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 OBJECTIVE: To present the methods that dominate large-scale 
computation.

 Non-iterative or “direct” algorithms require O(m3) calculations for 
general matrices

 This is too large because
 large m implies very large m3

 the work required is of a higher order than the order of the input, 
which is O(m2)
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 Here is a brief history of what dimensions have been considered 
“very large” in matrix computation:
 1950: m = 20       (Wilkinson) 
 1965: m = 200     (Forsythe and Moler) 
 1980: m = 2000   (LINPACK) 
 1995: m = 20000 (LAPACK)

 This means that during this forty-five year period, while the speed 
of computers increased by a factor of 109, the dimensions of 
tractable matrix increased only by a factor of 103.

 This leads to the conclusion that O(m3) is a bottleneck for direct 
matrix algorithms.

 Reducing the computation time for matrices from O(m3) to O(m2) is 
the goal of the iterative methods.
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 O(m3) cannot be beaten in every “random” case.
 Fortunately, in practice large matrices are far from random.
 Large matrices are often the result of discretization of differential or 

integral equations.
 Discretization is generally the approximation of infinite-dimensional 

(continuous) quantities by finite-dimensional quantities.
 In this sense, large m values mean to approximate ∞.
 These approximations are typically  structured, and this structure can 

often be exploited

Structure, Sparsity and Black Boxes
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 The most common structure that may be encountered is sparsity 

 Sparsity: a preponderance of zero entries

 For example, a finite-difference discretization of partial differential 
equation may lead to a matrix of dimensions m = 105 with only ν= 10 
entries per row.

 This kind of structure is exploited by iterative methods.

Structure, Sparsity and Black Boxes
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 Sparsity is exploited by iterative methods in that they treat matrix 
multiplication as a black box with input x and output Ax.

 Iterative algorithms typically only require the ability to determine 
Ax for any given x; the details are not important and indeed may 
not be available.

 For the example of a sparse matrix A described above, it is easy 
to design a procedure to compute Ax in O(mν) rather than O(m3).

Structure, Sparsity and Black Boxes
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 The iterative methods presented in the remaining lectures are based 
on the idea of reducing an m-dimensional problem to a lower-
dimensional Krylov subspace.

 Given A and b, the associated Krylov sequence of vectors is:
 b, Ab, A2 b, A3 b, ...,

 which can be computed by the black box as
 b, Ab, A(Ab), A(A(Ab)), ....

 The corresponding Krylov subspaces are the spaces spanned by the 
successively larger groups of these vectors.

Projection into Krylov Subspaces
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Projection into Krylov Subspaces
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 where, e.g., CG stands for the conjugate gradient method and 
requires the matrix to be symmetric positive definite.

 In each case, the strategy is to reduce the original matrix problem to a 
sequence of problems of dimension n = 1,2,3,....

 When A is hermitian, the reduced matrices are tridiagonal;       
otherwise they are Hessenberg.

 The Arnoldi iteration, for example, approximates the eigenvalues of a 
large matrix by computing the eigenvalues of certain Hessenberg 
matrices of successively larger dimensions.
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 Gaussian elimination, QR factorization, and other dense matrix 
algorithms fit the pattern
 O(m) steps
 O(m2) operations at each step
 O(m3) total operations.

 For iterative methods, the same figures apply but they represent a 
worst-case scenario.

 Iterative methods succeed when at least one of these two factors is 
reduced.

Number of Steps, Work Per Step
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 The number of steps required for satisfactory convergence depends 
on spectral properties of the matrix A.

 For example, CG is guaranteed to solve an spd system Ax = b quickly 
if the eigenvalues of A are clustered well away from the origin.

 Lanczos iteration is guaranteed to compute certain eigenvalues of a 
real symmetric matrix quickly if those eigenvalues are well separated 
from the rest of the spectrum.

Number of Steps, Work Per Step
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 The work done in an iteration depends on 
 the structure of the matrix 
 advantages of the structure in the x     Ax black-box 

 Ideally, iterative methods reduce the number of steps from O(m) to O(1) 
and the work per step from O(m2) to O(m), thus reducing the total work 
from O(m3) to O(m).

 Such spectacular speedups do occur in practice, but more typical might 
be from O(m3) to O(m2).

Number of Steps, Work Per Step

11

Wednesday, May 15, 2013



 Iterative methods are approximate, delivering approximate answers 
even in the presence of no rounding errors.

 Iterative methods are “engineering solution” of “little elegance and 
doubtful reliability”.

 However, direct methods are also inexact in floating-point arithmetic.

 Accuracy can only be achieved to O(εmachine) anyway, whether it be 
because of round-off errors in an “exact” algorithm or due to other 
approximations made.

Exact vs Approximate Solutions
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Exact vs Approximate Solutions
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 There are direct algorithms that solve Ax = b and related problems 
for dense matrices in less than O(m3) operations.

 V. Strassen in 1969 discovered an algorithm that reduces the 
exponent 3 to log2 (7) ≈ 2.807.

 In 1990, Coppersmith and Winograd reduced the exponent to ≈ 
2.3737.

 In 2010, Stothers reduced the exponent to ≈ 2.3736.
 In 2011, Williams reduced the exponent to ≈ 2.3727.

Direct Methods that Beat O(m3)
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 These improvements have not really impacted practical 
computation because:
 We need more information regarding their stability.
 The values of m that beat the standard are large.

 The Strassen algorithm is faster than Gaussian elimination for       
m > 100, but because the exponent is still close to 3, there is no big 
improvement.
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