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Roadmap

= In Lecture 26, we investigate triangulation to find the Schur decomposition of a matrix.
This works for finding eigenvalues of general matrices

= In Lecture 27, we talk about finding eigenvectors of a real Hermitian matrix. Power
iterations




Lecture 26
Reduction to Hessenberg or Tridiagonal

Form
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Reduction to Hessenberg?

Eigenvalue-Revealing Factorizations

In the preceding pages we have described three examples of eigenvalue-reveal-
ing factorizations, factorizations of a matrix that reduce it to a form in which
the eigenvalues are explicitly displayed. We can summarize these as follows.

A diagonalization A = XAX ™! exists if and only if A is nondefective.
A unitary diagonalization A = QAQ" exists if and only if A is normal.

A unitary triangularization (Schur factorization) A = QTQ* always exists.

= In Lecture 24, we saw that the upper triangular matrix T in Schur factorization gives us
eigenvalues in itsdiagonal
= To find T:

Q) QI AQQs - Q;
Q' Q

converges to an upper-triangular matrix 7" as j — oc.




Two Phases until we get IT

[ %X X X X

X X X X X [ X X X X X X
X X X X X | Phase1 | x x x x x | Phase 2 X X X X
X X X X X — X X X X — X X X
X X X X X X X X X X

X X X X X | ] X X | ] X |
A+ A* H T

-The first phase is to find Hessenberg matrices.
-In the second phase, a sequence of reduction to Hessenberg matrices converge to T.




Howtodo IT?

- Basic idea is to find a series of similarity transforms so that we converge to T.

Q- QI AQQs - Q,
@ Q

converges to an upper-triangular matrix 7" as 7 — oc.
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Greed Is not good for IT

X X X X X [ X X X X X |
X X X X X . 0 XX XX
X X X X X 1 0 X X XX
—
X X X X X 0 X X X X
X X X X X | _OXXXX_
A QA

We need to complete the similarity transform:

— —

X X X X X (X X X X X |

X X X X 0 XXX XX

X X X X vl X X X X X
—

X X X X XXX XX

X X X X X X X X X |

QTA - QTAQ,




Be less ambiTious
[ X X X X X | [ X X X X X | X X X X X |
X X X X X 0. XX XXX 0 XXX XX
X X X X X v] 0 X X XX ! X X X X
— —
X X X X X 0 X X XX X X X X
| X X X X X | 0 X XXX XX X X |
A Q1A Q1AQ;

[ X X X X X | (% X X X X | X X X X X
X X X X X 0 X X X X X 0 X X XXX
X X X X 2 X X X X X X X X X
—_— —_—

X X X X 0 X X X X X X
| X X X X | 0 XXX ] XXX
Q1AQ, Q5Q7TAQ, Q5QTAQ Q-




We have IT!I

After repeating this process m — 2 times, we have a product in Hessenberg
form, as desired:

[ X X X X X
X X X X X
X X X X

X X X

X X

g Qle ‘“lQ QZ Qm 2 —
Q* Q
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Lecture 27
Rayleigh Quotient and

Inverse lterations
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Real Symmetric Matrices

= Now, we restrict ourselves to symmetric, real matrices.

= It implies that
1 ) All eigenvalues are real
2 ) We have complete set of eigenvectors
3 ) Eigenvectors are orthogonal to each other




Rayleigh Quotient

The Rayleigh quotient of a vector € IR™ is the scalar

T Ax

Ty

r(z) =

Notice that if z is an eigenvector, then r(z) = A is the corresponding eigen-
value. One way to motivate this formula is to ask: given z, what scalar «
“acts most like an eigenvalue” for z in the sense of minimizing ||Az — ax||>?

e — -




Maximizer of RQ

2 .
Vr(z) = —(Az — r(x)x).

Ty

From this formula we see that at an eigenvector x of A, the gradient of r(z) is |
the zero vector. Conversely, if Vr(z) = 0 with x # 0, then x is an eigenvector
and 7(x) is the corresponding eigenvalue.




Maximizer of RQ

Figure 27.1. The Rayleigh quotient r(x) is a continuous function on the unit
sphere ||z|| = 1 in R™, and the stationary points of r(x) are the normalized
ergenvectors of A. In this example with m = 3, there are three orthogonal
stationary points (as well as their antipodes).




Goodness of RQ as an eigenvalue estimate

Let g; be one of the eigenvectors of A. From the fact that Vr(g;) = 0,
together with the smoothness of the function r(z) (everywhere except at the
origin z = (), we derive an important consequence:

r(z) —r(qs;) = O(||lz — qs]|*) as z — qy. (27.3)

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigen-
value. Herein lies its power.




Goodness of RQ as an eigenvalue estimate

A more explicit way to derive (27.3) is to expand z as a linear combi-

1 1 r / A m - s —

nation )of the 01g(;n\oct.ors Qs+ Gm of A, If 2 = 3 a;q;, then r(z) =
m 2 m p A\ L . i .

