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 Let 𝐴 𝜖 ℂ𝑚 𝑥 𝑚  be a square matrix, a nonzero 𝑥 𝜖 ℂ𝑚 is an eigenvector of A, and  

𝜆 𝜖 ℂ is its corresponding eigenvalue if: 

 

 

 Idea: The action of a matrix A on a subspace 𝑆 of ℂ𝑚 may sometimes mimic scalar 

multiplication. 

 

 

 In such a case, the special subspace 𝑆 is called an eigenspace, and any nonzero 𝑥 𝜖 𝑆 is 

an eigenvector 

 

 

 The set of all eigenvalues of a matrix A is the spectrum of A, a subset of ℂ denoted by 

Λ(A) 
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 What are eigenvalues useful for? 

 

 Algorithmically: simplify solutions of certain problems by reducing a coupled system to a 

collection of scalar problems 

 Physically: given insight into the behavior of evolving systems governed by linear equations, 

e.g., resonance (of musical instruments when struck or plucked or bowed), stability (of fluid 

flows with small perturbations) 



 An eigenvalue decomposition of a square matrix A is a factorization where 𝑋 is a nonsingular and 

Λ is diagonal: 

 

𝐴 =  𝑋Λ𝑋−1 

 

 This can be rewritten as 𝐴𝑋 = 𝑋Λ which is: 

 

 

 

 

 

 

 
𝐴𝑥𝑗 = 𝜆𝑗𝑥𝑗 

 

 𝜆𝑗  is an eigenvalue and j-th column of X is the corresponding eigenvector 
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 Express a change of basis to eigenvector coordinates 

 Let 𝐴𝑥 =  𝑏 and 𝐴 =  𝑋Λ𝑋−1, we have 

(𝑋−1𝑏)  = Λ(𝑋−1𝑥) 

 Thus, to compute 𝐴𝑥, 

 we can expand 𝑥 in the basis of columns of 𝑋, apply Λ, and interpret the result as a vector of coefficients of 

a linear combination of the columns of 𝑋 
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 The set of eigenvectors corresponding to a single eigenvalue, together with the zero 

vector, forms a subspace of ℂ𝑚 known as an eigenspace, 𝐸𝜆 

 

 An eigenspace 𝐸𝜆 is an invariant subspace of 𝐴, i.e., 𝐴𝐸𝜆 ⊆ 𝐸𝜆 

 

 The geometric multiplicity of 𝜆: The dimension of 𝐸𝜆 can be interpreted as the 

maximum number of linearly independent eigenvectors that can be found, all with the 

same eigenvalue 𝜆 

 

 Geometric multiplicity can also be described as the dimension of the null space of    

𝐴 − 𝜆𝐼 since the null space is again 𝐸𝜆  
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 The characteristic polynomial of 𝐴 𝜖 ℂ𝑚 𝑥 𝑚, denoted by 𝑝𝐴, is the degree m 

polynomial 

 𝑝𝐴 𝑧 = det 𝑧𝐼 −  𝐴  

 

 Note p is monic (i.e., the coefficient of its degree 𝑚 term is 1) 
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 Even if matrix A is real, some of its eigenvalues may be complex 

 Physically, related to the phenomenon that real dynamical systems can have motions 
that oscillate as well as grow or decay 

 Algorithmically, even if the input to a matrix eigenvalue problem is real, the output 
may have to be complex 
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 By the fundamental theorem of algebra, we can write 𝑝𝐴 in terms of their roots 

𝑝𝐴 𝑥 =  𝑥 − 𝜆1 𝑥 − 𝜆2 …  (𝑥 − 𝜆𝑚) 

for some numbers 𝜆𝑗𝜖 ℂ 

 Algebraic multiplicity of an eigenvalue  of A: its multiplicity as a root of 𝑝𝐴 

 An eigenvalue is simple if is algebraic multiplicity is 1 

 Algebraic multiplicity is always as great as its geometric multiplicity 
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 If 𝑋 𝜖 ℂ𝑚 𝑥 𝑚is nonsingular, then the map 𝐴 ⇒ 𝑋−1𝐴𝑋 is called a similarity 

transformation of 𝐴 

 Two matrices A and B are similar if there is a similarity transformation relating one to 

the other, i.e., if there exists a nonsingular𝑋 𝜖 ℂ𝑚 𝑥 𝑚 s.t. 𝐵 =  𝑋−1𝐴𝑋 

 It is a change of basis operation 
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 Both A and B have characteristic polynomial 𝑧 −  2 3, so there is a single eigenvalue  

𝜆 =  2 of algebraic multiplicity 3 

 In the case of A, we can choose three independent eigenvectors, e.g., e1, e2, e3 and so 

the geometric multiplicity of 𝜆 = 2 is 3 

 For B, on the other hand, we can only have one single independent eigenvector, i.e., a 

scalar multiple of e1, so the geometric multiplicity of the eigenvalue is only 1 

 It means that there are not sufficient number of independent eigenvectors to span B 

 It also means that A can be diagonalized but not B 
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 An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a 

defective eigenvalue 

 

