q(s_2)} + \log Z_x - \langle \log \phi(s_1, s_2)\rangle_{q(s_1)q(s_2)}$$

$$\log Z_x \geq \langle \log \phi(s_1, s_2)\rangle_{q(s_1)q(s_2)} - \langle \log q(s_1)q(s_2)\rangle_{q(s_1)q(s_2)}$$

$$\equiv -F(p; q) + H(q)$$
(5)

Here, F is the *energy* and H is the *entropy*. We need to maximize the right hand side.

Evidence
$$\geq$$
 -Energy + Entropy

Note r.h.s. is a **lower bound** [?]. The mean field equations **monotonically** increase this bound. Good for assessing convergence and debugging computer code.

Details of derivation

Define the Lagrangian

$$\Lambda = \int ds_1 q(s_1) \log q(s_1) + \int ds_2 q(s_2) \log q(s_2) + \log Z_x - \int ds_1 ds_2 q(s_1) q(s_2) \log \phi(s_1, s_2)$$

$$+\lambda_1 (1 - \int ds_1 q(s_1)) + \lambda_2 (1 - \int ds_2 q(s_2))$$
(6)

• Calculate the functional derivatives w.r.t. $q(s_1)$ and set to zero

$$\frac{\delta}{\delta q(s_1)} \Lambda = \log q(s_1) + 1 - \langle \log \phi(s_1, s_2) \rangle_{q(s_2)} - \lambda_1$$

• Solve for $q(s_1)$,

$$\log q(s_1) = \lambda_1 - 1 + \langle \log \phi(s_1, s_2) \rangle_{q(s_2)}$$

$$q(s_1) = \exp(\lambda_1 - 1) \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$
(7)

Use the fact that

$$1 = \int ds_1 q(s_1) = \exp(\lambda_1 - 1) \int ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$
$$\lambda_1 = 1 - \log \int ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

The form of the solution

- No direct analytical solution
- We obtain fixed point equations in closed form

$$q(s_1) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$q(s_2) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_1)})$$

Note the nice symmetry

OSSS: Factor Graph

- A graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior \mathcal{P} .
 - Variable nodes: Circles. Think of them as "factors" of the approximating distribution Q. (Caution – non standard interpretation!)
 - Edges: denote membership. A variable is connected to a factor if it is a variable of the local function.

Fixed Point Iteration for OSSS

$$\log q(s_1) \leftarrow \log p(s_1) + \langle \log p(x = \hat{x}|s_1, s_2) \rangle_{q(s_2)}$$

$$\log q(s_2) \leftarrow \log p(s_2) + \langle \log p(x = \hat{x}|s_1, s_2) \rangle_{q(s_1)}$$

Fixed Point Iteration for the Gaussian Case

$$\log q(s_1) \leftarrow -\frac{1}{2} \operatorname{Tr} \left(P_1^{-1} + R^{-1} \right) s_1 s_1^{\top} - s_1^{\top} R^{-1} \underbrace{\langle s_2 \rangle_{q(s_2)}}_{=m_2} + \left(\mu_1^{\top} P_1^{-1} + \hat{x}^{\top} R^{-1} \right) s_1$$

$$\log q(s_2) \leftarrow -\underbrace{\langle s_1 \rangle_{q(s_1)}^{\top}}_{=m_1^{\top}} R^{-1} s_2 - \frac{1}{2} \operatorname{Tr} \left(P_2^{-1} + R^{-1} \right) s_2 s_2^{\top} + \left(\mu_2^{\top} P_2^{-1} + \hat{x}^{\top} R^{-1} \right) s_2$$

Remember $q(s) = \mathcal{N}(s; m, S)$

$$\log q(s) = + -\frac{1}{2} \operatorname{Tr} K s s^{\top} + h^{\top} s$$

$$\downarrow \qquad \qquad \downarrow$$

$$S = K^{-1} \qquad m = K^{-1} h$$

Fixed Point Equations for the Gaussian Case

Covariances are obtained directly

$$S_1 = (P_1^{-1} + R^{-1})^{-1}$$
 $S_2 = (P_2^{-1} + R^{-1})^{-1}$

• To compute the means, we should iterate:

$$m_1 = S_1 \left(P_1^{-1} \mu_1 + R^{-1} \left(\hat{x} - m_2 \right) \right)$$

 $m_2 = S_2 \left(P_2^{-1} \mu_2 + R^{-1} \left(\hat{x} - m_1 \right) \right)$

- Intuitive algorithm:
 - Substract from the observation \hat{x} the prediction of the other factors of Q.
 - Compute a fit to this residual (e.g. "fit" m_2 to $\hat{x}-m_1$).
- Equivalent to Gauss-Seidel, an iterative method for solving linear systems of equations.

