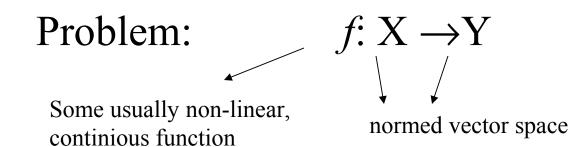
Lecture 12 Conditioning and Condition Numbers

NLA Reading Group Spring '13 by Can Kavaklıoğlu

Outline

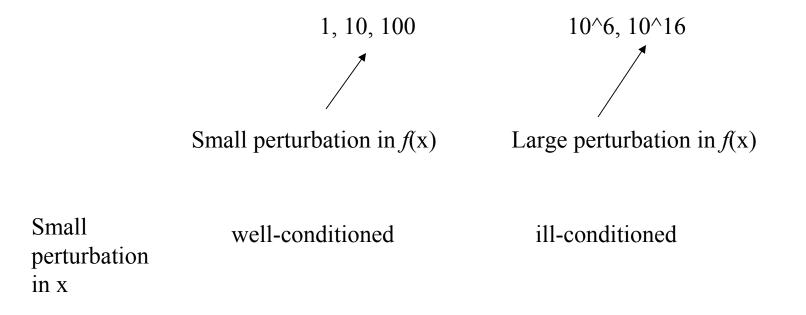
- Condition of a problem
- Absolute condition number
- Relative condition number
- Examples
- Condition of matrix-vector multiplication
- Condition number of a matrix
- Condition of system of equations

Notation



Problem instance: combination of $x \in X$ and f

Problem Condition Types



Absolute Condition Number

Small perturbation in x
$$\rightarrow \delta x$$

$$\delta f = f(x + \delta x) - f(x).$$

$$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \frac{\|\delta f\|}{\|\delta x\|}$$

Assuming δx and δf are infinitesimal

$$\hat{\kappa} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|}$$

Absolute Condition Number

$$\hat{\kappa} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|}$$

If f is differentiable, we can evaluate Jacobian of f at x

$$\delta f pprox J(x) \, \delta x_{
m c}$$
 with equality at limit $\| \delta x \| o 0$

$$\hat{\kappa} = \|J(x)\|.$$

||J(x)|| represents norm of J(x) induced by norms of X and Y

Relative Condition Number

$$\kappa = \kappa(x)$$

$$\kappa = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right)$$

assuming δx and δf are infinitesimal,

$$\kappa = \sup_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right)$$

if f is differentiable,
$$\kappa = \frac{\|J(x)\|}{\|f(x)\| / \|x\|}$$

Examples

Condition of Matrix-Vector Multiplication

$$\kappa = \sup_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|} \left/ \frac{\|\delta x\|}{\|x\|} \right) \right)$$

Problem: compute Ax from input x with fixed $A \in \mathbb{C}^{m \times n}$

$$\kappa = \sup_{\delta x} \left(\frac{\|A(x + \delta x) - Ax\|}{\|Ax\|} / \frac{\|\delta x\|}{\|x\|} \right)$$
$$= \sup_{\delta x} \frac{\|A\delta x\|}{\|\delta x\|} / \frac{\|Ax\|}{\|x\|}$$
$$\kappa = \|A\| \frac{\|x\|}{\|Ax\|}$$

Condition of Matrix-Vector Multiplication

$$\kappa = \sup_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right)$$
$$\kappa = \|A\| \frac{\|x\|}{\|Ax\|}$$

If A is square and non-singular using $||x||/||Ax|| \le ||A^{-1}||$

Loosen relative condition number to a bound independent of x

$$\kappa \le \|A\| \|A^{-1}\|$$

$$\kappa = \alpha \|A\| \|A^{-1}\| \quad \alpha = \frac{\|x\|}{\|Ax\|} / \|A^{-1}\|$$

If A is not square use pseudoinverse A⁺

Condition of Matrix-Vector Multiplication

Theorem 12.1. Let $A \in \mathbb{C}^{m \times m}$ be nonsingular and consider the equation Ax = b. The problem of computing b, given x, has condition number

$$\kappa = \|A\| \frac{\|x\|}{\|b\|} \le \|A\| \|A^{-1}\|$$
(12.13)

with respect to perturbations of x. The problem of computing x, given b, has condition number

$$\kappa = \|A^{-1}\| \frac{\|b\|}{\|x\|} \le \|A\| \|A^{-1}\|$$
(12.14)

with respect to perturbations of b. If $\|\cdot\| = \|\cdot\|_2$, then equality holds in (12.13) if x is a multiple of a right singular vector of A corresponding to the minimal singular value σ_m , and equality holds in (12.14) if b is a multiple of a left singular vector of A corresponding to the maximal singular value σ_1 .

