Lecture 1

Matrix-Vector Multiplication
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b= Ax =2 b isa linear combination of the columns of 4

T
b:AJ’ 9 bé :Z(L?:‘Tﬂ Ié:lﬁ"'j'm"
j=1

The map = — Az is linear = for any z,y € C" and a € C

Alz+y) = Az + Ay,
Alaz) = aAux.




A Matrix Times a Vector

Let us re-write the matrix-vector multiplication

T
b= Ax = Z T 0,
j=1

b — aq|ao | -+ |Gy : — B | ay | + x| G| -+ Xy, | Gy

“As mathematicians, we are used to viewing the formula Ax = b as a statement that
A acts on x to produce b

The new formula, by contrast, suggests the interpretation that
X acts on A to produce b




Example: Vandermonde Matrix

The map from vectors of coefficients of polynomials p of degree < n to vectors
(p(x)),p(x,), ..., p(x,,)) of sampled polynomial values is linear.

B e 2 i1
1w a3 €
2 ]
_ 1 To €5 ;LS
A=
rn n1
Ly xy, -o ap,
Cp
Cy
c=| ¢ |, plr) =g+ crx + e + - -+ ¢, ™!
(f.n 1 ]

The product Ac gives the sampled polynomial values:

(Ac); = co+cra; + CQLL‘? +oee 4+ Cn_qlf}?_] = p(x;)




Do not see Ac as m distinct scalar summations. Instead, see A as a matrix of
columns, each giving sampled values of a monomial*,

Thus, Ac is a single vector summation that at once gives a linear combination of
these monomials,

1

Ac = g+ az+cear®+- -+ ezt = p(a)

*In mathematics, a monomial is roughly speaking, a polynomial which has only one term.




A Matrix Times a Vector

B = AC =¥ each column of B is a linear combination of the columns of A

= Ac; = Z Cj Uk

Cr |Co | -] Cp
bl bg +e e bn — a1 | Ao | =+ - | U

Thus b; is a linear combinations of the columns a, with coefficients c;;




Example: Outer Product
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Example: Cumulative Sum

by |---1|b, — ay | --- | ay

The matrix R is a discrete analogue of an indefinite integral operator




Range

range(A) is the space spanned by the columns of A

Nullspace

null(4) is the set of vectors that satisfy Ax = 0, where 0 is the 0-vector in C™

Rank

The column/row rank of a matrix is the dimension of its column/row space.
Column rank always equals row rank. So, we call this as rank of the matrix.

A matrix A of size m-by-n with m > n has full rank iff it maps no two distinct vectors
to the same vector.




Inverse

A nonsingular or invertible matrix is a square matrix of full rank.

(':] e ffm — I — ‘12

I is the m-by-m identity. The matrix Z is the inverse of A.

AA T =A1A=1
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For an m-by-m matrix A, the following conditions are equivalent:

(a) A has an inverse A1,

(b) rank(A) = m,

(c) range(A) = C™,

(d) null(A) = {0},

(e) 0 is not an eigenvalue of A,
(f) 0 is not a singular value of A,
(

g) det(A) # 0.

We mention the determinant, though a convenient notion theoretically, rarely finds
a useful role on numerical algorithms.
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A Matrix Times a Vector

x = A1b

Do not think x as the result of applying A~ to b. Instead, think it as the unique
vector that satisfies the equation Ax = b.

Multiplication by A~1 is a change of basis operation.

A~1b is the vector of coefficients of the expansion of b in the basis of columns of A.

1

Multiplication by ~#

-
|

A b
coeflicients of
the expansion of b
in {ay,...,a.,}

b:
coeflicients of
the expansion of b

in {er,....en}

il

Multiplication by A
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Adjoint

The complex conjugate of a scalar z, written z or z*, is obtained by negating its
Imaginary part.

The hermitian conjugate or adjoint of an m-by-n matrix A, written A*, is the n-by-m
matrix whose i, j entry is the complex conjugate of the j, i entry of A.

a1 12

(31 (32

IfA = A%, A is hermitian.

