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 Let 𝐴 𝜖 ℂ𝑚 𝑥 𝑚  be a square matrix, a nonzero 𝑥 𝜖 ℂ𝑚 is an eigenvector of A, and  

𝜆 𝜖 ℂ is its corresponding eigenvalue if: 

 

 

 Idea: The action of a matrix A on a subspace 𝑆 of ℂ𝑚 may sometimes mimic scalar 

multiplication. 

 

 

 In such a case, the special subspace 𝑆 is called an eigenspace, and any nonzero 𝑥 𝜖 𝑆 is 

an eigenvector 

 

 

 The set of all eigenvalues of a matrix A is the spectrum of A, a subset of ℂ denoted by 

Λ(A) 
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 What are eigenvalues useful for? 

 

 Algorithmically: simplify solutions of certain problems by reducing a coupled system to a 

collection of scalar problems 

 Physically: given insight into the behavior of evolving systems governed by linear equations, 

e.g., resonance (of musical instruments when struck or plucked or bowed), stability (of fluid 

flows with small perturbations) 



 An eigenvalue decomposition of a square matrix A is a factorization where 𝑋 is a nonsingular and 

Λ is diagonal: 

 

𝐴 =  𝑋Λ𝑋−1 

 

 This can be rewritten as 𝐴𝑋 = 𝑋Λ which is: 

 

 

 

 

 

 

 
𝐴𝑥𝑗 = 𝜆𝑗𝑥𝑗 

 

 𝜆𝑗  is an eigenvalue and j-th column of X is the corresponding eigenvector 
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 Express a change of basis to eigenvector coordinates 

 Let 𝐴𝑥 =  𝑏 and 𝐴 =  𝑋Λ𝑋−1, we have 

(𝑋−1𝑏)  = Λ(𝑋−1𝑥) 

 Thus, to compute 𝐴𝑥, 

 we can expand 𝑥 in the basis of columns of 𝑋, apply Λ, and interpret the result as a vector of coefficients of 

a linear combination of the columns of 𝑋 
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 The set of eigenvectors corresponding to a single eigenvalue, together with the zero 

vector, forms a subspace of ℂ𝑚 known as an eigenspace, 𝐸𝜆 

 

 An eigenspace 𝐸𝜆 is an invariant subspace of 𝐴, i.e., 𝐴𝐸𝜆 ⊆ 𝐸𝜆 

 

 The geometric multiplicity of 𝜆: The dimension of 𝐸𝜆 can be interpreted as the 

maximum number of linearly independent eigenvectors that can be found, all with the 

same eigenvalue 𝜆 

 

 Geometric multiplicity can also be described as the dimension of the null space of    

𝐴 − 𝜆𝐼 since the null space is again 𝐸𝜆  
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 The characteristic polynomial of 𝐴 𝜖 ℂ𝑚 𝑥 𝑚, denoted by 𝑝𝐴, is the degree m 

polynomial 

 𝑝𝐴 𝑧 = det 𝑧𝐼 −  𝐴  

 

 Note p is monic (i.e., the coefficient of its degree 𝑚 term is 1) 
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 Even if matrix A is real, some of its eigenvalues may be complex 

 Physically, related to the phenomenon that real dynamical systems can have motions 
that oscillate as well as grow or decay 

 Algorithmically, even if the input to a matrix eigenvalue problem is real, the output 
may have to be complex 
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 By the fundamental theorem of algebra, we can write 𝑝𝐴 in terms of their roots 

𝑝𝐴 𝑥 =  𝑥 − 𝜆1 𝑥 − 𝜆2 …  (𝑥 − 𝜆𝑚) 

for some numbers 𝜆𝑗𝜖 ℂ 

 Algebraic multiplicity of an eigenvalue  of A: its multiplicity as a root of 𝑝𝐴 

 An eigenvalue is simple if is algebraic multiplicity is 1 

 Algebraic multiplicity is always as great as its geometric multiplicity 
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 If 𝑋 𝜖 ℂ𝑚 𝑥 𝑚is nonsingular, then the map 𝐴 ⇒ 𝑋−1𝐴𝑋 is called a similarity 

transformation of 𝐴 

 Two matrices A and B are similar if there is a similarity transformation relating one to 

the other, i.e., if there exists a nonsingular𝑋 𝜖 ℂ𝑚 𝑥 𝑚 s.t. 𝐵 =  𝑋−1𝐴𝑋 

 It is a change of basis operation 
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 Both A and B have characteristic polynomial 𝑧 −  2 3, so there is a single eigenvalue  

𝜆 =  2 of algebraic multiplicity 3 

 In the case of A, we can choose three independent eigenvectors, e.g., e1, e2, e3 and so 

the geometric multiplicity of 𝜆 = 2 is 3 

 For B, on the other hand, we can only have one single independent eigenvector, i.e., a 

scalar multiple of e1, so the geometric multiplicity of the eigenvalue is only 1 

 It means that there are not sufficient number of independent eigenvectors to span B 

 It also means that A can be diagonalized but not B 
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 An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a 

defective eigenvalue 

 

