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THE CONJUGATE GRADIENT METHOD FOR ITERATIVE SOLUTION OF LINEAR

EQUATIONS

ALI TAYLAN CEMGIL

Abstract.

1. The method

Solve Equations of form b = Ax where A is positive definite. If A is invertible but not positive definite we apply
the method to A>Ax = A>b.

Consider first

F (x) =
1

2
x>Ax

The method has the following form

x(t+ 1) = x(t) + γ(t)s(t)

γ(t) are scalar step size parameter and s(t) are search directions for t = 0, 1, . . . . Note that the gradient of F is given
as

∇F (x) |x=x(t)≡ g(t) = Ax(t)

It would be informative to contrast conjugate gradients to a gradient descent algorithm. A gradient descent
algorithm would look like

x(t+ 1) = x(t)− ν(t)g(t)

= x(t)− ν(t)Ax(t) = (I − ν(t)A)x(t)

In the conjugate gradient method, the search directions are chosen to be mutually conjugate meaning that

s(t)>As(r) = 0 when r 6= t

Once s(t) is chosen, γ(t) has a closed form solution.
In the sequel, we will show how to select s(t) and γ(t), but first provide an outline of the algorithm

1.1. Illustration of the algorithm. At the first step, we select the search direction as the negative gradient

s(0) = −g(0)

The search direction will be found

γ(0) =
s(0)>g(0)

s(0)>As(0)
= − g(0)>g(0)

g(0)>Ag(0)

and let

x(1) = x(0) +
s(0)>g(0)

s(0)>As(0)
s(0)

At this stage, we can calculate the new gradient as

g(1) = Ax(1)

To execute the next step, we need to select s(1) as a conjugate direction

s(0)>As(1) = 0

Received by the editors May 11, 2016.

Key words and phrases. SA.

c©XXXX Bogazici University

1



2 ALI TAYLAN CEMGIL

We would select the gradient s(1) = −g(1), but this choice won’t be necessarily a conjugate direction. A reasonable
choice is choosing the new direction s(1) such that we can represent the gradient as

−g(1) = s(1)− c0(1)s(0)

where c0(1) denotes a scalar coefficient for the first search direction in computation of the gradient g(1) at time 1.
This leads to

s(0)>As(1) = −s(0)>Ag(1) + c0(1)s(0)>As(0) = 0

c0(1) =
s(0)>Ag(1)

s(0)>As(0)

s(1) = −g(1) + c0(1)s(0)

x(2) = x(1) + γ(1)s(1)

g(2) = Ax(2)

g(2) = Ax(1) + γ(1)As(1) = g(1) + γ(1)As(1)

Similarly we want now

−g(2) = s(2)− c1(2)s(1)− c0(2)s(0)

where c1(2) and c0(2) denote scalar coefficients for the search direction s(2) in computation of the gradient g(2) at
time 2

This leads to two equations

s(2) = −g(2) + c1(2)s(1) + c0(2)s(0)

s(0)>As(2) = −s(0)>Ag(2) + c1(2)s(0)>As(1) + c0(2)s(0)>As(0)

s(1)>As(2) = −s(1)>Ag(2) + c1(2)s(1)>As(1) + c0(2)s(1)>As(0)

By conjugacy of s(0), s(1) and s(2) we have

0 = −s(0)>Ag(2) + c0(2)s(0)>As(0)

0 = −s(1)>Ag(2) + c1(2)s(1)>As(1)

c0(2) =
s(0)>Ag(2)

s(0)>As(0)
=
s(0)>Ag(2)

s(0)>As(0)

c1(2) =
s(1)>Ag(2)

s(1)>As(1)

In the general case, we will need to find scalar coefficients ci(t) for the i’th search direction in computation of the
gradient g(t) at time t i = 0 . . . t− 1. In general we will have

−g(t) = s(t)− ct−1(t)s(t− 1)− ct−2(t)s(t− 2)− · · · − c0(t)s(0)

= s(t)−
t−1∑
i=0

ci(t)s(i)