OSSS example, cont.

Direct Link to Expectation-Maximisation (EM) [?]

Suppose we choose one of the distributions degenerate, i.e.

$$\tilde{q}(s_2) = \delta(s_2 - \tilde{m})$$

where \tilde{m} corresponds to the "location parameter" of $\tilde{q}(s_2)$. We need to find the closest degenerate distribution to the actual mean field solution $q(s_2)$, hence we take one more KL and minimize

$$\tilde{m} = \underset{\xi}{\operatorname{argmin}} KL(\delta(s_2 - \xi)||q(s_2))$$

It can be shown that this leads exactly to the EM fixed point iterations.

Iterated Conditional Modes (ICM) [?, ?]

If we choose both distributions degenerate, i.e.

$$\tilde{q}(s_1) = \delta(s_1 - \tilde{m}_1)$$

 $\tilde{q}(s_2) = \delta(s_2 - \tilde{m}_2)$

It can be shown that this leads exactly to the ICM fixed point iterations. This algorithm is equivalent to coordinate ascent in the original posterior surface $\phi(s_1, s_2)$.

$$\tilde{m}_1 = \operatorname*{argmax} \phi(s_1, s_2 = \tilde{m}_2)$$
 $\tilde{m}_2 = \operatorname*{argmax} \phi(s_1 = \tilde{m}_1, s_2)$

ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences in terms of fixed points.

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

Convergence Issues

OSSS example, Slow Convergence

Annealing, Bridging, Relaxation, Tempering

Main idea:

- If the original target P is too complex, relax it.
- First solve a simple version \mathcal{P}_{τ_1} . Call the solution m_{τ_1}
- Make the problem little bit harder $\mathcal{P}_{\tau_1} \to \mathcal{P}_{\tau_2}$, and improve the solution $m_{\tau_1} \to m_{\tau_2}$.
- While $\mathcal{P}_{\tau_1} \to \mathcal{P}_{\tau_2}, \dots, \to \mathcal{P}_T = \mathcal{P}$, we hope to get better and better solutions.

The sequence $\tau_1, \tau_2, \dots, \tau_T$ is called annealing schedule if

$$\mathcal{P}_{ au_i} \propto \mathcal{P}^{ au_i}$$

OSSS example: Annealing, Bridging, ...

• Remember the cross term (*) of the posterior:

$$\cdots - \underbrace{s_1^{\mathsf{T}} R^{-1} s_2}_{(*)} \cdots$$

- When the noise variance is low, the coupling is strong.
- If we choose a decreasing sequence of noise covariances

$$R_{\tau_1} > R_{\tau_2} > \dots > R_{\tau_T} = R$$

we increase correlations gradually.

OSSS example: Annealing, Bridging, ...

Fixed Point Iterations

Let θ denote the parameter vector of Q.

• Given the fixed point equation F and an initial parameter $\theta^{(0)}$, the inference algorithm is simply

$$\theta^{(t+1)} \leftarrow F(\theta^{(t)})$$

For OSSS $\theta = (m_1, m_2)^{\top}$ (S_1, S_2 were constant, so we exclude them). The update equations were

$$m_1^{(t+1)} \leftarrow F_1(m_2^{(t)})$$
 $m_2^{(t+1)} \leftarrow F_2(m_1^{(t+1)})$

This is a deterministic dynamical system in the parameter space.

OSSS: Fixed Point iteration for m_1

Derivation of Variational Bayes

Derivation of a Variational Bayes algorithm

- 1. Write down the log of the full joint (unnormalised) posterior $\log \phi(v_1, \dots, v_N)$
- 2. Decide the individual factors of the approximating distribution, i.e., find a set of mutually exclusive clusters

$$\{v_1,\ldots,v_N\} = \bigcup_{\alpha} \mathcal{C}_{\alpha}$$

(Mean field is
$$\{v_1, \dots, v_N\} = \{v_1\} \cup \{v_2\} \cup \dots \cup \{v_N\}$$
)

- 3. Draw the factor graph and assign each term of $\log \phi$ to individual factors
- 4. Derive the factors of Q_{α} the approximating distribution $Q=\prod_{\alpha}Q_{\alpha}$ as a function of the sufficient statistics of $\{Q_{-\alpha}\}$

