o
™
O]
—
-
e
@)
]
—

7))
&
e
e
—
O
Ao
<
D
=
(O
>
C
D
A2
LLI
| -
D
e
I
O

™
N
o
=
—
[}
w
o
>
o
—_
o
o
=
©
©
[}
x
<
—J
Z

N
i)
>
4
<
N
c
9]
(@]
©
£
O
>
a




From Lecture 27...

Throughout numerical linear algebra, most algorithmic ideas are applicable
either to general matrices or, with certain simplifications, to hermitian matri-
ces. For the topics discussed in this and the next three lectures, this continues
to be at least partly true, but some of the differences between the general and
the hermitian cases are rather sizable. Therefore. in these four lectures, we
simplify matters by considering only matrices that are real and symmetric.
We also assume throughout that || - || = || - ||2-

In these slides, when we write the matrix A, we mean real,
symmetric, m by m matrix.




Three algorithms for eigenvalue computation

" The Jacobi algorithm (for full matrices)
= The Bisection algorithm (for tridiagonal matrices)
* Divide-and-conquer algorithm (for tridiagonal matrices)

» Note that, general approach is two phase for Hermitian A:
» First phase: Tridiagonalizing the matrix
» Second phase: Diagonalizing it




From Lecture 26...

[ % x X X x| [ % X X X X | [ X XX X X
X X X X X Q- XX XXX Q XXX XX
X X X X X ol 0 X XXX ¢! X X X X

— —
X X X X X 0 X X X X X X X X

| X X X X X | | 0 X X X X | | XX XX

A O A O A0,

[ % x X % X ] [ % X X X X ] [ % X X X X |
X X X X X . X X X X X : XXX X X
Q5 (2
X X X X XX XX K XXX
— —

X X X X 0 X X X X X X
| X X X X | | 0 X XX | i X X X |
QTAQ, Q50T AR, (50T A Q-

[ % %X X X x ]
oM X oK X
Ko oMW X

oK X
L XX_
(2:1?—2-{:2;{:27 ‘ C?li}i'{:?'m—? — ”r
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The Jacobi algorithm

" Introduced by Jacobi in 1845.

" Motivation: We know from the Lecture 25, to obtain eigenvalues
in dimension 5 or higher, iteration is needed.
= Eigenvalue problems can be written as rootfinding problems.
" For d > 4, we do not have explicit formulas for roots (so for eigenvalues).

* Why not diagonalize a small submatrix of A, then another, and

so on, hoping eventually to converge to a diagonalization of the
full matrix?




The Jacobi algorithm

*The idea is based on 2 by 2 submatrices.
=" A 2 by 2 real, symmetric matrix can be diagonalized in the form,

| d ; #0 0
* d b~ | 0 0
where J is orthogonal. One could take a rotation,

c s
J =
s c

* 2d
where s=sinfl and c¢=cosf) and tan(20) = :

b — a




The Jacobi algorithm

" Let A be real, symmetric m by m matrix. We form a m by m J
which is the identity in all but four entries, where it has the
form,

f1 ... 0 0 --- 0]
0o --- c B T | | D
0 -« —§ oo ¢ - D q
_[] 0 0 - 1_
p q

= Applying J! from left modifies two rows of A and applying J
from the right modifies two columns of A.

" At each step, a symmetric pair of zeros introduced into the
matrix but previous zeros are destroyed. However, the usual
effects is that the magnitudes of these nonzeros shrink steadily.




The Jacobi algorithm

Which off-diagonal entries a,;; should be zeroed at each step? The ap-
proach naturally fitted to hand computation is to pick the largest off-diagonal
entry at each step. Analysis of convergence then becomes a triviality, for one
can show that the sum of the squares of the off-diagonal entries decreases
by at least the factor 1 — 2/(m? — m) at each step (Exercise 30.3).




Bisection

= After a symmetric matrix has been tridiagonalized, the natural
next step is the Bisection algorithm if one does not want all of
the eigenvalues but just a subset of them.

" Bisection can find the largest 10% of the eigenvalues, or the
smallest thirty eigenvalues, or all the eigenvalues in the interval
[1,2].

" Once the desired eigenvalues are found, the corresponding
eigenvectors can be obtained by one step of inverse iteration
(Lecture 27).




Bisection

= Since the eigenvalues of a real symmetric matrix are real, we can
find them by searching the real line for roots of the polynomial:

p(z) = det(A — zT).

10




Bisection

= Given A real, symmetric m by m matrix, let A(W) A(™)
denote its principal (upper-left) square submatrices of
dimensions 1,...,m.

= Without loss of generality, let us assume A is tridiagonal and
irreducible in the sense that all of its off-diagonal entries are
Zero.

by
{131 (19 {IJ;}
A = by a3 . : bi # 0.

'[[Jm—1

b1

11




Bisection

= The eigenvalues of A"*) are distinct; let them be denoted by
A <Al < < )kf-f'_ These eigenvalues strictly interlace:

(k+1) (k) (k+1)
A D<A < A

" It is the interlacing property that makes it possible to count the
exact number of eigenvalues in a specified interval.