In other words, we require that the gradient lives in the subspace spanned by St = {s(0), . . . , s(t)}, a set of mutually
conjugate vectors where s(i)>As(t) = for i 6= t We will later show that most ci(t) are in fact 0.
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1.2. Finding the line search minimizer γ(t). For given x(t), s(t) and A, we define γ(t) as the line search minimizer

γ(t) = argmin
γ

F (x(t) + γs(t))

This problem has the following solution

U(γ) = F (x(t) + γs(t))

=
1

2
(x(t) + γs(t))>A(x(t) + γs(t))

=
1

2
(x(t)> + γs(t)>)(Ax(t) + γAs(t))

=
1

2
x(t)>Ax(t) + γs(t)>Ax(t) + γ2

1

2
s(t)>As(t)

dU

dγ
= s(t)>Ax(t) + γs(t)>As(t) = 0

γ(t) = −s(t)>Ax(t)/s(t)>As(t)

= −s(t)>g(t)/s(t)>As(t)

1.3. Selection of the conjugate directions s(t). The search directions have the following form

s(t) = −g(t) +

t−1∑
i=0

ci(t)s(i)

In a sense, we use the current gradient and a linear combination of past search directions. Before we derive how the
coefficients ci(t) are found, we need some results.

The update has the form

x(t+ 1) = x(t) + γ(t)s(t)

This leads to the identity about the difference of two consecutive gradients

Ax(t+ 1) = Ax(t) + γ(t)As(t)

g(t+ 1)− g(t) = γ(t)As(t)(1.3.1)

1.3.1. Orthogonality of s(t) and g(t+ 1).

Ax(t+ 1) = Ax(t) + γ(t)As(t)

g(t+ 1) = g(t)− s(t)>g(t)

s(t)>As(t)
As(t)

s(t)>g(t+ 1) = s(t)>g(t)− s(t)>g(t)

s(t)>As(t)
s(t)>As(t) = 0(1.3.2)

1.3.2. Orthogonality of s(i) and g(t+ 1) for i < t. For i < t, if we proceed similarly,

Ax(t+ 1) = Ax(t) + γ(t)As(t)

s(i)>g(t+ 1) = s(i)>g(t) + γ(t)s(i)>As(t)

s(i)>g(t+ 1) = s(i)>g(t)

0 = s(i)>(g(t+ 1)− g(t))

But actually we have a more powerful result where s(i)>g(t + 1) = s(i)>g(t) = 0. To see this, consider the solution
x(t+ 1) at time t+ 1 as a function of a past solution at i+ 1

x(t+ 1) = x(i+ 1) +

t∑
k=i+1

γ(k)s(k)
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s(i)>Ax(t+ 1) = s(i)>Ax(i+ 1) + s(i)>A

t∑
k=i+1

γ(k)s(k)

s(i)>g(t+ 1) = s(i)>g(i+ 1) = 0(1.3.3)

Here, 1.3.3 follows from 1.3.2

1.3.3. Orthogonality of g(i) and g(t) for i < t. We have the identity

−g(i) = s(i)−
i−1∑
j=0

cj(i)s(j)

Multiply both sides by g(t)> for some i < t

−g(t)>g(i) = g(t)>s(i)−
i−1∑
j=0

cj(i)g(t)>s(j)

= 0

1.4. Calculation of ci(t). In general, the gradient at time t is given

−g(t) = s(t)−
t−1∑
j=0

cj(t)s(j)

Multiplying both sides with s(i)>A for some i < t results in

−s(i)>Ag(t) = s(i)>As(t)−
t−1∑
j=0

cj(t)s(i)
>As(j)

−s(i)>Ag(t) = 0− ci(t)s(i)>As(i)

This implies that

ci(t) =
s(i)>Ag(t)

s(i)>As(i)

But this coefficients can be further simplified. From (1.3.1) we have g(i+ 1)− g(i) = γ(i)As(i) we obtain

ci(t) =
(g(i+ 1)− g(i))>g(t)

(g(i+ 1)− g(i))>s(i)

This implies that for i < t− 1 we have

ci(t) =
g(i+ 1)>g(t)− g(i)>g(t)

