Lecture 14

>
=
o
qv]
e
7))

™
N
o
£
—
o3
w
Q
>
o
—
O]
o
£
o
©
[}
x
<
—_
Z

—
[}
c
©
©
(e
(24
c
©
m
=
@o
>
a

setup

a mathematical problem is a function:

f: X =Y
I an algorithm is a function:
f: X —=Y

" where
X 1S the vector space of data
Y Is the vector space of solutions

floating point approximation

fl error smaller than epsilon relative to x:
For all x € R, there exists € with |€| < €machine

13.5
such that fi(z) = z(1 + €). (135)
() 1s any floating point operation, +, —, X, or -
r®y=1f(zx*y). (13.6)
I Fundamental Axiom of Floating Point Arithmetic
For all z,y € F, there exists € with |€| < €machine such that
z®y = (z*xy)(l+e). (13.7)

accuracy

absolute error: Hf(m) — f(x)]]
relative error: | f(z) — f(z)]
I IOl
the algorithm is accurate, if for each » = X
1 f(z) — f(2)|
— O machine
T emeine)

"rel. error is on the order of machine epsilon™

stability

the algorithm is stable, if foreach € X

I f(z) — f@)]]
=0 machine
@ (Emachine)
for some 3 with
|& — x|
=0 machine
O (Cmaine)

A stable algorithm gives nearly the right answer
to nearly the right question.

backward stability

the algorithm is backward stable, if for =z € X

f(z) = f(&) for some & with

simpler and stronger than stability.

A backward stable algorithm gives exactly the right answer
to nearly the right question.

"on the order of machine epsilon"

mathematical notation:

p(t) = O(¥(t))
it means: when t >0 ort—o00

p(t)] < C(t).

If phi has an additional parameter s,
©(s,1) = O(2(t)) uniformly in s,

It means: there's a single C that holds for all s

In our case, s=x Is the data vector, and €., 4chine — 0

f— O(Eman:hine) .

|computed quantity

Independence of norm

Theorem 14.1. For problems f and ﬂﬂgﬂriﬁhmsf defined on finite-dimension-
al spaces X and Y , the properties of accuracy, stability, and backward stabilily
all hold or fail to hold independently of the choice of norms in X and Y.

proof: for any||-|| and |- || on the same space,
there exists positive C,,C, that for all x,

Cillz|l < [l=]]" < Callz]]

" norm changes the constant, not the order.

exercises

14.1. True or False?

(a) sinz = O(1) as z — <.

(b) sinz = O(1) as z — 0.

(c) logz = O(z'/1%%) as 2 — oo.

(d) n! =0O((n/e)") as n — oc.

(e) A= 0(V?3) as V — 0o, where A and V are the surface area and volume
of a sphere measured in square microns and cubic miles, respectively.

(f) fi(7) — ™ = O(€machine). (We do not mention that the limit is €machine — 0,
since that is implicit for all expressions O (€machine) 11 this book.)

(g) fl(nm) —nm = O(€machine), Uniformly for all integers n. (Here nm represents
the exact mathematical quantity, not the result of a floating point calculation.)

exercises

(a,b) true, sine is already less than constant

c) x=y*%0 => |100logy| < Cy true since logy<y

e) A=4 pi (mr)? V=4pi(r)3/3 true.
V@R =16 pi®)r2/9 both=Cr?

exercises

14.2. (&) Show that (]. -+ O(Emachine))(l -+ O(Ema,chine)) = 1+ O(Emaﬂhine).
The precise meaning of this statement is that if f is a function satisfying

f('Emachine) — (1 + O(Emachine))(l + O(Ema,chine)) aS €machine — 03 thEIl f also
satisfies f(emachine) =1+ O(Emachine) aS €machine — 0.