 A matrix that has one or more defective eigenvalues is a defective matrix 

 

 Any diagonal matrix is nondefective, and both the algebraic and the geometric 

multiplicities of an eigenvalue 𝜆 are equal to the number of its occurrences along the 

diagonal 
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 A matrix 𝐴 𝜖 ℂ𝑚 𝑥 𝑚 is unitarily diagonaizable when it has m linearly independent and 

orthogonal eigenvectors. i.e., there exists a unitary matrix Q such that  

𝐴 = 𝑄Λ𝑄𝐻 

 

 

 

 A matrix is normal if 𝐴𝐻𝐴 = 𝐴𝐴𝐻. 
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 Every square matrix can be factorized in Schur decomposition 

 

𝐴 =  𝑄𝑇𝑄𝐻 , 𝐴 𝜖 ℂ𝑚 𝑥 𝑚 
𝑇 =  𝑄𝐻𝐴𝑄 

where Q is unitary and T is upper triangular, and the eigenvalues of A appear on the 

diagonal of T 

 Any square matrix, defective or not, can be triangularized by unitary transformations 

 The diagonal elements of a triangular matrix are its eigenvalues 

 The unitary transformations preserve eigenvalues 
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 diagonalization 𝐴 =  𝑋Λ𝑋−1 exists if and only if A is nondefective 

 unitary diagonalization 𝐴 =  𝑄Λ𝑄𝐻 exits if and only if A is normal 

 unitary triangularization (Schur factorization) 𝐴 =  𝑄𝑇𝑄𝐻 always exists 

 

 

 All three of these factorizations can be used to compute eigenvalues 

 In general, Schur factorization is used as this applies without restriction 

 If A is normal, then Schur form comes out diagonal and its eigenvalues are real 

 If A is Hermitian, then we can take advantage of symmetry with half as much work or 

less than is required for general A 
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 Characteristic polynomial: Compute the coefficients of the characteristic polynomial 

and find the roots (an ill-conditioned problems in general) 

 

 

 

 Power iteration: The sequence 

 

 

 

 slowly converges, under certain assumptions, to an eigenvector corresponding to the 

largest eigenvalue of A 
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 Best general purpose eigenvalue algorithms are based on a different principle: the 

computation of an eigenvalue revealing factorization of the matrix A, where the 

eigenvalues appear as entries of one of the factors. 

 

 diagonalization 𝐴 =  𝑋Λ𝑋−1 exists if and only if A is nondefective 

 unitary diagonalization 𝐴 =  𝑄Λ𝑄𝐻 exits if and only if A is normal 

 unitary triangularization (Schur factorization) 𝐴 =  𝑄𝑇𝑄𝐻  always exists 

 

 Goal of these methods: Apply a seqeunce of transformations to A to introduce zeros in 

necessary places.  
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 Any polynomial rootfinding problem can be represented as an eigenvalue problem. 
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 A is called a companion matrix of p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The roots of p are equal to the eigenvalues of A. 
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 Abel in 1824 proved that no analog of the quadratic formula can exist for polynomials 

of degree 5 or more 

 

 

 Any eigenvalue solver must be iterative 

 The goal is to produce sequences of numbers that converge rapidly towards eigenvalues 
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 Most of the general purpose eigenvalue algorithms in use today proceed by computing 

the Schur factorization 

𝐴 = 𝑄𝑇𝑄𝐻   𝑇 = 𝑄𝐻𝐴𝑄 

 

 Schur factorization 𝐴 =  𝑄𝑇𝑄𝐻 can be computed by transforming A using a sequence 

of elementary unitary similarity transformation 

 

𝑋 ⇒ 𝑄𝑗
𝐻𝑋𝑄𝑗 

 

so the product  

𝑄𝑗
𝐻 … 𝑄2

𝐻𝑄1
𝐻𝐴𝑄1𝑄2 … 𝑄𝑗 

 

converges to an upper triangular matrix T as  𝑗 ⇒  ∞ 
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 If A is real but not symmetric, then in general it may have complex eigenvalues in 

conjugate pairs 

 

 

 An algorithm that computes the Schur factorization will have to be capable of 

generating complex outputs from real inputs 

 

 

 If A is Hermitian, then 𝑄𝑗
𝐻 … 𝑄2

𝐻𝑄1
𝐻𝐴𝑄1𝑄2 … 𝑄𝑗 is also Hermitian, and thus the limit of 

the converging sequence is both triangular and Hermitian, hence diagonal 

 

 

 This implies that the same algorithms that compute a unitary triangularization of a 

general matrix also compute a unitary diagonalization of a Hermitian matrix 
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 In the 1st phase, a direct method is applied to produce an upper Hessenberg matrix, i.e., 

a matrix with zeros below the 1st subdiagonal 

 

 In the second phase, an iteration is applied to generate a formally infinite sequences of 

Hessenberg matrices that converge to a triangular form 
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 If A is Hermitian, the two phase approach becomes faster 

 

 The intermediate matrix is a Hermitian Hessenberg matrix, i.e.,tridiagonal 

 

 The result is a Hermitian triangular matrix, i.e., diagonal 
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