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Definition

A projector is a square matrix P that satisfies

P? =P

=A k.a ‘1dempotent’

=Can be orthogonal or non-orthogonal (oblique)
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Properties

“What if v 1s 1n range(P) ?

Observe that if v € range(P), then it lies exactly on its own shadow, and
applying the projector results in v itself. Mathematically, we have v = Px for

some 7z and
Py = P’z = Py = .

*What if vAPv? Where does the shine come from?

Wednesday, March 13, 13



Properties

Figure 6.1. An oblique projection.

* Draw the line from v to Pv

P(Pv —v) = P*v— Pv = 0.
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Complementary Projectors

If P is a projector, I — P is also a projector, for it is also idempotent:

I-P)?=1-2P+P*=1-P.

The matrix I — P is called the complementary projector to P.

Onto what space does I — P project? Exactly the nullspace of P! We
know that range(/ — P) D null(P), because if Pv = 0, we have (I — P)v = v.
Conversely, we know that range(I — P) C null(P), because for any v, we have
(I — P)v = v — Pv € null(P). Therefore, for any projector P,

range (! — P) = null(P). (6.2)
By writing P = I — (I — P) we derive the complementary fact
null(/ — P) = range(P). (6.3)

We can also see that null(/ — P) N null(P) = {0}: any vector v in both sets
satisfies v = v — Pv = (I — P)v = 0. Another way of stating this fact is

range(P) Nnull(P) = {0}. (6.4)
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Complementary Projectors

Conversely, let S; and Sy be two subspaces of C™ such that S; NSy = {0}
and S; + Sy = C™, where S; + S, denotes the span of S; and S,, that is, the
set of vectors s; + so with s; € S; and sy € So. (Such a pair are said to be
complementary subspaces.) Then there is a projector P such that range(P) =
S1 and null(P) = S;. We say that P is the projector onto S; along Ss.

This projector and its complement can be seen as the unique solution to the
following problem:

Given v, find vectors v; € S; and vy € Sy such that vy + ve = v.

Eigen decomposition example: What are the
coefficients given a particular basis?
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Orthogonal Projectors

An orthogonal projector (Figure 6.2) is one that projects onto a subspace S;
along a space Sy, where S; and S, are orthogonal. (Warning: orthogonal
projectors are not orthogonal matrices!)

Figure 6.2. An orthogonal projection.
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Algebraic Definition of Orthogonal Projectors

Theorem 6.1. A projector P is orthogonal if and only if P = P*.

Proof. If P = P*, then the inner product between a vector Px € S; and a
vector (I — P)y € S, is zero:

o*P*(I — P)y = 2*(P — P*)y = 0.

For “only if,” we can use the SVD. Suppose P projects onto S; along
Sy, where S; L Sy and S; has dimension n. Then an SVD of P can be
constructed as follows. Let {qi,go,-..,¢m} be an orthonormal basis for C™,
where {q1,...,¢,} is a basis for S; and {g,11,.--,¢n} is a basis for S.
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Proof Cont.

PQ =

QPQ =

P=QXQ". =>P"=

q1 o0 qn O o .0 ,

(QXQ")" = Q¥X"Q" = QEQ”
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Projection with an Orthonormal Basis

A A

Y @ Q" v

The complement of an orthogonal projector is also an orthogonal projec-
tor (proof: I — QQ* is hermitian). The complement projects onto the space
orthogonal to range(Q).

*One rank:
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Projection with Arbitrary Basis

A*A is nonsingular (Exercise 6.3). Therefore

z = (A*A) A% .

projector onto range(A) can be expressed by the formula

P = A(A*A)1A*.

In passing from v to its orthogonal projection y € range(A), the difference
y — v must be orthogonal to range(A). This is equivalent to the statement
that y must satisfy a}(y —v) = 0 for every j. Since y € range(A), we can set
y = Ax and write this condition as a;f(Ax —v) = 0 for each j, or equivalently,
A*(Az —v) =0 or A*Ax = A*v. It is easily shown that since A has full rank,

(6.12)

Finally, the projection of v, y = Az, isy = A(A*A)~1A*v. Thus the orthogonal

(6.13)
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Reduced QR Factorization

For many applications, we find ourselves interested in the column spaces of
a matrix A. Note the plural: these are the successive spaces spanned by the
columns ay, ag, ... of A:

(a1) C {ai,az2) C (a1,a2,a3) C

"Find a matrix Q such that:

(q1,92, - .., q5) = (a1, a9, ...,a;), j=1,...,n.
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Reduced QR Factorization

22

ai = T1141,
Qo = T12q1 + T2242,
a3 = 1391 + T23q2 + 73343,

Gp = T1nq1 + Tonq2 + ** * + Tpnln-

|

1 Ti2 ° -
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Full QR Factorization

Reduced QR Factorization (m > n)

— - -

______
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Gram-Schmidt Orthogonalization

*From Lecture 2 we know:

v; = a; — (¢1a;)q1 — (g305)q2 —

"Rewrite
a1 = 71141,
a2 = T12q1 + 72242, —

a3 = T13¢1 + T23¢2 + 3343,
an = T1nq1 + Tong2 + -+ Tnnln-

Tij = g 05 (i # 7). /

7—1
riil = |a; = Yorija
=1

5"

= (¢f-195)g5-1

ai
g1 = 3
11
G2 —T12qh
go = ;
922
03 —T13q1 — 72342
qgs =
33
n—1
_ Op = 225 Tind
dn = .

