1

CmpkE 482 Numerical Linear Algebra and Its Applications
Programming Projects
Instructor: A. Taylan Cemgil
Department of Computer Engineering, Bogazi¢i University

34342 Bebek, Istanbul, Turkey
taylan.cemgil@boun.edu.tr

as of: May 11, 2016

Abstract

This document defines the programming projects of cmmpe482.

Project 1: Deadline 3 June, 2016 10:00

In this project, you need to design and implement a method for predicting the amount of sales of several related items, given
historical monthly sales figures. More precisely, for the i'th item, you are given the number of sales at the ¢’th month as

1.

Tt

You will write an jupyter notebook (using either the python or octave kernel) that will do the following tasks:

Read historical sales data and generates various plots like in Figure 1. The data will be a matrix in the workspace. You
should automatically determine the number of items and the number of months in the data.

2. Construct a basis regression model. When constructing your model, assume that there is a constant term, a linear trend

and seasonal fluctuations (yearly, two-yearly and every 4 months).

3. For each least-squares method (1-Normal Equations, 2-QR factorization, 3-SVD based), your program will compute a

prediction, using a basis regression model. You should generate predictions for an horizon of 6 months. For example, if
your data contains 24 columns, you should generate predictions for months 25,26, ...,30. You should check if predictions
by each computation method are similar by checking the relative error |z — y|/|y|. Print a table like

Total relative error between predictions generated by different computational methods
NormE: Normal Equations
QR : QR decomposition
SVD : SVD Decomposition

NormE QR SVD
NormE 0 0.0009 0.0001
QR 0.0134 0 0.0084
SVD 0.0002 0.0007 0

4. When a ground truth test data is given (case 2), you must read the specified file (in the example ’testdatal.txt’) and

compare your predictions in terms of the || - |2 norm of the error. Your program must also print the error norm for each
item separately as.

Errors (Euclidian norms)

Item 1: 2.97
Item 2: 83.91
Item 3: 40.29
Item 4: 88.62
Item 5: 87.44

Total :303.23

When no ground truth test data is given (case 1), The predictions must be given as the output

% salesdatal and testdatal are matrices in the workspace
case 1b >> predictions = projectl(salesdatal)
case 2b >> predictions = projectl(salesdatal, testdatal)

Instead of considering a basis function, use directly past data (all sales figures in a given time window of length D, from

the past) as the observed features.

You need to setup a least squares problem for the following problem and solve by least squares

Wi,j,mxj,t—7

where [is the number of items and D is the number of steps you lookback for past data. The output of you program must
be the weight array w of size I X I x D, and the prediction for the next month (a I vector) only.

Read historical sales data. The format of the data file will be ascii text where the figures are separated by a space and
each item is located on a separate line. You can use textread function of octave/panda library of python. You should
automatically determine the number of items and the number of months in the data. The ’depth’ of the history D, needs
to be given as an extra parameter. You must write a function named

project2.m

that is callable from like below,

case 1 >> w, pred =
case 2 > w, pred =

project_part2(D_tau, salesdatal)
project_part2(D_tau, salesdatal, testdatal)

The output of you program must be the weight array w of size I x I x D, and the prediction for the next month (a I vector)

only.

as described in the class.

1.1 How to submit

Use the github and create a pull request.

1.2 Data Set 1

This data contains ¢ = 1...5 items and ¢t = 1...24 months.

. Your program must be able to cope with missing data specified as NaN’s. You can use an alternating least squares approach

412 399 371 371 388 386 360 365 381 376 350 354 379 375 361 370 400 402 386 398 420 412 384 385
502 521 498 488 506 515 476 463 482 499 479 486 538 567 559 557 595 607 575 568 596 613 591 595
869 895 893 873 884 942 947 937 946 994 989 970 997 1040 1062 1041 1065 1112 1118 1094 1088 1112 1095 1054
502 535 555 571 592 617 601 586 576 575 556 552 574 596 614 621 645 662 657 652 654 665 668 682
877 890 861 867 913 946 909 914 949 964 915 914 971 984 965 967 1028 1046 1013 1019 1058 1062 1016 1014
Table 1: Data Set 1. Sales for 5 items over a period of 24 months.

1.3 Data Set 2

This data contains ¢ = 1...5 items and t = 1...24 months with missing values.
NaN 895 893 873 NaN 942 947 937 946 994 989 970 997 1040 1062 1041 1065 1112 1118 NaN NaN 1112 1095 1054
502 535 555 571 NaN 617 601 586 576 575 556 552 574 596 614 621 645 662 657 NaN NaN 665 668 682
412 399 371 371 388 386 360 365 381 376 350 354 379 375 361 370 400 402 386 398 420 412 NaN 385
502 521 498 NaN 506 515 476 463 482 499 479 486 538 567 559 557 595 607 575 568 596 613 591 595
87T 890 861 867 913 946 909 914 949 964 915 914 971 984 965 967 1028 NaN 1013 NaN NaN NaN 1016 1014

Table 2: Data Set 2. Sales for 5 items over a period of 24 months, with missing values.

