Lecture 6
Projectors
NLA Reading Group Spring '13
by Umut Şimşekli
Definition

A projector is a square matrix P that satisfies

$$P^2 = P.$$

- A.k.a ‘idempotent’
- Can be orthogonal or non-orthogonal (oblique)
Properties

- What if \(v \) is in range(\(P \))?

 Observe that if \(v \in \text{range}(P) \), then it lies exactly on its own shadow, and applying the projector results in \(v \) itself. Mathematically, we have \(v = Px \) for some \(x \) and

 \[
 Pv = P^2 x = Px = v.
 \]

- What if \(v \neq Pv \)? Where does the shine come from?
Properties

- Draw the line from v to Pv

$$P(Pv - v) = P^2v - Pv = 0.$$
Complementary Projectors

If P is a projector, $I - P$ is also a projector, for it is also idempotent:

$$(I - P)^2 = I - 2P + P^2 = I - P.$$

The matrix $I - P$ is called the complementary projector to P.

Onto what space does $I - P$ project? Exactly the nullspace of P! We know that $\text{range}(I - P) \supseteq \text{null}(P)$, because if $Pv = 0$, we have $(I - P)v = v$. Conversely, we know that $\text{range}(I - P) \subseteq \text{null}(P)$, because for any v, we have $(I - P)v = v - Pv \in \text{null}(P)$. Therefore, for any projector P,

$$\text{range}(I - P) = \text{null}(P).$$ \hfill (6.2)

By writing $P = I - (I - P)$ we derive the complementary fact

$$\text{null}(I - P) = \text{range}(P).$$ \hfill (6.3)

We can also see that $\text{null}(I - P) \cap \text{null}(P) = \{0\}$: any vector v in both sets satisfies $v = v - Pv = (I - P)v = 0$. Another way of stating this fact is

$$\text{range}(P) \cap \text{null}(P) = \{0\}. \hfill (6.4)$$
Complementary Projectors

Conversely, let \(S_1 \) and \(S_2 \) be two subspaces of \(\mathbb{C}^m \) such that \(S_1 \cap S_2 = \{0\} \) and \(S_1 + S_2 = \mathbb{C}^m \), where \(S_1 + S_2 \) denotes the span of \(S_1 \) and \(S_2 \), that is, the set of vectors \(s_1 + s_2 \) with \(s_1 \in S_1 \) and \(s_2 \in S_2 \). (Such a pair are said to be complementary subspaces.) Then there is a projector \(P \) such that \(\text{range}(P) = S_1 \) and \(\text{null}(P) = S_2 \). We say that \(P \) is the projector onto \(S_1 \) along \(S_2 \). This projector and its complement can be seen as the unique solution to the following problem:

\[
\text{Given } v, \text{ find vectors } v_1 \in S_1 \text{ and } v_2 \in S_2 \text{ such that } v_1 + v_2 = v.
\]

- Eigen decomposition example: What are the coefficients given a particular basis?
An orthogonal projector (Figure 6.2) is one that projects onto a subspace S_1 along a space S_2, where S_1 and S_2 are orthogonal. (Warning: orthogonal projectors are not orthogonal matrices!)

Figure 6.2. An orthogonal projection.
Algebraic Definition of Orthogonal Projectors

Theorem 6.1. A projector P is orthogonal if and only if $P = P^*$.

Proof. If $P = P^*$, then the inner product between a vector $Px \in S_1$ and a vector $(I - P)y \in S_2$ is zero:

$$x^*P^*(I - P)y = x^*(P - P^2)y = 0.$$

For “only if,” we can use the SVD. Suppose P projects onto S_1 along S_2, where $S_1 \perp S_2$ and S_1 has dimension n. Then an SVD of P can be constructed as follows. Let $\{q_1, q_2, \ldots, q_m\}$ be an orthonormal basis for \mathbb{C}^m, where $\{q_1, \ldots, q_n\}$ is a basis for S_1 and $\{q_{n+1}, \ldots, q_m\}$ is a basis for S_2.
Proof Cont.

\[
PQ = \begin{bmatrix}
q_1 & \cdots & q_n & 0 & \cdots
\end{bmatrix},
\]

\[
Q^*PQ = \begin{bmatrix}
1 & \cdots & 1 \\
\cdots & 1 & 0 \\
\end{bmatrix} = \Sigma,
\]

\[
P = Q\Sigma Q^*. \implies P^* = (Q\Sigma Q^*)^* = Q\Sigma^* Q^* = Q\Sigma Q^* = P
\]
Projection with an Orthonormal Basis

\[\begin{array}{c}
\begin{array}{cccc}
\hline
y & = & \hat{Q} & \hat{Q}^* \\
\hline
\end{array}
\end{array} \]

The complement of an orthogonal projector is also an orthogonal projector (proof: \(I - \hat{Q}\hat{Q}^* \) is hermitian). The complement projects onto the space orthogonal to range(\(\hat{Q} \)).

