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THE CONJUGATE GRADIENT METHOD FOR ITERATIVE SOLUTION OF LINEAR
EQUATIONS

ALI TAYLAN CEMGIL

ABSTRACT.

1. THE METHOD

Solve Equations of form b = Ax where A is positive definite. If A is invertible but not positive definite we apply
the method to AT Az = ATb.
Consider first

1
F(z) = ixTAx

The method has the following form

x(t+1)=z(t) +~(t)s(t)
~(¢) are scalar step size parameter and s(t) are search directions for ¢ = 0,1,.... Note that the gradient of F' is given
as

VE(2) |p=an= 9(t) = Az(t)

It would be informative to contrast conjugate gradients to a gradient descent algorithm. A gradient descent
algorithm would look like

z(t+1) = z(t) —v(t)g(t)
= z(t) —v(t)Az(t) = (I — v(t)A)x(t)
In the conjugate gradient method, the search directions are chosen to be mutually conjugate meaning that
s(t)T As(r) =0 when r #t

Once s(t) is chosen, v(t) has a closed form solution.
In the sequel, we will show how to select s(¢) and ~(t), but first provide an outline of the algorithm

1.1. Tllustration of the algorithm. At the first step, we select the search direction as the negative gradient

s(0) = —g(0)
The search direction will be found

5(0)7g(0) — ¢(0)"g(0)
M0 = 0T A T 9(0) T Ag(0)
and let
z(1) = =z(0)+ S(O)TQ(O)

At this stage, we can calculate the new gradient as

g(1) = Az(1)
To execute the next step, we need to select s(1) as a conjugate direction

5(0)TAs(1) =0
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We would select the gradient s(1) = —g(1), but this choice won’t be necessarily a conjugate direction. A reasonable
choice is choosing the new direction s(1) such that we can represent the gradient as

—g(1) = s(1) = co(1)s(0)

where ¢(1) denotes a scalar coefficient for the first search direction in computation of the gradient g(1) at time 1.
This leads to

5(0)TAs(1) = —s(0)TAg(1) + co(1)s(0) " As(0) = 0
o) = 5(0) " Ag(1)
0 s(0)T As(0)
s(1) = —g(1)+co(1)s(0)
z(2) = z(1)+~(1)s(1)
9(2) = Az(2)
9(2) = Az(1)+~(1)As(1) = g(1) +~(1)As(1)

Similarly we want now

—9(2) = 5(2) = c1(2)s(1) — c0(2)5(0)

where ¢1(2) and ¢y(2) denote scalar coefficients for the search direction s(2) in computation of the gradient g(2) at
time 2

This leads to two equations

s(2) = —g(2) +c1(2)s(1) + co(2)s(0)
s(0)TAs(2) = —s(0)"TAg(2) + c1(2)s(0) " As(1) + ¢o(2)s(0) " As(0)
s(1)TAs(2) = —s(1)TAg(2) + c1(2)s(1) T As(1) + co(2)s(1) " As(0
By conjugacy of s(0), s(1) and s(2) we have
0 = —s(0)"Ag(2) + co(2)s(0) T As(0)
0 = —s(1)"Ag(2) 4+ c1(2)s(1) " As(1
e~ O0TAg) SO g2
0 s(0)T As(0)  s(0)T As(0)
_ s()"Ag(2)
a@ = ST asq)

In the general case, we will need to find scalar coefficients ¢;(t) for the i’th search direction in computation of the
gradient g(t) at time ¢ i = 0...t — 1. In general we will have

—g(t) = s(t)—ci1(t)s(t—1) — c—a(t)s(t —2) — - - - — ¢o(t)s(0)
= ) - S alnst)
=0

In other words, we require that the gradient lives in the subspace spanned by Sy = {s(0),...,s(t)}, a set of mutually
conjugate vectors where s(i) " As(t) = for i # t We will later show that most ¢;(¢) are in fact 0.
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1.2. Finding the line search minimizer ~(t). For given x(t), s(t) and A, we define (¢) as the line search minimizer
~v(t) = argmin F(z(t) + vs(t))
8!
This problem has the following solution
Uly) = Fa(t)+7s(t)
((t) +ys(1)) " Al (t) +7s(t))

(@(t) " +s(t) ") (Ax(t) +~As(t))

NN~ N

2(t)T Ax(t) + vs(t) T Az(t) + VQ%S(t)TAs(t)
= s(t) T Az(t) +ys(t) " As(t) = 0

W) = —s(t)T Aw(t)/s()T As(t)
= —s(t) gt)/s(t) As(t)

1.3. Selection of the conjugate directions s(t). The search directions have the following form

t—1
s(t) = —g(t)+ > cit)s(i)
i=0
In a sense, we use the current gradient and a linear combination of past search directions. Before we derive how the
coefficients ¢;(t) are found, we need some results.
The update has the form

z(t+1) = z(t)+~(t)st)
This leads to the identity about the difference of two consecutive gradients
Az(t+1) = Ax(t) +~(t)As(t)
(1.3.1) glt+1)—gt) = ~(t)As(t)
1.3.1. Orthogonality of s(t) and g(t+1).

