Boğaziçi University, Dept. of Computer Engineering

CMPE 482, NUMERIC LINEAR ALGEBRA AND ITS APPLICATIONS

Spring 2014, Midterm 1

Name: _____

Student ID: _____

Signature: _____

- Please print your name and student ID number and write your signature to indicate that you accept the University honour code.
- During this examination, you may not use any notes or books.
- Read each question carefully and WRITE CLEARLY. Unreadable answers will not get any credit.
- For each question you do not know the answer and leave blank, you can get %10 of the points, if you write only "I don't know the answer but I promise to think about this question and learn its solution".
- There are ${f 5}$ questions. Point values are given in parentheses.
- You have $120 \ \mathrm{minutes}$ to do all the problems.

Q	1	2	3	4	5	Total
Score						
Max	20	20	20	20	20	100

Matlab Functions

[Q R] = qr(A)	% A == Q*R;	QR Factorization
[Qh Rh] = qr(A,0)	% A == Qh*Rh;	Reduced QR Factorization
[U S V] = svd(A)	% A == U*S*V'	Singular Value Decomposition
[U S V] = svd(A, 0)	% A == U*S*V'	Reduced Singular Value Decomposition
x = R b	% x == inv(R)*b	Solves a linear system where R is triangular

1. (a) Suppose you are given a reduced SVD of a matrix A. Describe a method for getting the Moore-Penrose inverse A^+ . (10 points)

(b) If $E = uv^*$ is an outer product, do we have $||E||_F = ||u||_F ||v||_F$, where $||\cdot||_F$ is the Frobenius norm? Prove or give a counter example. (10 points)

- 2. (Oblique Projector) Suppose you are given a $m \times n_1$ matrix S_1 and a $m \times n_2$ matrix S_2 such that $n_1 < m, n_2 < m$ but $n_1 + n_2 \ge m$ such that $S = [S_1 \ S_2]$ is of full column rank.
 - (a) Derive the expression for a (possibly oblique) projector P that will project $v \in \mathbb{R}^m$ onto the range space of S_1 along the range space of S_2 .
 - (b) Consider the example

$$S_1 = \begin{pmatrix} 1\\1 \end{pmatrix} \qquad \qquad S_2 = \begin{pmatrix} 2\\1 \end{pmatrix}$$

Find P and for all x on the 2-norm ball, carefully draw the image Px.

Name:

- 3. (a) Given a $N \times N$ projection matrix P, prove that $||P||_2 = 1$ if and only if P is orthogonal. (Hint: For the if part, use the SVD. For the only if part, consider the space $S_1 = \{v : v = Px; x \in \mathbb{R}^N\}$ and $S_2 = \{w : w = (I - P)x; x \in \mathbb{R}^N\}$. Take u orthogonal to S_2 . Use contradiction.)
 - (a) (P is an orthogonal projection $\Rightarrow ||P||_2 = 1$) We let $||\cdot|| \equiv ||\cdot||_2$ If P is an orthogonal projector, we know that $P = P^*$. Let the SVD be

$$P = U\Sigma V^{*}$$
$$|P|| = ||\Sigma||$$

We have

$$P = P^{2} = P * P^{*} = U\Sigma V^{*} V\Sigma U^{*} = U\Sigma^{2} U^{\top}$$
$$\|P\|_{2} = \|U\Sigma^{2} U^{\top}\|_{2} = \|\Sigma^{2}\|_{2} = \|\Sigma\|_{2}^{2}$$

which implies $\|\Sigma\| = \|\Sigma\|^2$, hence $\|\Sigma\| = 1$

(b) $(||P||_2 = 1 \Rightarrow P \text{ is an orthogonal projection })$ Now assume that $||P||_2 = 1$ but P is not an orthogonal projection. Choose $u \perp S_2$. Construct

$$s = Pu \in S_1$$

By orthogonality of u to S_2 we have

$$u^*(I - P)u = 0$$
$$u^*u = u^*Pu$$

$$\begin{array}{rcl} |u^{*}u| &=& |u^{*}Pu| \\ |u^{*}\|^{2} &\leq& \|u^{*}\| \|Pu\| \\ \|u^{*}\| &\leq& \|Pu\| \end{array}$$

But by definition of a norm and from the assumption ||P|| = 1 we have

$$\|Pu\| \le \|P\| \|u\| \le \|u\|$$

This implies

$$\|u\| \leq \|Pu\| \leq \|u\|$$

||u|| = ||Pu||. But

But as S_1 and S_2 are not orthogonal we have

$$0 < |u^*P^*(I-P)u|$$

= |u^*P^*u - u^*P^*Pu|
= |u^*P^*u - ||Pu||^2|
= |u^*u - ||Pu||^2|
= |||u||^2 - ||Pu||^2|
= |||u||^2 - ||u||^2|
= 0

Name: _____

Contradiction.

- 4. (Intersection of Subspaces) Consider two matrices $A \in \mathbb{R}^{m \times n_1}$ and $B \in \mathbb{R}^{m \times n_2}$ where $n_1 < m$ and $n_2 < m$, but $r = n_1 + n_2 - m > 0$. Let $S_A = \operatorname{span}(A)$ and $S_B = \operatorname{span}(B)$, with orthogonal compliments $S_A^{\perp} = \operatorname{null}(A^*)$ and $S_B^{\perp} = \operatorname{null}(B^*)$.
 - (a) Derive a method that by using three QR decompositions, finds a matrix $Q \in \mathbb{R}^{m \times r}$ where the columns of Q are an orthonormal basis for $S_A \cap S_B$. (Hint: The intersection is orthogonal to the linear subspace spanned by the orthogonal complements, $(S_A \cap S_B)^{\perp} = S_A^{\perp} + S_B^{\perp}$)

- (b) Fill in the rest of the following Matlab program to implement your approach.

n1 = 4; n2 = 3; A = randn(m, n1); B = randn(m, n2); r = n1 + n2 - m; [Qa Ra] = qr(A); [Qb Rb] = qr(B); C = [Qa(:,(n1+1):end) Qb(:,(n2+1):end)]; [Qc Rc] = qr(C); Q = Qc(:, (m-r)+1:end)

Name: _____

5. (Basis Regression) Suppose we are given N noisy measurements of an unknown function y = f(x). That is, we have $y = [y_1, \ldots, y_N]^{\top}$ where $y_i = f(x_i) + \epsilon_i$, where ϵ_i are unknown. Moreover, suppose we know that the function f has the following algebraic form

 $f(x) = \theta_1 \cos(x) + \theta_2 \sin(x) + \theta_3 \exp(-x) + 1$

Write a Matlab program that estimates the θ parameters and finds the projector P that projects y onto f(x).

(a) State the solutions in terms of factors of an SVD.

(b) Fill in the rest of the following Matlab program to implement your approach.

```
% Assume y and x are two vectors of size N x 1
N = length(y);
```

```
_____
```