12




Bisection

i 1
0 1
A =
12 1
! -1

From the numbers
det(AM) =1, det(A®) = =1, det(A®) = =3, det(AW) = 4,

we know that A has no negative cigenvalues, A has one negative eigen-
value, A® has one negative eigenvalue, and A® has two negative eigenvalues.
In general, for any symmetric tridiagonal A € R™ ™ the number of negative
eigenvalues is equal to the number of sign changes in the sequence

1, det(A™), det (AP, ..., det(AW), (30.7)

which 1s known as a Sturm sequence.

13




Bisection

One more observation completes the description of the bisection algorithimn:
for a tridiagonal matrix, the determinants of the matrices {AEH} are related by
a three-term recurrence relation. Expanding det{fl("“jj by minors with respect
to its entries b,y and a; In row £ gives, from (30.5),

det(A™) = aydet (AB=D) — p2_ det(AK—2)), (30.8)
Introducing the shift by xI and writing IJ"(H(.’IIJ = det (AW xl), we get
p* () = (ap — x)p* D (x) — 02_, p* =2 (z). (30.9)

If we define ;U':_”(:r:j = 0 and p'¥ () = 1, then this recurrence is valid for all

14




Divide-and-conquer

Let T € R™™™ with mn > 2 be symmetric, tridiagonal, and irreducible

1 1

Here is how (30.10) might be expressed in words. A tridiagonal matriz can
be written as the sum of a 2 x 2 block-diagonal matriz with tridiagonal blocks

and a rank-one correction.

15




Divide-and-conquer

The divide-and-conquer algorithm proceeds as follows. Split the matrix
T as in (30.10) with n ~ m/2. Suppose the cigenvalues of Tl and TJg are
known. Since the correction matrix is of rank one, a nonlinear but rapid
calculation can be used to get from the eigenvalues of TL and Tg to those of T
itself. Now recurse on this idea, finding the eigenvalues of Tl and Tg by further
subdivisions with rank-one corrections, and so on. In this manner an m x m
cigenvalue problem is reduced to a set of 1 x 1 eigenvalue problems together
with a collection of rank-one corrections.

16




Divide-and-conquer

In this process there is one key mathematical point. If the eigenvalues of
T, and 7., are known, how can those of 7" be found? To answer this, suppose
that diagonalizations

Tl = Q[ D[QT-? f; - Q?_D:JQII.-
have been computed. Then from (30.10) it follows that we have

-
T = N Py + Bzz" @ . (30.11)
Q. D, Q)
with z' = (q],q2), where ¢! is the last row of Q, and ¢, is the first row of
(5. Since this eqguation is a similarity transformation, we have reduced the
mathematical problem to the problem of finding the eigenvalues of a diagonal
matrix plus a rank-one correction.

17




Divide-and-conquer

To show how this is done, we simplify notation as follows. Suppose we wish
to find the eigenvalues of D + ww?, where D € R™™ is a diagonal matrix

m w?
f) =1 +Zd2)ﬁ (30.12)
“ d;

J=1

as illustrated in Figure 30.2. This assertion can be justified by noting that if
(D + ww')q = Aq for some ¢ # 0, then (D — X )q + w(w’q) = 0, implying
q+ (D =X "tw(wlq) = 0, that is, w'q + w? (D — AI) " 'w(w?q) = 0. This
amounts to the equation f(A)(w’q) = 0, in which w’q must be nonzero, for
otherwise ¢ would be an eigenvector of I, hence nonzero in only one position,
implying wlg # 0 after all. We conclude that if ¢ is an eigenvector of D +ww?
with eigenvalue A, then f(A) must be 0, and the converse follows because the
form of f(A) guarantees that it has exactly m zeros. The equation f(A) = 0
is known as the secular equation.

18




Divide-and-conquer

d[

Figure 30.2. Plot of the function f(A) of (30.12) for a problem of dimension 4.
The poles of f(A) are the eigenvalues {d;} of D, and the roots of f(A) (solid
dots) are the cigenvalues of D+ww?. The rapid determination of these roots
is the basis of each recursive step of the divide-and-conquer algorithm.

19




Divide-and-conquer

* |f the eigenvalues and eigenvectors required, divide-and-
conquer algorithm is more advantageous than QR algorithm.

20
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The SVD of A

As stated in Theorem 5.4, the SVD of the mxn matrix A (m > n), A=UXV™,
is related to the eigenvalue decomposition of the matrix A*A4,

A'A = VI XNV,
Thus, mathematically speaking, we might calculate the SVD of A as follows:

1. Form A™A:
2. Compute the eigenvalue decomposition A"A = VAV™;
3. Let ¥ be the m x n nonnegative diagonal square root of A;

4. Solve the system UY = AV for unitary U (e.g., via QR factorization).

= This reduction of the SVD problem to a eigenvalue problem
is unstable against small perturbations. (Explanation is
omitted and details can be seen from “the Book”).