TLyai)i/ X aj. Thus r(z) is a weighted mean of the eigenvalues of A,

with the weights equal to the squares of the coordinates of x in the eigenvec-

tor basis. Because of this squaring of the coordinates, it is not hard to see

that if |a;/a;| < € for all j # J, then r(z) — r(g;) = O(€?).
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Power lterations

Algorithm 27.1. Power Iteration
v(® = some vector with o9 =1
for k=1,2,...
w = Avk-b apply A
v = w/||w|| normalize
AE) = (yNT Ayp(k) Rayleigh quotient




Analysis of Power Iterations

We can analyze power iteration easily. Write v(? as a linear combination
of the orthonormal eigenvectors g;:

v =a1q1 + asqe + -+ + A
Since v*) is a multiple of A*v(%, we have for some constants ¢
v = ¢ AFO)
_ k k k
= cr(aAjq + aA5q2 + <+ - + A Gm)
= Clc/\,lC ((11(11 + (12(/\‘2/)‘1)k(12 + ot am(/\m//\l)kqm) . (27.4)




Convergence quality

Theorem 27.1. Suppose |[Ai| > (Ao > -+ > |\, = 0 and ¢fv'Y # 0. Then
the iterates of Algorithm 27.1 salisfy

k . DI
A
. AN =0 (|5
) | 1 by

as k — 0o. The £+ sign means that at each step k, one or the other choice of
sign is to be taken, and then the indicated bound holds.

A2

v — (£q1)|| = O ( N

Proof. The first equation follows from (27.4), since a; = q] v'% # 0 by as-
sumption. The second follows from this and (27.3). If A; > 0, then the +
signs are all + or all —, whereas if Ay < 0, they alternate. 0
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Downsides of Power lterations

On its own, power iteration is of limited use, for several reasons. First, it
can find only the eigenvector corresponding to the largest eigenvalue. Second,
the convergence is linear, reducing the error only by a constant factor ~ |\ /A,
at each iteration. Finally, the quality of this factor depends on having a
largest eigenvalue that is significantly larger than the others. If the largest
two eigenvalues are close in magnitude, the convergence will be very slow.

Fortunately, there is a way to amplify the differences between eigenvalues.

1) Can only find eigenvector corresponding to the largest eigenvalue

2) Convergence is linear: ( ' a.)
lv'*) = (£q,) 0=

A

3) Quality of convergence is dependent on spectral gap.
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Remedy for close eigenvalues: Inverse lterations

For any 1 € R that is not an eigenvalue of A, the eigenvectors of (A — pl) ™!
are the same as the eigenvectors of A, and the corresponding eigenvalues are
{(A\; — )=}, where {);} are the eigenvalues of A. This suggests an idea.
Suppose p is close to an eigenvalue \; of A. Then (A; — p) ' may be much
larger than (A\; — p)~" for all j # J. Thus, if we apply power iteration to
(A— pI)~", the process will converge rapidly to g;. This idea is called inverse
iteration.
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Inverse lterations

Algorithm 27.2. Inverse Iteration

v(% = some vector with [|v(?]| =1

for k=1,2....
Solve (A — pul)w = v*~Y for w apply (A — pul)™!
v = w/||w|| normalize
AE) = (p(F))T Ay Rayleigh quotient




Rayleigh Quotient Iterations

one step of inverse iteration

approximate A approximate gy

Rayleigh quotient




Rayleigh Quotient Iterations

Algorithm 27.3. Rayleigh Quotient Iteration

v(® = some vector with [[v'?] =1
MO = (»0)T4p©) = corresponding Rayleigh quotient

for k=1.2,...
Solve (A — A*=UNw =% =Y for w  apply (A — AX*-1D])~!
v®) = w/||wl| normalize
AE) = (p(k))T4p(k) Rayleigh quotient
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Rayleigh Quotient Iterations, Cubic Convergence

Theorem 27.3. Rayleigh quotient iteration converges to an eigenvalue/eigen-
vector pair for all except a set of measure zero of starting vectors v'. When
it converges, the convergence is ultimately cubic in the sense that if \;y is an
eigenvalue of A and v is sufficiently close to the eigenvector q;, then

[0 * ) — (£q5)|| = O(|[v"™ — (£q,)|°) (27.6)

and
AED — X;| = O(IA® — A, ) (27.7)

as k — oo. The + signs are nol necessarily the same on the two sides of
(27.6).
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Exercises

27.2. Again let A € C™*"™ be arbitrary. The set of all Rayleigh quotients of
A, corresponding to all nonzero vectors x € C™, is known as the field of values
or numerical range of A, a subset of the complex plane denoted by W (A).
(a) Show that W (A) contains the convex hull of the eigenvalues of A.

(b) Show that if A is normal, then W (A) is equal to the convex hull of the
eigenvalues of A.
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Exercises

27.4. Every real symmetric square matrix can be orthogonally diagonalized,
and the developments of this lecture are invariant under orthogonal changes
of coordinates. Thus it would have been sufficient to carry out each derivation
of this lecture under the assumption that A is a diagonal matrix with entries
ordered by decreasing absolute value. Making this assumption, describe the
form taken by (27.4), (27.5), and Algorithm 27.3.
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