Az(t +1) Ax(t) + v(t)As(t)

s T
gt+D) = oft) - I AN

()T
(1.3.2) s)Tgt+1) = s(t)Tg(t) — Ms(tﬂAs(t) =0

1.3.2. Orthogonality of s(i) and g(t+ 1) for i < t. For i < ¢, if we proceed similarly,
Az(t+1) = Ax(t) +~v(t)As(t)
s(i)Tgt+1) = s(i) g(t) +(t)s(i) " As(t)
s(i) gt +1) s(i) "g(t)
0 = s(i) (g(t+1

) —9(t))

But actually we have a more powerful result where s(i) " g(t + 1) = s(i) " g(t) = 0. To see this, consider the solution
z(t+ 1) at time ¢t + 1 as a function of a past solution at ¢ + 1

t

et+1) = a(@+1)+ Y y(k)s(k)
k=i+1
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s(i) An(t+1) = s(i) Az(i+1)+s(i)TA Y y(k)s(k)
k=i+1

(1.3.3) s(i)Tgt+1) = s(i) gli+1)=0
Here, 1.3.3 follows from 1.3.2

1.3.3. Orthogonality of g(i) and g(t) for i <t. We have the identity
i—1
—g(i) = (i)=Y c;(i)s(j)
3=0
Multiply both sides by g(t) " for some i < t
i—1
—9(0)"g()) = g(t)"s(i) =D c;(D)g(t) s
3=0
= 0

1.4. Calculation of ¢;(t). In general, the gradient at time ¢ is given
t—1

=Y e()s()
j=0

Multiplying both sides with s(i) T A for some i < t results in

—s(i)TAg(t) = s(i)" As(t) Zc] (i) " As(j)
—s(i)TAg(t) = 0—ci(t )s(z)TAs(z)
This implies that
A s(i) " Ag(t)
0= T ash)
But this coefficients can be further simplified. From (1.3.1) we have g(¢ + 1) — g(i) = (i) As(i) we obtain
) — 01 = D)o
' (g(i+1) = g(i)) "s(d)
This implies that for i <t — 1 we have
g+ 1) Tg(t) —g(i) Tg(t)
=G ) ) )
For ¢ =t — 1 we have
oty — a0 =gt =1)T g0
o (9(t) = g(t = 1)) Ts(t = 1)
_ ONI0
g(t)Ts(t—1) —g(t —1)"s(t —1)
O
—g(t—1)Ts(t—1)
This leads to the following update:
s(t) = —g(t) +c—a(t)s(t —1)
T
= o)+ — (ti)fig et =1
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This udate can be further simplified. Consider, the update for the previous time step
st—1) = —g(t—1)+c—2(t —1)s(t —2)
We have

—gt=1)Ts(t—1) = g( ) = cr—a(t — 1)g(t —1) " s(t — 2)

Ct—1 (t)

So the search direction has the simple expression in terms of the gradients

B o) (1)
W= 9O+ T

2. THE ALGORITHM

s(t—1)

In general, we wish to solve Az =b

Select xg
Fort=0,1,..
gt) = Az(t)—b
_ 9(t)"g(t)
aarlt) = T
s(t) = —gt)+c-1(t)s(t—1)
At = —s(t) g(t)/s(t)" As(t)
x(t+1) = z(t) +~(t)s(t)

3. IMPLEMENTATION

%% Generate a random problem
N = 20;
randn(’seed’, 1);

randn(N,5) ;
AxA’+0.01*xeye(N);
randn(N,1);

true = A\b;

X O = >
]

%% Conjugate Gradients

x = randn(N,1);

s_past = zeros(N,1);
gt_g_past = 1; % avoid NaN

for t=1:N-1,
% Gradient

g = Axx - b;

% Search direction

gt_g = g’*g;
c = gt_g/gt_g_past;
s = -g + c*s_past;

% Stepsize

ot
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gam = - s’*g/(s’*A*s);

% Update
X = X + gamxs;

[x x_true]’
pause
s_past = s;

gt_g_past = gt_g;
end

4. MODIFIED GRAM SCHMIDT

Suppose we are given a set of vectors ai,as,...,a, and wish to find a basis for the space they span, moreover

(@) = (a)

<a17a2> = <q17 C]2>
<a17a27a3> = <(I1;Q27QS>
This asks for the following decomposition:
7"1’1 7"1$2 'f’Ln
2,2 e T2,n
aq ag Qp, = q1 q2 dn
Tn
A numerically unstable method to compute g; is as follows:
z1 = a1
i = |l
G = a1/7“1,1
_ *
T,2 = (a2
*
Z2 = G2 —(¢14102 = a2 —q1T1,2
r22 = |z
q2 = 22/7’2,2
_ *
1,3 = gia3
*
2,3 = (yas
23 = a3 —(qir,3 — 42713
r3z = |z
q3 = 23/7“3,3

5. ALTERNATIVE DERIVATION (TREFETHEN AND BAU)

Define the A — norm

lz]|a = VaTAz

Define a system of nested Krylov subspaces forn =1,2...

Kn = (b,Ab A%, ... A""'b)
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We wish to solve when A is positive definite

The solution is
¥ = A'

We define the error ¢ = x — 2™ and a quadratic cost function

1 1 .
o) = Llel = gl — I3
1
= §(m—x*)TA(x—x*)
1
= §($—A_1b)T(A$—b)

1 1

= —zTAz—b"z+=b"A
2 2

= F(z) + const

1
F(z) = §mTAx—bTa?
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