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Geometric Interpretation

The image of the unit sphere under any m x n matrix is a hyperellipse.

Vo A
ToUo

711y

n singular values : the lengths of the n principal semiaxes of AS
n left singular vectors : the unit vectors oriented in the directions of

the principal semiaxes
n right singular vectors : the unit vectors that are preimages of left

singular vectors so that Av; = o; U,




Reduced Svd

Av;

j = O, | < j7<n

This collection of vector equations can be expressed as a matrix equation,

(o

Vi |V2 | | Uy

U is an nxm with orthonormal columns i.e. U =1,
V is an nxn unitary matrix
Y 1s diagonal with nonnegative diagonal entries oy, ..., o,

A=UnV?




Full SVD

The idea is as follows. The columns of U are n orthonormal vectors in
the m-dimensional space C™. Unless m = n, they do not form a basis of
@™, nor is U a unitary matrix. However, by adjoining an additional m — n
orthonormal columns, U can be extended to a unitary matrix. Let us do this
in an arbitrary fashion, and call the result U.

A=U¥V"

A U by Vr

Now U and V are both unitary matrices and X is mxn diagonal
matrix.

If A is rank deficient and of rank r, then exactly r diagonal entries
of X are nonzero.




Formal Definition

singular value decomposition (SVD) of A is a factorization
A=U¥V"
where
U e ™™ s unitary,
Ve C""  is unitary,
> e R™" is diagonal.
In addition, it is assumed that the diagonal entries o; of 3. are nonnegative and
in nonincreasing order; that is, oy > g9 > --- > 0, > 0, where p = min(m, n).
unitary map V™ preserves the sphere
diagonal matrix ¥ stretches the sphere into a hyperellipse

unitary map U rotates or reflects the hyperellipse




Existence and Uniqueness

Theorem 4.1. Fvery matriz A € C™*" has a singular value decomposition
(4.4). Furthermore, the singular values {o;} are uniquely determined, and, if
A is square and the o; are distinct, the left and right singular vectors {u;} and
{v;} are uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1).

Set o, = ||‘||z By a compactness argument, there must be vectors v, €
C" and u; € C™ with [|[oi]]e = ||ui]le = 1 and Avy = oyuy.

. ] _ o w*
U'AV, = 8§ =
0 B

or W 7 y . e a
| | > o +w'w = (0] +w'w)'/? ;
VP WAl w1,

implying ||S]|2 > (of + w*w)'/?. Since U; and V; are unitary, we know that
Sllo = [|A|lo = a1, so this implies w = 0.

By the induction hypothesis, B has an SVD B = Uy, V)

oot o [a 01 0] .
A=U [{] {,-*2] [ 0 ?2] 0 1-;] v




Existence and Uniqueness cont.

If the semiaxis lengths are distinct, then the the semiaxes themselves are
determined by geometry, up to sign changes.

note that oy is uniquely determined by the condition that it is equal to || Al|,
another linearly independent vector w with ||wl|| = 1 and || Aw||, = o,

w — (viw)v

Vg = -
|w — (viw)v |2
Since ||A|ls = o4, [|[Avs]lo < o1: but this must be an equality, for otherwise,
since w = v;¢ + 1,5 for some constants ¢ and s with |e|* + [s]* = 1, we

would have ||[Awl||, < o,. This vector v, is a second right singular vector of
A corresponding to the singular value oy; it will lead to the appearance of

a vector y (equal to the last n — 1 components of V') with ||y|l. = 1 and

||B'LE'I||2 = 0
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A Change of Basis

Multiplication by Q*

b:
coefficients of

the expansion of b

in{er, ..., e}

Multiplication by )

b = U"b,

be C"

r e "

h=Ax <= U'bh=UAxz =U"UXV"x

coefficients of
the expansion of b

Q" b:

o =V*r

— by =X

Whenever b = Az, we have Y = ¥a'. Thus A reduces to the diagonal matrix

3> when the range is expressed in the basis of columns of U and the domain is

expressed in the basis of columns of V.




SVD vs. Eigenvalue Decomposition

A e € the eigenvalue decomposition of A is
A= XAX!
if we define, for b, x € C™ satisfying b = Ax,

V=X, 2 =X"la

*SVD uses two different bases, whereas EVD uses one.
*In SVD bases are orthonormal, in EVD bases are not
necessarily orthonormal.

*Not all matrices have an EVD but every matrix has an
SVD.




Matrix Properties via the SVD

The power of the SVD becomes apparent as we begin to catalogue its con-
nections with other fundamental topics of linear algebra. For the following
theorems, assume that A has dimensions m x n. Let p be the minimum of m
and n, let 7 < p denote the number of nonzero singular values of A, and let

-~

{x,y,....z) denote the space spanned by the vectors x,y, ..., 2.

L

Theorem 5.1. The rank of A is r, the number of nonzero singular values.

Theorem 5.2. range(A) = (uy, ..., u.) and null(A) = (v,.q, ... 0p)

Theorem 5.3. [|Alls = o1 and ||Allp = \Jo? + 02+ -+ 02,

Theorem 5.4. The nonzero singular values of A are the square roots of the
nonzero eigenvalues of A*A or AA*. (These matrices have the same nonzero
eigenvalues. )

Theorem 5.5. If A = A", then the singular values of A are the absolute
values of the eigenvalues of A.

L

Theorem 5.6. For A € ¢ |det(A)| = [] o
=1




Low Rank Approximation
Theorem 5.7. A is the sum of r rank-one matrices:
A= Z oju;v;. (5.3)
J=1

Formula (5.3), however, represents a decomposition into rank-one matrices
with a deeper property: the vth partial sum captures as much of the energy
of A as possible.

Theorem 5.8. For any v with 0 < v < r, define

i
Ay =Y ojUU;; (5.4)
F=1
if v = p=min{m,n}, define o,., = 0. Then
||1 - .-"11,”2 - ”!{x ||‘ o BHJ = Ovt1-
pel™ "

rank (B)<wv




Low Rank Approximation cont.

Theorem 5.8 has a geometric interpretation. What is the best approxima-
tion of a hyperellipsoid by a line segment? Take the line segment to be the
longest axis. What is the best approximation by a two-dimensional ellipsoid?
Take the ellipsoid spanned by the longest and the second-longest axis. Con-
tinuing in this fashion, at each step we improve the approximation by adding
into our approximation the largest axis of the hyperellipsoid not yet included.
After r steps, we have captured all of A. This idea has ramifications in areas
as disparate as image compression (see Exercise 9.3) and functional analysis.

Theorem 5.9. For any v with 0 < v < r, the matriz A, of (5.4) also satisfies

i

||1 o 1J‘.f||:“ - _}[l'r!][x ||1 o BH; - "l.ffg;{_l T n_"f
Fi:;k[:ﬂ'j{u