- One rank:

\[P_q = qq^*, \quad P_{\perp q} = I - qq^*. \]

\[P_a = \frac{aa^*}{a^*a}, \quad P_{\perp a} = I - \frac{aa^*}{a^*a}. \]
Projection with Arbitrary Basis

In passing from \(v \) to its orthogonal projection \(y \in \text{range}(A) \), the difference \(y - v \) must be orthogonal to \(\text{range}(A) \). This is equivalent to the statement that \(y \) must satisfy \(a_j^*(y - v) = 0 \) for every \(j \). Since \(y \in \text{range}(A) \), we can set \(y = Ax \) and write this condition as \(a_j^*(Ax - v) = 0 \) for each \(j \), or equivalently, \(A^*(Ax - v) = 0 \) or \(A^*Ax = A^*v \). It is easily shown that since \(A \) has full rank, \(A^*A \) is nonsingular (Exercise 6.3). Therefore

\[
x = (A^*A)^{-1}A^*v. \tag{6.12}
\]

Finally, the projection of \(v, y = Ax \), is \(y = A(A^*A)^{-1}A^*v \). Thus the orthogonal projector onto \(\text{range}(A) \) can be expressed by the formula

\[
P = A(A^*A)^{-1}A^*. \tag{6.13}
\]
Lecture 7

QR Factorization

NLA Reading Group Spring '13
by Umut Şimşekli
Reduced QR Factorization

For many applications, we find ourselves interested in the column spaces of a matrix A. Note the plural: these are the successive spaces spanned by the columns a_1, a_2, \ldots of A:

$$\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \langle a_1, a_2, a_3 \rangle \subseteq \ldots$$

- Find a matrix Q such that:

$$\langle q_1, q_2, \ldots, q_j \rangle = \langle a_1, a_2, \ldots, a_j \rangle, \quad j = 1, \ldots, n.$$
Reduced QR Factorization

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{bmatrix}
= \begin{bmatrix}
 q_1 \\
 q_2 \\
 \vdots \\
 q_n
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & \cdots & r_{1n} \\
 r_{22} & \ddots & & \\
 & & \ddots & \\
 & & & r_{nn}
\end{bmatrix},
\]

\[a_1 = r_{11}q_1,\]
\[a_2 = r_{12}q_1 + r_{22}q_2,\]
\[a_3 = r_{13}q_1 + r_{23}q_2 + r_{33}q_3,\]
\[\vdots\]
\[a_n = r_{1n}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n.\]

\[A = \hat{Q}\hat{R},\]
Full QR Factorization

Reduced QR Factorization \((m \geq n)\)

\[
\begin{align*}
A & = \hat{Q} \hat{R} \\
\end{align*}
\]

Full QR Factorization \((m \geq n)\)

\[
\begin{align*}
A & = Q R \\
\end{align*}
\]
Gram-Schmidt Orthogonalization

- From Lecture 2 we know:

\[v_j = a_j - (q_1^* a_j)q_1 - (q_2^* a_j)q_2 - \cdots - (q_{j-1}^* a_j)q_{j-1} \]

- Rewrite

\[a_1 = r_{11}q_1, \]
\[a_2 = r_{12}q_1 + r_{22}q_2, \]
\[a_3 = r_{13}q_1 + r_{23}q_2 + r_{33}q_3, \]
\[\vdots \]
\[a_n = r_{1n}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n. \]

\[r_{ij} = q_i^* a_j \quad (i \neq j). \]
\[|r_{jj}| = \| a_j - \sum_{i=1}^{j-1} r_{ij}q_i \|_2. \]

