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Eigenvalues and eigenvectors

= Let A e C"™*™ be a square matrix, a nonzero x € C"™ is an eigenvector of A, and
A € C s its corresponding eigenvalue if:

Axr = Az

= Idea: The action of a matrix A on a subspace S of C"* may sometimes mimic scalar
multiplication.

= In such a case, the special subspace S is called an eigenspace, and any nonzero x € S is
an eigenvector

= The set of all eigenvalues of a matrix A is the spectrum of A, a subset of C denoted by
A(A)




Eigenvalues and eigenvectors

Ar = M.

= What are eigenvalues useful for?

= Algorithmically: simplify solutions of certain problems by reducing a coupled system to a
collection of scalar problems

= Physically: given insight into the behavior of evolving systems governed by linear equations,
e.g., resonance (of musical instruments when struck or plucked or bowed), stability (of fluid
flows with small perturbations)




Eigenvalue decomposition

= An eigenvalue decomposition of a square matrix A is a factorization where X is a nonsingular and
A 1s diagonal:

A= XAx?

= This can be rewritten as AX = XA which is:

_ S or - _ 1T A

= J;jis an eigenvalue and j-th column of X is the corresponding eigenvector




Eigenvalue decomposition

= Express a change of basis to eigenvector coordinates

" LetAx = bandA = XAX~1, we have
(X~1b) = A(X~1x)
* Thus, to compute Ax,

= we can expand x in the basis of columns of X, apply A, and interpret the result as a vector of coefficients of
a linear combination of the columns of X




Geometric multiplicity

= The set of eigenvectors corresponding to a single eigenvalue, together with the zero
vector, forms a subspace of C™ known as an eigenspace, Ej

= An eigenspace E) is an invariant subspace of 4, 1.e., AE; € E;

= The geometric multiplicity of A: The dimension of E; can be interpreted as the
maximum number of linearly independent eigenvectors that can be found, all with the
same eigenvalue A

= Geometric multiplicity can also be described as the dimension of the null space of
A — Al since the null space is again E;

6




Characteristic polynomial

= The characteristic polynomial of A € C™* ™, denoted by pg,, is the degree m
polynomial

= p,(z) =det(zl — A)

= Note p is monic (i.e., the coefficient of its degree m term is 1)

det(A-AD=0,
@iy g e g

da] dpp .. g

=
[l

g gz ... g

ay =4 ap; e H g

ay an=-4 .. ay

":I."-:l 1:]'..'.:2 - ":I."-:."-:_";L




Characteristic polynomial (cont'd)

Theorem 24.1. A is an eigenvalue of A if and only if pa(\) = 0.
Proof. This follows from the definition of an eigenvalue:

A is an eigenvalue <= there is a nonzero vector = such that Az — Ax = 0
<= Al — A is singular
<= det(A\] — A) =0. 0

= Even if matrix A is real, some of its eigenvalues may be complex

= Physically, related to the phenomenon that real dynamical systems can have motions
that oscillate as well as grow or decay

= Algorithmically, even if the input to a matrix eigenvalue problem is real, the output
may have to be complex




Algebraic multiplicity

= By the fundamental theorem of algebra, we can write p4 in terms of their roots
pAX) = (x —A)(x —A2) .. (x —4y)

for some numbers A;e C

= Algebraic multiplicity of an eigenvalue of A: its multiplicity as a root of p,4

= An eigenvalue 1s simple if 1s algebraic multiplicity 1s 1

= Algebraic multiplicity 1s always as great as its geometric multiplicity

Theorem 24.2. If A € C"™*™, then A has m eigenvalues, counted with alge-

braic multiplicity. In particular, if the roots of pa are simple, then A has m
distinct ergenvalues.

9




Similarity transformation

= If X € C"™*™is nonsingular, then the map A = X 1AX is called a similarity
transformation of A

= Two matrices A and B are similar if there is a similarity transformation relating one to
the other, i.e., if there exists a nonsingularX e C"*™ st. B = X 1AX

= It is a change of basis operation

Theorem 24.3. If X is nonsingular, then A and X 'AX have the same char-
acteristic polynomual, eigenvalues, and algebraic and geometric mulliplicities.

Proof. The proof that the characteristic polynomials match is a straightfor-
ward computation:

Pxoax(z) = det(z] — X 'AX) = det(X (2] — A)X)
= det(X " det(zI — A)det(X) = det(zI — A) = pa(z).