22




An Alternative Reduction

There is an alternative, stable way to reduce the SVD to an eigenvalue prob-
lem. Assume that A is square, with m = n: this is no essential restriction,
since we shall see that rectangular singular value problems can be reduced to
square ones. Consider the 2m x 2m hermitian matrix

0 A"
H = (31.2)
A 0 |

mentioned earlier in Exercise 5.4. Since 4 = UX V" implies AV = UY and
AU =V =VX, we have the block 2 x 2 equation

0 A | A | A YO0
] | = ) ) , (31.3)
A 0 U —U U —U 0 —-%

which amounts to an eigenvalue decomposition of H. Thus we see that the
singular values of A are the absolute values of the eigenvalues of H, and the
singular vectors of A can be extracted from the eigenvectors of H.

23




Two-Phase Approach

We have seen that hermitian eigenvalue problems are usually solved by a two-
phase computation: first reduce the matrix to tridiagonal form, then diago-
nalize the tridiagonal matrix. Since the work of Golub, Kahan, and others in
the 1960s, an analogous two-phase approach has been standard for the SVD.
The matrix is brought into bidiagonal form, and then the bidiagonal matrix
is diagonalized:

[ X X X X | [ X X ] [ X ]

X X X X X X ., X
Phase 1 Phase 2
X X X X X X X
— —

X X X X X X
X X X X

X X X X | ] . i |

A B N

24




Phase 1: Golub-Kahan Bidiagonalization

In Phase 1 of the SVD computation, we bring A into bidiagonal form by
applying distinet unitary operations on the left and right. Note how this differs
from the computation of eigenvalues, where the same unitary operations must
be applied on both sides so that each step 18 a similarity transformation. In

that case, it was only possible to introduce zeros below the first subdiagonal.
Here, we are able to completely triangularize and also introduce zeros above
the first superdiagonal.

25




Phase 1: Golub-Kahan Bidiagonalization

The simplest method for accomplishing this, Golub—Kahan bidiagonaliza-
tion, proceeds as follows. Householder reflectors are applied alternately on
the left and the right. Each left reflection introduces a column of zeros below
the diagonal. The right reflection that follows introduces a row of zeros to the
right of the first superdiagonal, leaving intact the zeros just introduced in the
column. For example, for a 6 x 4 matrix, the first two pairs of reflections look
like this:

X X X X ] X X X X ] x X 0 0]
X X X X 0 X XX X XX
X X X X U 0 X X X Vi X X X
X X X X o 0 X X X X XX
X X X X 0 X X X X X X
X X X X | 0 X X X_ | X X X |
A Utz UrAV,
[ X X ] [ X X ]
XXX x X 0
Us- 0 X X Vs X X
— 0 X X X X
0 X X X X
| 0 XX i X X |

UsUTAV, UsUAVIV, 26




Phase 1: Golub-Kahan Bidiagonalization

At the end of this process, n reflectors have been applied on the left and
n — 2 on the right. The pattern of floating point operations resembles two
Householder QR factorizations interleaved with each other, one operating on
the m x n matrix A, the other on the n x m matrix A*. The total operation
count is therefore twice that of a QR factorization (10.9), i.e.,

. 4 .
Work for Golub-Kahan bidiagonalization: ~ 4mn® — E'H.'J' flops.  (31.4)

= There are faster methods.

27




Faster Phase 1

For m = n, this operation count is unnecessarily large. A single QR factor-
ization would introduce zeros everywhere below the diagonal, and for m = n,
these are the great majority of the zeros that are needed. Yet the opera-
tion count for the Golub-Kahan method is twice as high. This observation
suggests an alternative method for bidiagonalization with m = n, first pro-
posed by Lawson and Hanson and later developed by Chan. The idea, LHC
hidiagonalization, is illustrated as follows:

LLawson—Hanson—Chan bidiagonalization

28




Faster Phase 1

LLawson—-Hanson—Chan bidiagonalization

We begin by computing the QR factorization A = QR. Then we compute
the Golub-Kahan bidiagonalization B = U*RV of R. The QR factorization
requires 2mn” — 2n® flops (10.9), and the Golub-Kahan procedure, which now
only has to operate on the upper n x n submatrix, requires %”3 flops. The
total operation count is |

Work for LHC bidiagonalization: ~ 2mn? + 2n® flops. (31.5)

29




Faster Phase 1

The LHC procedure is advantageous only when m > 2n, but the idea
can be generalized so as to realize a saving for any m > n. The trick is to
apply the QR factorization not at the beginning of the computation, but at
a suitable point in the middle. This is advantageous because in the Golub-
Kahan process, a matrix with m > n becomes skinnier as the bidiagonalization
proceeds. If the initial aspect ratio is, say, m/n = 3/2, it will steadily grow to
5/3 and 2 and beyond. After step k, the aspect ratio of the remaining matrix
is (m — k)/(n — k), and when this figure gets sufficiently large, it makes sense
to perform a QR factorization to reduce the problem to a square matrix.

Three-step bidiagonalization
----- | = | N —
| | g
' |
1
A UlAV Q'UIAV,  USQ'UAVT,
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Phase 2

In Phase 2 of the computation of the SVD, the SVD of the bidiagonal matrix
B is determined. From the 1960s to the 1990s, the standard algorithm for
this was a variant of the QR algorithm. More recently, divide-and-conquer
algorithms have also become competitive, and in the future, they are likely to
become the standard. We shall not give details.
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