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Householder and Gram-Schmidt

Gram-Schmidt: triangular orthogonalization

ARRy Ry =
"'_,,l,—l"'

B-1

Householder: orthogonal triangularization

Qu-- Q@ A=R
-




Triangularization by Introducing Zeros

(10.1)

o -




Householder Reflectors

X X X

= ||zlle,.



Householder Reflectors

Py =

v*
( v"v) Y

v = ||z|e; — z.

v*y
g1 (*u"v)

P is the projector onto the space H

Fy = (1-23’-”—)3; = y—zv(” y)

v*v

v*v



Householder Reflectors

Instead of v = ||z|le; — 2.

We use v = sign(z,)||z||e; + =

for numerical stability.



Householder Algorithm

Algorithm 10.1. Householder QR Factorization

fork=1ton
= Apmr
v, = sign(z,)||z],e, + =
Ve = Ui/ l|vell,
Ak:m,k:n = Ak:m,k:n - Qﬂ&(“EAk:m,km)




Applying Q

Algorithm 10.2. Implicit Calculation of a Product Q*b

fork=1ton

bk:m — bk:m —' 21"&(”; bk:m)

This will be employed while solving least squares problems using
QR factorization.



Forming Q

Algorithm 10.3. Implicit Calculation of a Product Q=

for Kk = n downto 1

Lem = Them — 2Uk(ﬂ; a:k:m)

Q can be formed by calculating Qe , Qe,, ... and Qe_.



Operation Count

Algorithm 10.1. Householder QR Factorization

fork=1ton
T=Apmi
v, = sign(z,)||z]|,e; + 2
U = U/ || vell

_ *
Ak:m,k:n 2 Ak:m,k:n - 21}&(”& Ak:m,k:n)

Ak:m,j = 2”&(”2Ak:m,k)

Llet I=m—-k+1

Each vector requires 4/—1 ~ 4l flops.



Operation Count

m
(row index)

n
(outer loop index)

n (column index)

|
_|_



Operation Count

2
~ 2mn? — gna flops.



Lecture 11
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Definition

Given A€ C™**, m >n, be C™,
find £ € C" such that ||b — Az||, is minimized.



Polynomial Interpolation

- 2
1 2, =23

2
1 z, x5

2
1 z3 z3
Lz #g

-?hq

Yz
Y3

L Ym




Polynomial Least Squares Fitting

- n-11q r - g .

1z I Co 1
n—1

1 zp --- z3 Cy Y2
n—1

1 T3 I3 ~ Y3
. 5 cn-l o
n—1

1 T 4 Ym

Solve by minimizing
X

3 Ip(es) - wiP?

=1




Orthogonal Projection

-
-

.-~""range(A)

Theorem 11.1. Let A € C™" (m > n) and b € C™ be given. A wvector
z € C" minimizes the residual norm |r||, = ||b — Az||,, thereby solving the
least squares problem (11.2), if and only if r L range(A), that is,

A'r =0, (11.8)
or equivalently,
A*Az = A*D, (11.9)
or again equivalently,
Pb = Az, (11.10)

where P € C™*™ is the orthogonal projector onto range(A). The n x n system
of equations (11.9), known as the normal equations, is nonsingular if and only
if A has full rank. Consequently the solution x is unique if and only if A has
full rank.



Pseudoinverse and Normal Equations

A*Az = A*D,
At = (A"A)'A* e Cv,

z=A%b



Least Squares via Normal Equations

A*Az = A*D,

R*Rx = A”b.

Algorithm 11.1. Least Squares via Normal Equations

1. Form the matrix A*A and the vector A*b.
. Compute the Cholesky factorization A*A = R*R.
. Solve the lower-triangular system R*w = A*b for w.

= W N

. Solve the upper-triangular system Rz = w for z.

Work for Algorithm 11.1: ~ mn? + %na flops.



Least Squares via QR Factorization
y = Pb= QQ"b.
QRz = QQ",

Rz = Q*.

Algorithm 11.2. Least Squares via QR Factorization

1. Compute the reduced QR factorization A = QR.
2. Compute the vector C:J"‘b.
3. Solve the upper-triangular system Rz = Q*b for z.

Work for Algorithm 11.2: ~ 2mn? — %ns flops.



Least Squares via SVD
y = Pb= UU*,
UsV*z = UU*

YW*z = U*b.

Algorithm 11.3. Least Squares via SVD

1. Compute the reduced SVD A = ULV*.
. Compute the vector U*b.

Solve the diagonal system Yw = U*b for w.
Set z = Vw.

.l A

Work for Algorithm 11.3: ~ 2mn? + 1103 flops,
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