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In these slides, when we write the matrix A, we mean real, 
symmetric, m by m matrix.  



The Jacobi algorithm (for full matrices) 

The Bisection algorithm (for tridiagonal matrices) 

Divide-and-conquer algorithm (for tridiagonal matrices) 

 

 Note that, general approach is two phase for Hermitian A: 
 First phase: Tridiagonalizing the matrix 

 Second phase: Diagonalizing it 

3 



4 



 Introduced by Jacobi in 1845. 

 

Motivation: We know from the Lecture 25, to obtain eigenvalues 
in dimension 5 or higher, iteration is needed. 
 Eigenvalue problems can be written as rootfinding problems. 

 For d > 4, we do not have explicit formulas for roots (so for eigenvalues). 

 

Why not diagonalize a small submatrix of A, then another, and 
so on, hoping eventually to converge to a diagonalization of the 
full matrix? 
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The idea is based on 2 by 2 submatrices. 

A 2 by 2 real, symmetric matrix can be diagonalized in the form, 

 

 

 

where J is orthogonal. One could take a rotation, 

 

 

where         and  and           
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 Let A be real, symmetric m by m matrix. We form a m by m J 
which is the identity in all but four entries, where it has the 
form, 

 

 

 

 

 

Applying       from left modifies two rows of A and applying J 
from the right modifies two columns of A. 

At each step, a symmetric pair of zeros introduced into the 
matrix but previous zeros are destroyed. However, the usual 
effects is that the magnitudes of these nonzeros shrink steadily. 
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After a symmetric matrix has been tridiagonalized, the natural 
next step is the Bisection algorithm if one does not want all of 
the eigenvalues but just a subset of them. 

 

Bisection can find the largest 10% of the eigenvalues, or the 
smallest thirty eigenvalues, or all the eigenvalues in the interval 
[1,2]. 

 

Once the desired eigenvalues are found, the corresponding 
eigenvectors can be obtained by one step of inverse iteration 
(Lecture 27). 
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 Since the eigenvalues of a real symmetric matrix are real, we can 
find them by searching the real line for roots of the polynomial: 
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Given A real, symmetric m by m matrix, let       
denote its principal (upper-left) square submatrices of 
dimensions 1,...,m. 

Without loss of generality, let us assume A is tridiagonal and 
irreducible in the sense that all of its off-diagonal entries are 
zero. 
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The eigenvalues of        are distinct; let them be denoted by 

                  These eigenvalues strictly interlace: 

 

 

 

 

 

 

 

 

 

 It is the interlacing property that makes it possible to count the 
exact number of eigenvalues in a specified interval. 
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• If the eigenvalues and eigenvectors required, divide-and-
conquer algorithm is more advantageous than QR algorithm.  
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 This reduction of the SVD problem to a eigenvalue problem 
is unstable against small perturbations. (Explanation is 
omitted and details can be seen from “the Book”). 
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 There are faster methods. 
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