For real A, adjoint is known as transpose and shown as A7

If A = AT, then A4 is symmetric.
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Inner Product

Euclidean length of x

m 1/2
lall = Ve = (3le)

The inner product is bilinear, i.e. linear in each vector separately:

(21 +22)"y = 2y + 23y,
(Y +1y2) = x'yr + ayo,
()™ (By) = @Ba™y.
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Orthogonal Vectors

A pair of vectors x and y are orthogonal if x*y = 0.

Two sets of vectors X and Y are orthogonal if every x € X is orthogonaltoy € Y.

A set of nonzero vectors S is orthogonal if its elements are pairwise orthogonal.

A set of nonzero vectors S is orthonormal if it is orthogonal, in addition,
every x € S has ||x]| = 1.
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The vectors in an orthogonal set S are linearly independent.

Sketch of the proof:

O Assume than they were not independent and propose a nonzero vector by linear
combination of the members of S

0 Observe that its length should be larger than 0

O Use the bilinearity of inner products and the orthogonality of S to contradict the
assumption

= | If an orthogonal set S € C™ contains m vectors, then it is a basis for C™.
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Components of a Vector

Inner products can be used to decompose arbitrary vectors into orthogonal components.

Assume
{41,492, -, 4 }: an orthonormal set
v: an arbitrary vector

Utilizing the scalars q;v as coordinates in an expansion, we find that

r=v—(qgiv)g1 — (¢av)g2 — - - — (¢nV)Gn

is orthogonal to {q4, g5, ..., 4.}

Thus we see that v can be decomposed into n + 1 orthogonal components:

T T

vo= 1+ (g0)e =+ Y (66

=1 1—=1
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If {g.} is a basis for C". then n must be equal to m
1 3

e We view v as a sum of coefficients g;v times vectors g;.

e We view v as a sum of orthogonal projections of v onto the various

directions of g;. The ith projection operation is achieved by the very
special rank-one matrix q;q; .
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Unitary Matrices

If Q* = Q~1, Q is unitary.

QQ=1
| q 1 [ ] [ 1 ]
45 1
G g2| | 9m —
i 7 11 | i 1|
Qf(lj = 0ij
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Multiplication by a Unitary Matrix

Q*b is the vector of coefficients of the expansion of b in the basis of columns of A.

Multiplication by @~

b:
coeflicients of
the expansion of b

in {ela st Ej’m}

Q" 0:
coeflicients of
the expansion of b

n {QI:I - - ':IQTTL}

Multiplication by @
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Multiplication by a unitary matrix or its adjoint preserve geometric structure in the
Euclidean sense, because inner products are preserved.

(Qz)*(Qy) = "y

The invariance of inner products means that angles between vectors are preserved,
and so are their lengths:

Q]| =[]

In the real case, multiplication by an orthonormal matrix Q corresponds to a rigid
rotation (if detQ = 1) or reflection (if detQ = —1) of the vector space.
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Vector norms
The essential notions of size and distance in a vector space are captured by norms.

A norm is a function || -] : €™ — R

In order to conform a reasonable notion of length, a norm must satisfy

z|| > 0, and ||z|| = 0 only if 2 = 0,
z +yll < lell + [lyll,

Lo N =
A N )

az| = laf [l

for all vectors x and y and for all scalars a € C.
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p-NOrms

The closed unit ball {x € C™: ||x]|| < 1} corresponding to each norm is illustrated to
the right for the case m = 2.

?

m
el = 3 |,
1=1

N AN
NN

m 1/2
lale = (2] = v
i=1

7)o = max |z;

m 1/p
il = (Smr) a<p<oo)
1=1

1N
|/
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Weighted p-norms

Introduce the diagonal matrix W whose ith diagonal entry is the weight w; # 0.

Wl

H-THW -

Example: a weighted 2-norm

m 1/2
|x]lw = (ZW’@%F) :
1=1

Pl B
N

The most important norms in this book are the unweighted 2-norm and its induced
matrix form.
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Matrix Norms Induced by Vector Norms

An m X n matrix can be viewed as a vector in an mn-dimensional space: each of the
mn entries of the matrix is an independent coordinate.