Condition Number of a Matrix

Condition number of A relative to norm $\|\bullet\| \quad \kappa(A) = \|A\| \|A^{-1}\|$ If A is singular $\kappa(A) = \infty$.

if $\|\cdot\| = \|\cdot\|_2$, then $\|A\| = \sigma_1$ and $\|A^{-1}\| = 1/\sigma_m$. Thus $\kappa(A) = \frac{\sigma_1}{\sigma_m}$ in the 2-norm

 $A \in \mathbb{C}^{m \times n}$ of full rank, $m \ge n$

$$\kappa(A) = \|A\| \|A^+\|$$

$$\kappa(A) = \frac{\sigma_1}{\sigma_n} \text{ in the 2-norm}$$

Condition of a System of Equations

Fix b and perturb A, in problem: $A \mapsto x = A^{-1}b$

$$(A + \delta A)(x + \delta x) = b$$

$$\frac{\|\delta x\|}{\|x\|} \left/ \frac{\|\delta A\|}{\|A\|} \le \|A^{-1}\| \|A\| = \kappa(A).$$

Equality in this bound will hold whenever δA is such that

$$||A^{-1}(\delta A)x|| = ||A^{-1}|| ||\delta A|| ||x||,$$

Condition of a System of Equations

Theorem 12.2. Let b be fixed and consider the problem of computing $x = A^{-1}b$, where A is square and nonsingular. The condition number of this problem with respect to perturbations in A is

$$\kappa = \|A\| \|A^{-1}\| = \kappa(A).$$
(12.18)

Lecture 13 Floating Point Arithmetic

NLA Reading Group Spring '13 by Can Kavaklıoğlu

Outline

- Limitations of Digital Representations
- Floating Point Number
- Machine Epsilon
- Floating Point Arithmetic
- Complex Floating Point Arithmetic

Limitations of Digital Representations

Finite number of bits — Finite subset of real/complex numbers Two limitations

- Precision: IEEE double between 1.79 x 10³08 and 2.23 x 10⁻³⁰⁸
- Overflow / underflow
- Interval representation: IEEE interval [1 2]:

1,
$$1 + 2^{-52}$$
, $1 + 2 \times 2^{-52}$, $1 + 3 \times 2^{-52}$, ..., 2

interval [2 4]:

2,
$$2+2^{-51}$$
, $2+2\times2^{-51}$, $2+3\times2^{-51}$, ..., 4

gap size:

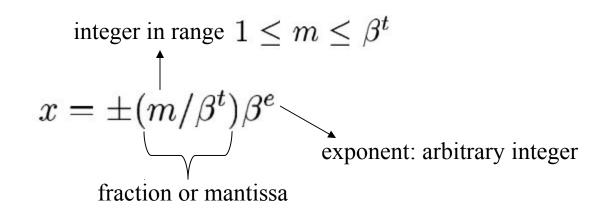
$$2^{-52} \approx 2.22 \times 10^{-16}$$

Floating Point Number

F: subset of real numbers, including 0

 β : base/radix

t: precision (23 single, 53 double precision - IEEE)



Idelized system: ignores underflow and overflow. F is a countably infinite set and it is self similar: $F = \beta F$

Machine Epsilon

Resolution of F: $\epsilon_{\text{machine}} = \frac{1}{2}\beta^{1-t}$ IEEE single IEEE double $2^{-24} \approx 5.96 \times 10^{-8}$ $2^{-53} \approx 1.11 \times 10^{-16}$

For all $x \in \mathbb{R}$, there exists $x' \in \mathbf{F}$ such that $|x - x'| \leq \epsilon_{\text{machine}} |x|$

Rounding:

For all $x \in \mathbb{R}$, there exists ϵ with $|\epsilon| \leq \epsilon_{\text{machine}}$ such that $fl(x) = x(1 + \epsilon)$.

Floating Point Arithmetic

$$x \circledast y = \mathrm{fl}(x \ast y)$$

Fundamental Axiom of Floating Point Arithmetic

For all $x, y \in \mathbf{F}$, there exists ϵ with $|\epsilon| \leq \epsilon_{\text{machine}}$ such that $x \circledast y = (x \ast y)(1 + \epsilon).$

Every operation of floating point arithmetic is exact up to a relative error of size at most machine epsilon

Different Machine Epsilon and Complex Floating Point Arithmetic

- Some (very old) hardware may not support IEEE machine epsilon
- It may be possible to use a larger machine epsilon value
- Complex arithmetic is performed using two floating point numbers
- Machine epsilon needs to be adjusted

The end

thanks