24.4

Theorem 24.4. The algebraie moltiplicity of an etgerivalue N sz afl least as
great as ils geometric rnaltiplicity.

Proof. Let n be the geometrie multiplicity of A for the matrix A, Form an
m % n matrix V whose n columns constitute an orthonormal basis of the
cigenspace {o: Ax = A} Then, extending V' to a square unitary matrix V',
we obtain VAV in the form

AOC
0

L=1"AV =

where I is the n xn identity, C'1s nx (m—mn), and Dis (m—mn) x (m—mn). By
the definition of the determinant, det{zf — B) = det{z] — Al')det(z] — D) =
(z—=A)"det(zI — D). Therefore the algebraic multiplicity of A as an eigenvalue
of B 1s at least n. Since similarity transformations preserve multiplicities, the
same 1s true for A. O

11




Defective eigenvalue

Example 24.1. Consider the matrices

N

|\
o —
p—

A= 9 . B=

(N
(N

= Both A and B have characteristic polynomial (z — 2)3, so there is a single eigenvalue
A = 2 of algebraic multiplicity 3

= In the case of A, we can choose three independent eigenvectors, e.g., ¢l, €2, €3 and so
the geometric multiplicity of A =2 1s 3

= For B, on the other hand, we can only have one single independent eigenvector, i.e., a
scalar multiple of e1, so the geometric multiplicity of the eigenvalue is only 1

= [t means that there are not sufficient number of independent eigenvectors to span B
= [t also means that A can be diagonalized but not B




Defective eigenvalue

= An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a
defective eigenvalue

= A matrix that has one or more defective eigenvalues is a defective matrix

= Any diagonal matrix is nondefective, and both the algebraic and the geometric
multiplicities of an eigenvalue A are equal to the number of its occurrences along the
diagonal




Diagonalizability

Theorem 24.5. An m x m matriz A is nondefective if and only if it has an
eigenvalue decomposition A = XAX L.

Proof. (<=) Given an eigenvalue decomposition A = XAX !, we know by
Theorem 24.3 that A is similar to A, with the same eigenvalues and the same
multiplicities. Since A is a diagonal matrix, it is nondefective, and thus the
same holds for A.

(=) A nondefective matrix must have m linearly independent eigenvectors,
because eigenvectors with different eigenvalues must be linearly independent,
and each eigenvalue can contribute as many linearly independent eigenvectors
as its multiplicity. If these m independent eigenvectors are formed into the
columns of a matrix X, then X is nonsingular and we have A = XAX ' O




Determinant and trace

Theorem 24.6. The determinant det(A) and trace tr(A) are equal to the
product and the sum of the eigenvalues of A, respectively, counted with alge-
braic multiplicity:

T T

det(A) =[] A;,  tr(4) =D A, (24.8)

=1 =1

Proof. From (24.5) and (24.6), we compute

det(A) = (~1)™det(—A4) = (=1)™pa(0) = [ A,.




Unitary diagonalization

= A matrix A € C™*™ is unitarily diagonaizable when it has m linearly independent and

orthogonal eigenvectors. i.e., there exists a unitary matrix Q such that
A = QAQ"

Theorem 24.7. A hermitian matriz is unitarily diagonalizable, and ils eigen-
values are real.

= A matrix is normal if A4 = AA".

Theorem 24.8. A matrixz is unitarily diagonalizable if and only if it is nor-
mal.

16




Schur decomposition

= Every square matrix can be factorized in Schur decomposition

A = QTQH AeCmxm
T = QHAQ

where Q is unitary and T is upper triangular, and the eigenvalues of A appear on the
diagonal of T

= Any square matrix, defective or not, can be triangularized by unitary transformations
= The diagonal elements of a triangular matrix are its eigenvalues
= The unitary transformations preserve eigenvalues




Schur decomposition (cont'd)

Theorem 24.9. Fuvery square matric A has a Schur factorization.

Proof. We proceed by induction on the dimension m of A. The case mn =1 is
trivial. so suppose m > 2. Let & be any eigenvector of A. with corresponding
eigenvalue A. Take x to be normalized and let it be the first column of a unitary
matrix 7. Then. just as in (24.7). it is easily checked that the product U*AU
has the form )

A B

0 C

By the inductive hypothesis, there exists a Schur factorization VI'V* of C.