 A matrix that has one or more defective eigenvalues is a defective matrix 

 

 Any diagonal matrix is nondefective, and both the algebraic and the geometric 

multiplicities of an eigenvalue 𝜆 are equal to the number of its occurrences along the 

diagonal 
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 A matrix 𝐴 𝜖 ℂ𝑚 𝑥 𝑚 is unitarily diagonaizable when it has m linearly independent and 

orthogonal eigenvectors. i.e., there exists a unitary matrix Q such that  

𝐴 = 𝑄Λ𝑄𝐻 

 

 

 

 A matrix is normal if 𝐴𝐻𝐴 = 𝐴𝐴𝐻. 
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 Every square matrix can be factorized in Schur decomposition 

 

𝐴 =  𝑄𝑇𝑄𝐻 , 𝐴 𝜖 ℂ𝑚 𝑥 𝑚 
𝑇 =  𝑄𝐻𝐴𝑄 

where Q is unitary and T is upper triangular, and the eigenvalues of A appear on the 

diagonal of T 

 Any square matrix, defective or not, can be triangularized by unitary transformations 

 The diagonal elements of a triangular matrix are its eigenvalues 

 The unitary transformations preserve eigenvalues 
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 diagonalization 𝐴 =  𝑋Λ𝑋−1 exists if and only if A is nondefective 

 unitary diagonalization 𝐴 =  𝑄Λ𝑄𝐻 exits if and only if A is normal 

 unitary triangularization (Schur factorization) 𝐴 =  𝑄𝑇𝑄𝐻 always exists 

 

 

 All three of these factorizations can be used to compute eigenvalues 

 In general, Schur factorization is used as this applies without restriction 

 If A is normal, then Schur form comes out diagonal and its eigenvalues are real 

 If A is Hermitian, then we can take advantage of symmetry with half as much work or 

less than is required for general A 
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 Characteristic polynomial: Compute the coefficients of the characteristic polynomial 

and find the roots (an ill-conditioned problems in general) 

 

 

 

 Power iteration: The sequence 

 

 

 

 slowly converges, under certain assumptions, to an eigenvector corresponding to the 

largest eigenvalue of A 
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 Best general purpose eigenvalue algorithms are based on a different principle: the 

computation of an eigenvalue revealing factorization of the matrix A, where the 

eigenvalues appear as entries of one of the factors. 

 

 diagonalization 𝐴 =  𝑋Λ𝑋−1 exists if and only if A is nondefective 

 unitary diagonalization 𝐴 =  𝑄Λ𝑄𝐻 exits if and only if A is normal 

 unitary triangularization (Schur factorization) 𝐴 =  𝑄𝑇𝑄𝐻  always exists 

 

 Goal of these methods: Apply a seqeunce of transformations to A to introduce zeros in 

necessary places.  
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 Any polynomial rootfinding problem can be represented as an eigenvalue problem. 
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 A is called a companion matrix of p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The roots of p are equal to the eigenvalues of A. 
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 Abel in 1824 proved that no analog of the quadratic formula can exist for polynomials 

of degree 5 or more 

 

 

 Any eigenvalue solver must be iterative 

 The goal is to produce sequences of numbers that converge rapidly towards eigenvalues 
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 Most of the general purpose eigenvalue algorithms in use today proceed by computing 

the Schur factorization 

𝐴 = 𝑄𝑇𝑄𝐻   𝑇 = 𝑄𝐻𝐴𝑄 

 

 Schur factorization 𝐴 =  𝑄𝑇𝑄𝐻 can be computed by transforming A using a sequence 

of elementary unitary similarity transformation 

 

𝑋 ⇒ 𝑄𝑗
𝐻𝑋𝑄𝑗 

 

so the product  

𝑄𝑗
𝐻 … 𝑄2

𝐻𝑄1
𝐻𝐴𝑄1𝑄2 … 𝑄𝑗 

 

converges to an upper triangular matrix T as  𝑗 ⇒  ∞ 
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 If A is real but not symmetric, then in general it may have complex eigenvalues in 

conjugate pairs 

 

 

 An algorithm that computes the Schur factorization will have to be capable of 

generating complex outputs from real inputs 

 

 

 If A is Hermitian, then 𝑄𝑗
𝐻 … 𝑄2

𝐻𝑄1
𝐻𝐴𝑄1𝑄2 … 𝑄𝑗 is also Hermitian, and thus the limit of 

the converging sequence is both triangular and Hermitian, hence diagonal 

 

 

 This implies that the same algorithms that compute a unitary triangularization of a 

general matrix also compute a unitary diagonalization of a Hermitian matrix 
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 In the 1st phase, a direct method is applied to produce an upper Hessenberg matrix, i.e., 

a matrix with zeros below the 1st subdiagonal 

 

 In the second phase, an iteration is applied to generate a formally infinite sequences of 

Hessenberg matrices that converge to a triangular form 
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 If A is Hermitian, the two phase approach becomes faster 

 

 The intermediate matrix is a Hermitian Hessenberg matrix, i.e.,tridiagonal 

 

 The result is a Hermitian triangular matrix, i.e., diagonal 
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