\[q_1 = \frac{a_1}{r_{11}}, \]
\[q_2 = \frac{a_2 - r_{12}q_1}{r_{22}}, \]
\[q_3 = \frac{a_3 - r_{13}q_1 - r_{23}q_2}{r_{33}}, \]
\[\vdots \]
\[q_n = \frac{a_n - \sum_{i=1}^{n-1} r_{in}q_i}{r_{nn}}. \]
Algorithm 7.1. Classical Gram–Schmidt (unstable)

\[
\text{for } j = 1 \text{ to } n \\
\quad v_j = a_j \\
\quad \text{for } i = 1 \text{ to } j - 1 \\
\quad \quad r_{ij} = q_i^* a_j \\
\quad \quad v_j = v_j - r_{ij} q_i \\
\quad r_{jj} = \|v_j\|_2 \\
\quad q_j = v_j / r_{jj}
\]
Theorem 7.1. Every $A \in \mathbb{C}^{m \times n} \ (m \geq n)$ has a full QR factorization, hence also a reduced QR factorization.

Proof. Suppose first that A has full rank and that we want just a reduced QR factorization. In this case, a proof of existence is provided by the Gram–Schmidt algorithm itself. By construction, this process generates orthonormal columns of \hat{Q} and entries of \hat{R} such that (7.4) holds. Failure can occur only if at some step, v_j is zero and thus cannot be normalized to produce q_j. However, this would imply $a_j \in \langle q_1, \ldots, q_{j-1} \rangle = \langle a_1, \ldots, a_{j-1} \rangle$, contradicting the assumption that A has full rank.

Now suppose that A does not have full rank. Then at one or more steps j, we shall find that (7.5) gives $v_j = 0$, as just mentioned. At this moment, we simply pick q_j arbitrarily to be any normalized vector orthogonal to $\langle q_1, \ldots, q_{j-1} \rangle$, and then continue the Gram–Schmidt process.

Finally, the full, rather than reduced, QR factorization of an $m \times n$ matrix with $m > n$ can be constructed by introducing arbitrary orthonormal vectors in the same fashion. We follow the Gram–Schmidt process through step n, then continue on an additional $m - n$ steps, introducing vectors q_j at each step.
Uniqueness

Theorem 7.2. Each $A \in \mathbb{C}^{m \times n}$ ($m \geq n$) of full rank has a unique reduced QR factorization $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$.

Proof. Again, the proof is provided by the Gram–Schmidt iteration. From (7.4), the orthonormality of the columns of \hat{Q}, and the upper-triangularity of \hat{R}, it follows that any reduced QR factorization of A must satisfy (7.6)–(7.8). By the assumption of full rank, the denominators (7.8) of (7.6) are nonzero, and thus at each successive step j, these formulas determine r_{ij} and q_j fully, except in one place: the sign of r_{jj}, not specified in (7.8). Once this is fixed by the condition $r_{jj} > 0$, as in Algorithm 7.1, the factorization is completely determined. \square
Vectors -> Continuous Functions

- Inner product of two functions:
 \[(f, g) = \int_{-1}^{1} f(x) g(x) \, dx.\]

- QR Decomposition

\[
\begin{bmatrix}
1 & x & x^2 & \cdots & x^{n-1}
\end{bmatrix}
= \begin{bmatrix}
q_0(x) & q_1(x) & \cdots & q_{n-1}(x)
\end{bmatrix}
\begin{bmatrix}
r_{11} & r_{12} & \cdots & r_{1n} \\
r_{22} & \ddots & & \\
& & \ddots & \\
& & & r_{nn}
\end{bmatrix}
\]

\[A = QR\]

Legendre Polynomials
Solution of $Ax = b$ by QR

$Ax = b \quad A = QR$

$Rx = Q^*b.$

1. Compute a QR factorization $A = QR$.
2. Compute $y = Q^*b$.
3. Solve $Rx = y$ for x.
Lecture 8
Gram-Schmidt Orthogonalization
NLA Reading Group Spring '13
by Umut Şimşekli
Gram-Schmidt Projections

- Recall the orthogonalization method

\[q_1 = \frac{P_1 a_1}{\|P_1 a_1\|}, \quad q_2 = \frac{P_2 a_2}{\|P_2 a_2\|}, \ldots, \quad q_n = \frac{P_n a_n}{\|P_n a_n\|}. \]

\[P_1 = I \]

\[P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^* \quad \Rightarrow \quad \hat{Q}_{j-1} = \begin{bmatrix} q_1 & q_2 & \cdots & q_{j-1} \end{bmatrix} \]
Modified Gram-Schmidt Algorithm