(b) Show that (1 + O(€emachine)) " = 1 + O(€machine)-

a) [x(e)|<Ce, |y(e)|<Ce (1+x)(1+y)=1+xy+x+y
IXy+x+y| < 2Ce+e? < 3Ce

b) X|<Ce => 1/(1+Xx) =1 - X/(1+X)
|-X/(1+x)|<Ce => 1/(1+Xx) =1 + O(e)

(00
—
()
| -
-
'
&)
()
—

n
-
@
e
@]
| -
N
n
)
| -
©
>
o
7))
-
N
©
()
]
[
@)
@)
S
-
e
=
O
-
@)
@)

™
N
o
£
—
o3
w
Q
>
o
—
O]
o
£
o
©
[}
x
<
—_
Z

—
[}
c
©
©
(e
(24
c
©
m
=
@o
>
a

least squares problem

problem: Given A € €™*" of full rank, m > n, b € €,
find z € C" such that ||b — Az|| is minimized.

solution: = = A™b, y = Pb,

three measures

econdition number of A:

01
k(A) = |[A[l[|AT] = —

*angle, closeness of the fit:

f = cos™" M
16]]
*how much y falls short of its maximum value:
n — LAl [[A][][=]
|yl | Az|

*their ranges:

1 <k(A) < o0, 0<60<7/2, 1 <n<k(A)

sensitivities of X,y

Theorem 18.1. Let b € C™ and A € C™™" of full rank be fired. The least
squares problem (18.1) has the following 2-norm relative condition numbers
(12.5) describing the sensitivities of y and x to perturbations in b and A:

Y T
1 k(A)
b
cos 6 ncos f
A A)*tan @
A k(A) k() + k(A)” tan
cos 6 n

The results in the first row are exact, being attained for certain perturbations
0b, and the resulls in the second row are upper bounds.
8
|

proof, step 1

A=UxV*
unitary change of basis does not affect the perturbations in 2-norm
assume A = ¥ and write:

_ o1
09

proof, step O

A=UXV"

unitary change of basis does not affect the perturbations in 2-norm

assume 4 = ¥ and write:

-Jl

09

as a result, orthogonal projector and pseudoinverse become

[IO
0 0

}, AT =] A" 0.

proof, step 1. sensitivity of y to perturbations in b
y = Pb.

apply condition number formula:

| P 1
K, — p—]
22/l cos@

proof, step 2: sensitivity of x to perturbations in b
r = A'b

apply condition number formula:

A+
_ || || — ||A+|||

_— o] [lv]
= = T/l

[yl |l

LAl _ s(A)

= ||AT :
147 costl 1 cost

proof, step 2.5: tilting the range of A

when A is perturbed

(1) either range(A) is tilted by do

(2) or mapping onto range(A) is changed

1) what Is maximum éda ?

let v be a point on unit sphere [lv]l = 1. p = Av ison range(A)

to tilt range(A) maximally, we move p orthogonal to range(A).
sA4=@pp => 64l =opl (A = op)

take the smallest eigenvalue p = o,u,, => tilt angle:tan(éa) = ||0p|| /0w

; / p— '5
o < tan(da) ==> Sa < [0A] _ MH,(AL
o 4]

equality only attained by infinitesimal angles.

proof, step 3. sensitivity of y to perturbations in A

y IS a projection. it is determined only by b and range(A)
fix b and tilt range(A) by . 0-y and 0-b are orthogonal: y on sphere

range(A)

Figure 18.2. Two circles on the sphere along which y moves as range(A)
varies. The large circle, of radius ||b||/2, corresponds to tilting range(A) in
the plane 0-b—y, and the small circle, of radius (]|b||/2)sin@, corresponds to
tilting it in an orthogonal direction. However range(A) is tilted, y remains on
the sphere of radius ||b||/2 centered at b/2.

proof, step 3. sensitivity of y to perturbations in A
large circle implies
I6yl| < [lo]|sin(6e) < [[b]|6cx

definition of angle @ and upper bound of da gives:

1oyll < |6 All=(A)][y[l/[|All cos

thus, the sensitivity of y to A Is:

Ioyll /lloAll _ x(A)
lyll /Al — cos®

proof, step 4. sensitivity of x to perturbations in A
split the perturbation of A into 1 and 2
4 5A1] [64 0
- ['5142] - [0]+[5A:2]
perturbation 1 does not change range(A), only the mapping onto it.