TTL'I'L

7
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Gram-Schmidt Orthogonalization

Algorithm 7.1. Classical Gram—Schmidt (unstable)

for j=1ton
’szaj
fori=1toj—1
rij = ¢; 9
Uj = Vj — Tij4q;
rii = vl

G = v;/75
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Existence

Theorem 7.1. Every A € C™" (m > n) has a full QR factorization, hence
also a reduced QR factorization.

Proof. Suppose first that A has full rank and that we want just a reduced
QR factorization. In this case, a proof of existence is provided by the Gram-—
Schmidt algorithm itself. By construction, this process generates orthonormal
columns of Q and entries of R such that (7.4) holds. Failure can occur only
if at some step, v; is zero and thus cannot be normalized to produce g;.
However, this would imply a; € (g1,--.,¢-1) = {(@1,...,aj_1), contradicting
the assumption that A has full rank.

Now suppose that A does not have full rank. Then at one or more steps
j, we shall find that (7.5) gives v; = 0, as just mentioned. At this mo-
ment, we simply pick g; arbitrarily to be any normalized vector orthogonal to
{(q1,...,9j—1), and then continue the Gram—Schmidt process.

Finally, the full, rather than reduced, QR factorization of an m x n matrix
with m > n can be constructed by introducing arbitrary orthonormal vectors
in the same fashion. We follow the Gram—Schmidt process through step n,
then continue on an additional m — n steps, introducing vectors g; at each
step.
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Uniqueness

Theorem 7.2. Each A € C™" (m > n) of full rank has a unique reduced
QR factorization A = QR with r;; > 0.

Proof. Again, the proof is provided by the Gram-Schmidt iteration. From
(7.4), the orthonormality of the columns of @, and the upper-triangularity of
R, it follows that any reduced QR factorization of A must satisfy (7.6)(7.8).
By the assumption of full rank, the denominators (7.8) of (7.6) are nonzero,
and thus at each successive step j, these formulas determine r;; and g; fully,
except in one place: the sign of r;;, not specified in (7.8). Once this is fixed
by the condition r;; > 0, as in Algorithm 7.1, the factorization is completely

determined. ]
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Vectors -> Continuous Functions

Inner product of two functions:
(f,9) = /11f(—$)g(a:) dz.

QR Decomposition

T'29
1lz|z?|--- |2 | = QO(m) Q1($) s Qn—l(x)

i aon

Legendre Polynomials

11 T2 -

T'in
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Solution of Ax = b by QR

Ax

I
S

A

QR

Rx = Q7.

1. Compute a QR factorization A = QR.
2. Compute y = Q.
3. Solve Rz = y for x.

21
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Gram-Schmidt Projections

=Recall the orthogonalization method

P1a,1 g PQG,Q Pna,n
— ) 2 = )t n — .
| Pras ] | Paaz || T | Paaal

a1

Pp=1-QQ, —> Qr1=|al|al|

qj—1
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Modified Gram-Schmidt Algorithm
Standard GS Algorithm

v; = Pja,
Pj — PJ—Qj—l T PJ—Q2PJ-Q1
Uj = PJ—Qj—l Tt PJ—Q2PJ—CI1a’j

Modified GS Algorithm

o) = g
2 1 1
’U](- ) = Pquv](- ) = fuj(- ) _
3 2 2
’UJ(- ) = Pquvj(- ) = ’U§- )
v, = v](-j) _ Pqu_le(-j_l) _ v§j_1)

Numerically more stable

% (1
QIQ1U](' )7

« (2
QQQQU§' )7

*k
— 4j-19; 1V

(G-1)

J
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Modified Gram-Schmidt Algorithm

Algorithm 8.1. Modified Gram—Schmidt

fori=1ton
Ui =
fori=1ton
rii = ||vill
Qi = Vi [T
for j=1+1ton
Tij = 3 Vj

Uj =V — Tijd;
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Gram-Schmidt as Triangular Orthogonalization

“First step:

Ry
(1 o2 —ms
11 r1 11
1
V1 |V |- | Up 1 — Q1
*Then:
1 ] 1
1z 1

R2 — 22 T22 : Rg — i

1 733

2| ...
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Modified vs Standard Gram-Schmidt

“Numerical stability

[U,X] = gr(randn(80));
[V,X] = qr(randn(80));
S=diag(2.7(-1:-1:-80));

A = UxSxV;

Set U to a random orthogonal matrix.
Set V' to a random orthogonal matrix.
Set S to a diagonal matrix with expo-
nentially graded entries.

Set A to a matrix with these entries as
singular values.

[QC,RC]

[QM,RM]

clgs(A);

mgs (A);

Compute a factorization Q@R by
classical Gram—Schmidt.
Compute a factorization Q™ R(™) by
modified Gram—Schmidt.

Tjj

10

10°

10°

10"

107

-25

10

Q
L 0O n 00 do o o 00
[ Weff—aﬂ **************** < V/€machine

% J
)%<><>? ”””””” < €machine
X

I I I I I )y
30 40 50 60 70 80 J
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Another numerical stability example

[ 0.70000 0.70711
| 0.70001 0.70711

By hand (5 digit precision) @ = [ 8;82(1) (1)8888

MATLAB

A = 1.70009 .7087111; Define A.

[Q,R] = qr(4); Compute factor ) by Householder.
norm(Q’*Q-eye(2)) Test orthogonality of Q.

[Q,R] = mgs(A); Compute factor by modified G-S.
norm(Q’*Q-eye(2)) Test orthogonality of ().

The lines without semicolons produce the following printed output:

ans = 2.3515e-16, ans = 2.3014e-11.

Wednesday, March 13, 13