- Standard GS Algorithm

\[v_j = P_j a_j \]
\[P_j = P_{\perp q_{j-1}} \cdots P_{\perp q_2} P_{\perp q_1} \]
\[v_j = P_{\perp q_{j-1}} \cdots P_{\perp q_2} P_{\perp q_1} a_j \]

- Modified GS Algorithm

\[v_j^{(1)} = a_j, \]
\[v_j^{(2)} = P_{\perp q_1} v_j^{(1)} = v_j^{(1)} - q_1 q_1^* v_j^{(1)}, \]
\[v_j^{(3)} = P_{\perp q_2} v_j^{(2)} = v_j^{(2)} - q_2 q_2^* v_j^{(2)}, \]
\[\vdots \]
\[v_j = v_j^{(j)} = P_{\perp q_{j-1}} v_j^{(j-1)} = v_j^{(j-1)} - q_{j-1} q_{j-1}^* v_j^{(j-1)} \]

- Numerically more stable
Algorithm 8.1. Modified Gram–Schmidt

for $i = 1$ to n

$v_i = a_i$

for $i = 1$ to n

$r_{ii} = \|v_i\|$

$q_i = v_i / r_{ii}$

for $j = i + 1$ to n

$r_{ij} = q_i^* v_j$

$v_j = v_j - r_{ij} q_i$
Gram-Schmidt as Triangular Orthogonalization

First step:

\[
\begin{bmatrix}
 v_1 & v_2 & \cdots & v_n
\end{bmatrix}
\begin{bmatrix}
 1 & -r_{12} & -r_{13} & \cdots \\
r_{11} & r_{11} & r_{11} & \cdots \\
1 & 1 & \ddots & \\
\end{bmatrix}
\begin{bmatrix}
 R_1 \\
 1 \\
 v_n(2) \\
\end{bmatrix}
= \begin{bmatrix}
 q_1 \\
 v_2(2) \\
 \vdots \\
 v_n(2)
\end{bmatrix}
\]

Then:

\[
R_2 = \begin{bmatrix}
 1 & -r_{23} & \cdots \\
r_{22} & r_{22} & \cdots \\
1 & \ddots & \\
\end{bmatrix}, \quad R_3 = \begin{bmatrix}
 1 & -r_{33} & \cdots \\
r_{33} & r_{33} & \ddots \\
1 & \ddots & \\
\end{bmatrix}, \quad \ldots
\]

\[
A R_1 R_2 \cdots R_n = \hat{Q}.
\]
Lecture 9
MATLAB
NLA Reading Group Spring '13
by Umut Şimşekli
Modified vs Standard Gram-Schmidt

Numerical stability

\[
[U,X] = qr(randn(80)); \quad \text{Set } U \text{ to a random orthogonal matrix.}
\]

\[
[V,X] = qr(randn(80)); \quad \text{Set } V \text{ to a random orthogonal matrix.}
\]

\[
S = \text{diag}(2.\text{.^{(-1:-1:-80)}}); \quad \text{Set } S \text{ to a diagonal matrix with exponentially graded entries.}
\]

\[
A = U*S*V; \quad \text{Set } A \text{ to a matrix with these entries as singular values.}
\]

\[
[QC,RC] = \text{clgs}(A); \quad \text{Compute a factorization } Q^{(c)}R^{(c)} \text{ by classical Gram–Schmidt.}
\]

\[
[QM,RM] = \text{mgs}(A); \quad \text{Compute a factorization } Q^{(m)}R^{(m)} \text{ by modified Gram–Schmidt.}
\]
Another numerical stability example

\[A = \begin{bmatrix} 0.70000 & 0.70711 \\ 0.70001 & 0.70711 \end{bmatrix} \]

- By hand (5 digit precision) \[Q = \begin{bmatrix} 0.70710 & 1.0000 \\ 0.70711 & 0.0000 \end{bmatrix} \]
- MATLAB

\begin{verbatim}
A = [.70000 .70711];
[Q,R] = qr(A);
norm(Q'*Q-eye(2))

[Q,R] = mgs(A);
norm(Q'*Q-eye(2))
\end{verbatim}

The lines without semicolons produce the following printed output:

\[\text{ans} = 2.3515e-16, \quad \text{ans} = 2.3014e-11. \]