Variational Bayes

- 5. Initialise the (variational parameters of the) factors of Q to reasonable values
- 6. Visit each factor of Q_{α} and update it as a function of $\{Q_{-\alpha}\}$ until convergence

$$Q_{\alpha} \propto \exp\left(\langle \log \phi \rangle_{Q_{-\alpha}}\right)$$

AR(1) Model

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \nu/\beta)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; Ax_{k-1}, R)$$

$$x_0 = 1 \qquad x_1 = -6$$

Caution: (Wikipedia compatible definition of \mathcal{IG})

$$\mathcal{IG}(R; a, b) = \exp\left(-(a+1)\log R - \frac{b}{R} - \log \Gamma(a) + a\log b\right)$$

Step 1: Write down the log of the full joint (unnormalised) posterior $\log \phi(A, R, x_1 = \hat{x}_1 | x_0 = \hat{x}_0)$

$$\phi = p(A, R, x_1 = \hat{x}_1 | x_0 = \hat{x}_0) \propto p(x_1 | x_0, A, R) p(A) p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R) \mathcal{N}(A; 0, P) \mathcal{IG}(R; \nu, \nu/\beta)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0 x_1 \frac{A}{R} - \frac{1}{2}\frac{x_0^2 A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

$$\exp\left(-\frac{1}{2}\frac{A^2}{P} - \frac{1}{2}\log|2\pi P|\right)$$

$$\exp\left(-(\nu + 1)\log R - \frac{\nu}{\beta}\frac{1}{R} - \log\Gamma(\nu) + \nu\log(\nu/\beta)\right)$$

Step 2. Choose the individual factors of \mathcal{Q}

$$Q = q(A)q(R)$$

$$q(A) = \mathcal{N}(A; m, \Sigma)$$

$$q(R) = \mathcal{IG}(R; a, b)$$

Clusters

$$\mathcal{C} = \{A\} \cup \{R\}$$

Step 2. Choose the individual factors of Q

Sufficient statistics and modes

• $q(A) = \mathcal{N}(A; m, \Sigma)$

$$\langle A \rangle = m$$

$$\langle A \rangle = m \qquad \langle A^2 \rangle = \Sigma + m^2 \qquad A^* = m$$

$$A^* = m$$

• $q(R) = \mathcal{IG}(R; a, b)$

$$\langle 1/R \rangle = a/b$$

$$\langle 1/R \rangle = a/b$$
 $\langle \log R \rangle = \log(b) - \Psi(a)$

$$R^* = b/(a+1)$$

Step 3. Draw the factor graph and assign each term of $\log \phi$ to individual factors

Step 4. Derive the factors of Q the approximating distribution as a function of the sufficient statistics of $\{Q_{-\alpha}\}$

$$-\frac{1}{2}\frac{A^{2}}{P} \qquad -(\nu+1+1/2)\log R - (\frac{\nu}{\beta} + \frac{1}{2}x_{1}^{2})\frac{1}{R}$$

$$R$$

$$x_{0}x_{1}\frac{A}{R} - \frac{1}{2}\frac{x_{0}^{2}A^{2}}{R}$$

Step 4. Derive the factors Q_{α}

•
$$q(A) = \mathcal{N}(A; m, \Sigma)$$

$$q(A) \propto \exp(\langle \log \phi(A, R) \rangle_{q(R)})$$

$$= \exp\left(-\frac{1}{2}\frac{A^2}{P} + \left\langle x_0 x_1 \frac{1}{R} A - \frac{1}{2}x_0^2 \frac{1}{R} A^2 \right\rangle_{q(R)}\right)$$

$$= \exp\left(-\frac{1}{2}\left(\frac{1}{P} + x_0^2 \left\langle \frac{1}{R} \right\rangle_{q(R)}\right) A^2 + x_0 x_1 \left\langle \frac{1}{R} \right\rangle_{q(R)} A\right)$$

$$\Sigma = \left(\frac{1}{P} + x_0^2 \left\langle \frac{1}{R} \right\rangle_{q(R)}\right)^{-1} = \left(\frac{1}{P} + x_0^2 \frac{a}{b}\right)^{-1}$$

$$m = \Sigma x_0 x_1 \left\langle \frac{1}{R} \right\rangle_{q(R)} = \Sigma x_0 x_1 \frac{a}{b}$$