[0z]| /10 A
=l /- 1| All

< k(d1) = w(4)

perturbation 2 tilts range(A) without changing the mapping onto it.
In terms of bl:

ozl /ot _ _w(A) _ K(A)

=l /- lloull — n(As;2) U

now we need to replace denominator db1/b1 with dA2/A

proof, step 4. sensitivity of x to perturbations in A

when range(A) is tilted through the larger circle,
angle between §y and range(A) = 7/2 — 6
=> ||ob]| =sin6lloyll => [obi]| < (|8]da)sind
when range(A) is tilted through the smaller circle,
y Is parallel to range(A), but it is a factor of sin # smaller
=> [|oy|| < (||bl|6@) sin® => [|0by]| < (|[bl|da)sind (||5p,]| < ||5y]|)

rewrite:
[[0b1]|

(ol = llellcos®) by
upper bound of 5o and egn. of perturbation 2 gives
l6z]| /10Aa]l _ r(A)*tanb
lzll /(A — 7

< (6ar) tanf

add this to result from perturbation 1, done.

(@)
—
(b}
—
>
+—
(&)
—

n
=
e
)
—
@)
o
<
n
V)
| -
©
-]
O
7))
)
7))
©
(D)
-
Y
@)
>
=
@)
qv]
)
7))

™
N
o
£
—
o3
w
Q
>
o
—
O]
o
£
o
©
[}
x
<
—_
Z

—
[}
c
©
©
(e
(24
c
©
m
=
@o
>
a

accuracy of a backward stable alg.

Theorem 15.1. Suppose a backward stable algorithm is applied to solve a
problem f : X — Y with condition number k on a computer satisfying the
arioms (13.5) and (13.7). Then the relative errors satisfy

|f (@) — f(@)]
1f ()]

above: x Is data, f(x) Is solution.

— O(}{,(iﬂ) Emaa:hine) -

below: A is data, X Is solution (k. = «(A))

T — k2 tan @
|| || — O ((ﬁ: -+) Eman:hine)
|| 7

.. .. I\
condition number lies inrange k to k* |
I
|

example algorithm
task: : : :
least squares fitting of the function exp(sin(47))
on the interval [0,1] by a polynomial of degree 14.
code:
m = 100; n = 15;
t = (0:m-1)’/(m-1); Set ¢ to a discretization of [0, 1].
A =[]; for i=1:n, Construct Vandermonde matrix.
A =1[At.7(i-1)]; end
b = exp(sin(4*t)); Right-hand side.
b = b/2006.787453080206; Normalization (see text).

after normalization, x(15)=1 is ground truth.

example algorithm: householder

compute the three measures

x = A\b; y = Axx; Solve least squares problem.
kappa = cond(A)
kappa = 2.2718e+10 k(A)
theta = asin(norm(b-y)/norm(b))
theta = 3.7461e-06 6
eta = norm(A) *norm(x) /norm(y)
eta = 2.1036e+05 n

kappa: "ill-conditioned basis" theta: "close fit"

eta: "y is around half of the maximum kappa"

example algorithm: householder

compute sensitivities/condition nrs of x and y:

Uy '
b 1.0 1.1 % 105 IEEE double precision arithmetic
A| 23x10%0 3.2 x 101 €machine & 10710

standard algorithm for solving least squares:

[Q,R] = qr(4,0); Householder triang. of A.
x = R\(Q’*Db) ; Solve for x.
3(15) \Z

ans = 1.00000031528723 relative error of about 3x 107

rounding errors amplified by 10” |§&

example algorithm: householder2

alternative algorithm that computes Q*b

[Q,R] = qr([A b],0); Householder triang. of [A b].
Qb = R(1:n,n+1); Extract Q*b ...
R =R(:n,1:n); ...and R.
x = R\Qb; Solve for x.
x(15)
ans = 1.00000031529465

gives similar error, therefore error from QR swamps the error from
Q*b computation

example algorithm: householder3

matlab implementation of householder

x = A\b; Solve for .
x(15)
ans = 0.99999994311087

more accurate, uses column pivoting

all three methods are backward stable.

householders are backward stable

Theorem 19.1. Let the full-rank least squares problem (11.2) be solved by
Householder triangularization (Algorithm 11.2) on a computer satisfying (13.5)
and (13.7). This algorithm is backward stable in the sense that the computed
solution = has the property

194

|| (A + 5‘4)5: _ bH — I'ﬂiI]:, W — O(Emaﬁhinc) (]-9]-)

for some 6A € C™*"™. This is true whether @*b 15 computed via explicit
formation of Q or implicitly by Algorithm 10.2. It also holds for Householder
triangularization with arbitrary column pivoting.

"solving for A in fact solves for A+dA"

example: gram-schmidt

[Q,R] = mgs(A); Gram—Schmidt orthog. of A.
x = R\ (Q’*b) ; Solve for x.
x(15)

ans = 1.02926594532672

result Is very poor, because
GS produces Q with non-orthonormal columns

reformulate problem, becomes complicated.

example: gram-schmidt2

better method, similar to householder2:

[Q,R] = mgs([A b]); Gram—Schmidt orthog. of [A b].
Qb = R(1:n,n+1); Extract Q*b . ..
R=R({:n,1:n); _..and R.
x = R\Qb; Solve for z.
x(15)

ans = 1.00000005653399

Theorem 19.2. The solution of the full-rank least squares problem (11.2)
by Gmm—Schﬂ}idt orthogonalization is also backward stable, satisfying (19.1),
provided that Q*b is formed implicitly as indicated in the code segment abﬂve. .'

solving by normal equations

x = (A’*A)\ (A’*Db); Form and solve normal equations.
x(15)

ans = 0.39339069870283

clearly unstable.

the matrix A*A has condition number k2, not k.

best we can expect is:

— O(Hzfmachine)

Theorem 19.3. The solution of the full-rank least squares problem (11.2) via {§
the normal equations (Algorithm 11.1) is unstable. Stability can be achieved, X
however, by restriction to a class of problems in which k(A) is uniformly

bounded above or (tan@)/n is uniformly bounded below.

solving by SVD

[U,S,V] = svd(A,0); Reduced SVD of A.
x = Vk(S\(U’*b)) ; Solve for .
x(15)

ans = 0.99999998230471

best result. 3 digits better than householder3

Theorem 19.4. The solution of the full-rank least squares problem (11.2) by
the SVD (Algorithm 11.3) is backward stable, satisfying the estimate (19.1).

general result:
- householder2 is the cheapest,
- SVD is the most accurate.

exercises

19.1. Given A € C™*" of rank n and b € C™, consider the block 2 x 2 system

of E-.quatit:-ns
A* 0 €T U :I -

where [is the m x m identity. Show that this system has a unique solution
(r,z)", and that the vectors r and z are the residual and the solution of the
least squares problem (18.1).

r+Ax=b A*r=0
=> A*r+A*Ax=A*b => A*Ax=A*b => X: solution
=> Ax=b-r => A*Ax=A*(b-r) =>r: residual

exercises

19.2. Here is a stripped-down version of one of MATLAB’s built-in m-files.
[U,S,V] = svd(A);
S = diag(S);
tol = max(size(A))*S(1)*eps;

= sum(S > tol);

= diag(ones(r,1)./S(1:r));

= V(:,1:r)*%S*xU(:,1:1r)7;

< D H

What does this program compute?

tol is a tolerance to disregard small singular values. r is the rank of

A. first r singular values are chosen, and X is the approx inverse of
A.