(g(i+ 1)− g(i))>s(i)
= 0

For i = t− 1 we have

ct−1(t) =
(g(t)− g(t− 1))>g(t)

(g(t)− g(t− 1))>s(t− 1)

=
g(t)>g(t)

g(t)>s(t− 1)− g(t− 1)>s(t− 1)

=
g(t)>g(t)

−g(t− 1)>s(t− 1)

This leads to the following update:

s(t) = −g(t) + ct−1(t)s(t− 1)

= −g(t) +
g(t)>g(t)

−g(t− 1)>s(t− 1)
s(t− 1)
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This udate can be further simplified. Consider, the update for the previous time step

s(t− 1) = −g(t− 1) + ct−2(t− 1)s(t− 2)

We have

−g(t− 1)>s(t− 1) = g(t− 1)>g(t− 1)− ct−2(t− 1)g(t− 1)>s(t− 2)

= g(t− 1)>g(t− 1)

ct−1(t) =
g(t)>g(t)

g(t− 1)>g(t− 1)

So the search direction has the simple expression in terms of the gradients

s(t) = −g(t) +
g(t)>g(t)

g(t− 1)>g(t− 1)
s(t− 1)

2. The Algorithm

In general, we wish to solve Ax = b
Select x0
For t = 0, 1, . . .

g(t) = Ax(t)− b

ct−1(t) =
g(t)>g(t)

g(t− 1)>g(t− 1)

s(t) = −g(t) + ct−1(t)s(t− 1)

γ(t) = −s(t)>g(t)/s(t)>As(t)

x(t+ 1) = x(t) + γ(t)s(t)

3. Implementation

%% Generate a random problem

N = 20;

randn(’seed’, 1);

A = randn(N,5);

A = A*A’+0.01*eye(N);

b = randn(N,1);

x_true = A\b;

%% Conjugate Gradients

x = randn(N,1);

s_past = zeros(N,1);

gt_g_past = 1; % avoid NaN

for t=1:N-1,

% Gradient

g = A*x - b;

% Search direction

gt_g = g’*g;

c = gt_g/gt_g_past;

s = -g + c*s_past;

% Stepsize
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gam = - s’*g/(s’*A*s);

% Update

x = x + gam*s;

[x x_true]’

pause

s_past = s;

gt_g_past = gt_g;

end

4. Modified Gram Schmidt

Suppose we are given a set of vectors a1, a2, . . . , an and wish to find a basis for the space they span, moreover

〈a1〉 = 〈q1〉
〈a1, a2〉 = 〈q1, q2〉

〈a1, a2, a3〉 = 〈q1, q2, q3〉

This asks for the following decomposition: a1 a2 . . . an

 =

 q1 q2 . . . qn



r1,1 r1,2 . . . r1,n

r2,2 . . . r2,n
. . .

...
rn


A numerically unstable method to compute qj is as follows:

z1 = a1

r1,1 = ‖z1‖
q1 = a1/r1,1

r1,2 = q∗1a2

z2 = a2 − q1q∗1a2 = a2 − q1r1,2
r2,2 = ‖z2‖
q2 = z2/r2,2

r1,3 = q∗1a3

r2,3 = q∗2a3

z3 = a3 − q1r1,3 − q2r1,3
r3,3 = ‖z3‖
q3 = z3/r3,3

5. Alternative Derivation (Trefethen and Bau)

Define the A− norm

‖x‖A ≡
√
x>Ax

Define a system of nested Krylov subspaces for n = 1, 2 . . .

Kn =
〈
b, Ab,A2b, . . . , An−1b

〉
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We wish to solve when A is positive definite

Ax = b

The solution is

x∗ = A−1b

We define the error ε = x− x∗ and a quadratic cost function

φ(x) =
1

2
‖ε‖2A =

1

2
‖x− x∗‖2A

=
1

2
(x− x∗)>A(x− x∗)

=
1

2
(x−A−1b)>(Ax− b)

=
1

2
x>Ax− b>x+

1

2
b>A−1b

= F (x) + const

F (x) =
1

2
x>Ax− b>x
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