U"AU =

Now write

0
QQ=U .
J 0 V|
This is a unitarv matrix. and we have
A BV ]
()"AQ = _
"AQ 0 T

This is the Schur factorization we seek. ]




Eigenvalue revealing factorization

= diagonalization A = XAX ™! exists if and only if A is nondefective
= unitary diagonalization A = QAQ" exits if and only if A is normal

= unitary triangularization (Schur factorization) A = QT Q¥ always exists

= All three of these factorizations can be used to compute eigenvalues
= In general, Schur factorization is used as this applies without restriction
= If A is normal, then Schur form comes out diagonal and its eigenvalues are real

= If A is Hermitian, then we can take advantage of symmetry with half as much work or
less than 1s required for general A

19
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Shortcomings of obvious algorithms

= Characteristic polynomial: Compute the coefficients of the characteristic polynomial
and find the roots (an ill-conditioned problems in general)

= Power iteration: The sequence

x Ax A’x  Ax
I~ [[Ax[] " [[A2x]| [[Ax]]
= slowly converges, under certain assumptions, to an eigenvector corresponding to the
largest eigenvalue of A

21




Shortcomings of obvious algorithms

= Best general purpose eigenvalue algorithms are based on a different principle: the
computation of an eigenvalue revealing factorization of the matrix A, where the
eigenvalues appear as entries of one of the factors.

= diagonalization A = XAX ™! exists if and only if A is nondefective
= unitary diagonalization A = QAQ¥ exits if and only if A is normal

= unitary triangularization (Schur factorization) A = QT Q' always exists

= Goal of these methods: Apply a seqeunce of transformations to A to introduce zeros in
necessary places.

22




A fundamental difficulty

= Any polynomial rootfinding problem can be represented as an eigenvalue problem.

Tri

p(Z) = 27 Ty lzm

—Z

1

+ 12 + A

— Uy
—

— U9

—X — Uy —92

1 (_Z — Uy 1)

23




A fundamental difficulty

= A s called a companion matrix of p.

m m—1
p(z)=2"4+a,, 12 + -+ a1z + ap.
— Uy
0 —
0 — (o
.1'4 —
1
0 — U2
| 1 — U1 |

= The roots of p are equal to the eigenvalues of A.

24




A fundamental difficulty

Theorem 25.1. For any m > 5, there is a polynomial p(z) of degree m with
rational coefficients that has a real root p(r) = 0 with the property that r
cannot be written using any expression involving rational numbers, addition,
subtraction, multiplication, division, and kth roots.

= Abel in 1824 proved that no analog of the quadratic formula can exist for polynomials
of degree 5 or more

= Any eigenvalue solver must be iterative

= The goal is to produce sequences of numbers that converge rapidly towards eigenvalues

25




Schur factorization and diagonalization

= Most of the general purpose eigenvalue algorithms in use today proceed by computing

the Schur factorization
A=0TQ" T=0"A0

= Schur factorization A = QT Q! can be computed by transforming A using a sequence
of elementary unitary similarity transformation

X = Q/'XQ;

so the product
Qi . Q3 Q1 4Q1Q; - Q;

converges to an upper triangular matrix T as j = oo




Schur factorization and diagonalization

= If A is real but not symmetric, then in general it may have complex eigenvalues in
conjugate pairs

= An algorithm that computes the Schur factorization will have to be capable of
generating complex outputs from real inputs

= If A is Hermitian, then Q¥ ... Q5 Q{' AQ; Q; ... Q; is also Hermitian, and thus the limit of
the converging sequence is both triangular and Hermitian, hence diagonal

= This implies that the same algorithms that compute a unitary triangularization of a
general matrix also compute a unitary diagonalization of a Hermitian matrix




Two phases of eigenvalue computation

= In the 1% phase, a direct method is applied to produce an upper Hessenberg matrix, 1.e.,
a matrix with zeros below the 15t subdiagonal

= In the second phase, an iteration is applied to generate a formally infinite sequences of
Hessenberg matrices that converge to a triangular form

[ X X X X X | [ X X X X X | [ X X X X X |
X X X X X | Phase1l | X x x x x | Phase 2 X X X X
X X X X X — X X X X — X X X
X X X X X X X X X X
X X X X X X X i X |

A £ A ' H T

28




Two phases of eigenvalue computation

= If A is Hermitian, the two phase approach becomes faster

= The intermediate matrix is a Hermitian Hessenberg matrix, 1.e.,tridiagonal

* The result is a Hermitian triangular matrix, i.e., diagonal

W W W W
e %W W W W

Woow W W W
e % % W W W

wox K K X

Hhase 1

——

<X

A -

A
A
LA

Phase 2

——

[J
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