= Any mn-dimensional norm can be used for measuring the “size” of such a matrix.

However, certain special matrix norms are more useful than the vector norms.

These are the induced matrix norms, defined in terms of the behavior of a matrix as
an operator between its normed domain and range spaces.
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Given vector norms |||y and ||-[ y on the domain and range of A € C"™*",
respectively, the induced matrix norm [|A ;, »y is the smallest number C for which

[Az]|m) < Clilln)

In other words, it is the maximum factor by which A can stretch a vector x.

A,.
I—Li
w0 @l aco
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A Toy Example

1 2
A=
0 2
(2.2)
(0.1)°
| L7
l-norm: V(l %/b(l.u)‘ Al =4
2-norm: W — &/ 1 A]|2 ~ 2.9208
‘ Ve

OO-TNIOTI: 4 — / ||:1| o =
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The p-norm of a Diagonal Matrix

| D, = maxi<j<m |di]

30




The 1-norm of a Matrix

For any m X n matrix A, ||A||; is equal to the maximum column sum of A.

Consider x be in /I\ e Y0 xl <1}

N

[zl = | Eaes], < X lasfllasth < max oyl

By choosing x = e;, where j maximizes ||a; ||, we attain:

1Al = ggjaggl ||aj||1

31




The co-norm of a Matrix

For any m X n matrix A, ||A||. is equal to the maximum row sum of A.

1Alloo = max {|a7]l;
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Cauchy-Schwartz and Holder Inequalities

Let p and g satisfy% +$ = 1, with 1 < p,q < o. Then, the Holder inequality states

that, for any vectors x and y:

2"y| < [lzllpllyllq

The Cauchy-Schwartz inequality is a special case p = g = 2:

27yl < flllaf[y]l2
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The 2-norm of a Row Vector

Consider A = a* where a is a column vector. For any x, we have:
[Az[y = [a"z| < [|all2]|=[|2
This bound is tight: observe that

1Aallz = [lall

Therefore, we have

[Allz = supi[|[Az|[2/[[z|2} = [lall
A0
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The 2-norm of an Outer Product

Consider A = uv™*, where u is an m-vector and v is an n-vector. For any n-vector x,
we can bound

[Azlly = [Juvzllz = [Jullslv™z| < [ull2llv]l2]l]l2

Therefore, we have

[All2 < {[ull2l|v]]2

This inequality is an equality for the case x = v.
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Bounding ||AB]| in an Induced Matrix Norm

|ABz||e) < | Al e[| Bl my < | Al ce,m)l| Bl omm 11l n)

Therefore, the induced norm of AB must satisfy

|AB|[iem) < ([ All¢em) || Bll mm)
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General Matrix Norms

(1) ||A]| = 0, and ||A|| = 0 only if A =0,
(2) A+ Bl < [[A]l + /B
(3) lleAll = lal[lA].

7
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Frobenius Norm

The most important matrix norm which is not induced by a vector norm is the
Hilbert-Schmidt or Frobenius norm, defined by

i=14=1

m n 1/2
|Allr = (22%2)

Observe that this s the same as the 2-norm of the matrix when viewed as an mn-
dimensional vector.

Alternatively, we can write

. 1/2
2
[Allx = (ZI%IQ )
7=l

|A|lr = Jtr(A*A) = (/tr(AA¥)
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Bounding Frobenius Norm

Let C = AB, then

noom
) : 2
[ABlE = > >yl

i=1 7=1

nom )
> 2> Ulailla [1b5]12)°

1—1 3-—1

A

T T

= D (laill)” 2 dlbll)™ = [1AIE 1BIE

g1 j=1
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Invariance under Unitary Multiplication

The matrix 2-norm and Frobenius norm are invariant under multiplication by unitary
matrices.

1QA[l2 =[|Allz,  [|QA[lF = [|AllF.

This fact is still valid if Q is generalized to a rectangular matrix with orthonormal
columns. Recall transformation used in PCA.
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