1200 —©&—ltem 1
—o— Item 2
1100k | —©— Item 3 i
—o— Item 4
1000 |
T go0f 1
»n
g
8 800 b
k]
5 700
Qo
g
Zz 600 |
500 b
400 e o6 oa 6o o600 o |
o oo 7 g o 9
300
0 5 10 15 20 25
Month
Figure 1: Data Setl
—o— ltem 1
1200 —6— Item 2
—o— Item 3
L00[o jtem 4 i
00000l
1000 Ooooofq
3 900} 1
n
g
8 800 b
S
g 00 ooof
e}
g
Z 600 O0of
500 b
400 ooofq
300
0 5 10 15 20 25 30

Figure 2: Observed sales (circles) and predictions (squares) on Data Setl, using a naive method that always predicts the next
month as the sales of the previous month.

2 Project 2: Spectral Clustering,

Consider an undirected graph G = (V, E) with vertex set V' = {1,..., N} and edge set E C V x V. Each edge e = (i,j) € E
is has a nonnegative weight w; ; = w; ;. We will denote the N x N symmetric weight matrix as W. The degree of vertex i is
d; = Zj w; ;. The degree matrix D is defined as the diagonal matrix with D;; = d;.

The (random walk) graph Laplacian (of G) is the matrix

L=I-WD™!

Note that, T'= WD~! is a matrix where each column sums to one. Hence, T' can be interpreted as the transition probabilities
of a random walk. In other words, T'(4,) gives us the probability of the next vertex to be visited is 7, when our random walker
is at vertex i.

2.1 Things to do

1. Obtain N points fas input, where each row i stores is a point z; € R™. Each point x; will correspond to the vertex 7 in a
graph G that we will construct.

15f Lo 1

osf . - .) ’ .

2. Construct (and plot when n = 2) the so called k-nearest neighbor graph. Here, the goal is to connect vertex ¢ with vertex
j if the distance d;,; = ||z; — z;|| is among the k-nearest neighbors of i. However, this definition leads to a directed graph,
as the neighborhood relationship is not symmetric. We will make this graph undirected by simply ignoring the directions
of the edges, that is we connect i and j with an undirected edge if 7 is among the k-nearest neighbors of j or if j is among
the k-nearest neighbors of i. Take k =5

15

0.5F

3. Construct the weight matrix. If an edge is a member of the k-nearest neighbor graph, take the weight to be W;; =
exp(—1(di,;/0)?) with o = 0.3.

4. Using an inverse iteration method find the second smallest eigenvalue and the corresponding eigenvector v of the Laplacian.

5. Plot the histogram of the entries of v. Roughly, you should see two ’"hills’ separated by a shallow ’valley’ near the threshold
value.

6. For each point ¢ = 1... N, if v; < 7, assign ¢ to cluster 1, else to cluster 2. Take the default 7 = 0. Generate the resulting
clustering:

2.2 Example Dataset

SOk K

The output of your m file be an array of length N where each entry gives the

>> [Labels, WeightMatrix] = project3(points, k, sigma, tau)

8041
0438
7267
3849
6754
5495
7096
5394
6608
7801
1777
0558
0338
7965

.0000
. 7828
.1899
.0406
.5998
L6721
.2042
.8053
L1179
.8531
. 7254

1200
2711
4852
1551
2080
0353
7240
1960
6123
6875
7907
4619
2108
9062
6965
1498
4032
1981
5038
8036

.3867
.9929
.8957
.6104
.8283
.0384
.0897
-0.
.0135
.5883
-0.
.6112
.7054
-0.
-0.
-0.
-0.
.0266

5749

1382

0826
1706
8070
2230

6877
6596
1073
6942
9167

0.
1.
1.
-0
1
1
2.
-0
0
1
-0
[

-0.
0.
-0.
-0.
-0.
-0.
0.
0.
-0.

= o oo

-0.
-0.
-0.
-0.

-0.

-0.
-0.

o

CrORRR

6784
3186
0516

L7118
.7853
.7915

0687

.0084
.9144
.3404
L1121
L3911

0374
6487
4010
8704
1892
4323
0093
5654
9981

.3997
.6405
L1769
.0714
.8603
.1937
.3463
7342
.8365
.0441
.6787
.9874
.8548
.4047
.0139
.8482
.9427
.3045
L7017
.8879
.8863

1201
6427
7512
9984
0796
9576
8812
3746
9373
1580
8707
2355

.3974

9088

.0404
.6626
.7480

9147
4935

.8121

8979
5232
6200
7092
7704
0697

cluster label.

-1.
-0.

L
OOor OO

'
o

'
»ooo

o

-1.

o

! L L
O ORRERERERO

'
o

|
o

|
or o

'
o

|
)

' L L '
OHrHOLROOOROROOOOOOOHRO

cCor O

) orooo

oroooo

B ORRON

corrOOR

cooor OO

cCorRrOOR R

o

oo

o

[

o r ko

-0.
-1.

o

o~

-0.

cor

-0.

'
O ke

!
=)

Lo
o000 Oo

or oo

-0.

R o

|
o

|
or oo

-0.
-0.

~ o

coro

-0.

=)

=)

o

-

o o

OrrRrROORRRERRO

R ROROOROOOR

ororo

)

) o RORORRERO

o

o

oo

roooooo