Step 4. Derive the factors of Q

•
$$q(R) = \mathcal{IG}(R; a, b)$$

$$q(R) \propto \exp(\langle \log \phi(A, R) \rangle_{q(A)})$$

$$= \exp(-(\nu + 1 + 1/2) \log R - (\frac{\nu}{\beta} + \frac{1}{2}x_1^2 + \left\langle -x_0 x_1 A + \frac{1}{2}x_0^2 A^2 \right\rangle_{q(A)}) \frac{1}{R})$$

$$= \exp(-(\nu + 1 + 1/2) \log R - (\frac{\nu}{\beta} + \frac{1}{2}x_1^2 - x_0 x_1 \langle A \rangle_{q(A)} + \frac{1}{2}x_0^2 \langle A^2 \rangle_{q(A)}) \frac{1}{R})$$

$$a = \nu + 1/2$$

$$b = \frac{\nu}{\beta} + \frac{1}{2}x_1^2 - x_0x_1 \langle A \rangle_{q(A)} + \frac{1}{2}x_0^2 \langle A^2 \rangle_{q(A)}$$

$$= \frac{\nu}{\beta} + \frac{1}{2}x_1^2 - x_0x_1m + \frac{1}{2}x_0^2(m^2 + \Sigma)$$

Variational Bayes

For
$$\tau = 1, 2, ...$$

$$q(A)^{(\tau)} = \exp(\langle \log \phi(A, R) \rangle_{q(R)^{(\tau-1)}})$$
$$q(R)^{(\tau)} = \exp(\langle \log \phi(A, R) \rangle_{q(A)^{(\tau)}})$$

Variational Bayes (Implementation)

```
nu = 0.4; beta = 100; nu beta = nu/beta;
P = 1.2; x 0 = 1; x 1 = -6;
T = 300; % Number of iterations
E A = -6; E_A2 = E_A^2;
E invR = 1/0.00001; % Initial Sufficient stats
for t=2:T,
    % Update q(A)
    Sig = 1/(1/P + x 0^2 * E invR);
    mu = Siq * x_0 * x_1 * E_invR;
   E A = mu; E A2 = mu.^2 + Siq;
    % Update q(R)
    a = nu + 0.5;
    b = 0.5*(x 1.^2 - 2*x 1*x 0*E A + x 0.^2*E A2) + nu beta;
   E invR = a/b;
end:
```

Variational Bayes

EM - Expectation Maximisation algorithm

- Variational Bayes and Gibbs are for full Bayesian learning
- EM: Maximum likelihood (ML) or Maximum a-posteriori parameter estimation

EM, Case 1

Maximise over the variance R

$$q(A)^{(\tau)} = \exp(\log \phi(A, R = R^{(\tau-1)})) = p(A|R^{(\tau-1)})$$
$$R^{(\tau)} = \arg \max \langle \log \phi(A, R) \rangle_{q(A)^{(\tau)}}$$

EM, Case 2

Maximise over regression coefficient *A*

$$A^{(\tau)} = \arg\max \langle \log \phi(A, R) \rangle_{q(R)^{(\tau-1)}}$$
$$q(R)^{(\tau)} = \exp(\log \phi(A = A^{(\tau)}, R)) = p(R|A^{(\tau)})$$

Iterative Conditional Modes

Maximise over the variance R and the regression coefficient A

$$A^{(\tau)} = \arg \max \langle \log \phi(A, R) \rangle_{q(R)^{(\tau-1)}}$$

$$= \arg \max \log \phi(A, R = R^{(\tau-1)})$$

$$R^{(\tau)} = \arg \max \langle \log \phi(A, R) \rangle_{q(A)^{(\tau)}}$$

$$= \arg \max \log \phi(A = A^{(\tau)}, R)$$

Text Books:

- Bayesian Reasoning and Machine Learning, David Barber, 2012, CUP Online
- Pattern Recognition and Machine Learning, Christopher Bishop, 2006 Springer
- Machine Learning, A Probabilistic Perspective, Kevin P. Murphy, 2012 MIT Press

Bayesci Zaman Serileri, Monte Carlo

- A. T. Cemgil, A Tutorial Introduction to Monte Carlo methods, Markov Chain Monte Carlo and Particle Filtering, 2012. (https://dl.dropboxusercontent.com/u/9787379/cmpe58n/cmpe58n-lecture-notes.pdf)
- D. Barber, A. T. Cemgil and S. Chiappa, Bayesian Time Series Models.
 Cambridge University Press, 2011.
- D Barber and A. T. Cemgil, Graphical Models for Time Series, IEEE Signal Processing Magazine, Special issue on graphical models, vol. 27, no. 6, pp. 18-28, October 2010.

M. J. Wainwright and M. I. Jordan, 2008, Graphical Models, Exponential Families, and Variational Inference, Foundations and Trends in Machine Learning, DOI: 10.1561/2200000001

Recent Trends

- Z. Ghahramani, Probabilistic machine learning and artificial intelligence, Nature, 2015, doi:10.1038/nature14541
 - Olasılıksal programlama,
 - Bayesci eniyileme,
 - Veri sıkıştırma
 - Otomatik model keşfetme