Graphs-Topological Sort

November 9, 2016
There are many problems involving a set of tasks in which some of the tasks must be done before others.

For example, consider the problem of taking a course only after taking its prerequisites.

Is there any systematic way of linearly arranging the courses in the order that they should be taken?
Problem

- **P**: Assemble pingpong table
- **F**: Carpet the floor
- **W**: Panel the walls
- **C**: Install ceiling

How would you order these activities?
Problem Graph

S: Start
E: End
P: Assemble pingpong table
F: Carpet the floor
W: Panel the walls
C: Install ceiling

Some possible orderings:
- C W F P
- W C F P
- F P W C
- C F P W

Diagram:

```
S -> F -> P -> E
S -> W -> C
```

Important: P must be after F
RULE:

- If there is a path from u to v, then v appears after u in the ordering.
Directed
- otherwise \((u, v)\) means a path from \(u\) to \(v\) and from \(v\) to \(u\), cannot be ordered.

Acyclic
- otherwise \(u\) and \(v\) are on a cycle: \(u\) would precede \(v\), \(v\) would precede \(u\).
The ordering may not be unique

Legal orderings
V1, V2, V3, V4
V1, V3, V2, V4
Basic Algorithm

1. Compute the indegrees of all vertices
2. Find a vertex \(U \) with \textbf{indegree 0} and print it (store it in the ordering) \textbf{If} there is \textbf{no} such vertex then \textbf{there is a cycle} and the vertices cannot be ordered. \textbf{Stop}.
3. Remove \(U \) and all its edges \((U, V)\) from the graph.
4. \textbf{Update} the indegrees of the remaining vertices.

Repeat steps 2 through 4 while there are vertices to be processed.
Example

Indegrees
- V1 0
- V2 1
- V3 2
- V4 2
- V5 2

First to be sorted: V1

New indegrees:
- V2 0
- V3 1
- V4 1
- V5 2

Possible sorts: V1, V2, V4, V3, V5; V1, V2, V4, V5, V3
Complexity

- $O(|V|^2)$, $|V|$ - the number of vertices.
- To find a vertex of indegree 0 we scan all the vertices - $|V|$ operations.
- We do this for all vertices: $|V|^2$ operations
Improved Algorithm

- Find a vertex of degree 0,
- Scan **only** those vertices whose indegrees have been updated to 0.
Improved Algorithm

1. Compute the indegrees of all vertices
2. Store all vertices with indegree 0 in a queue.
3. Get a vertex U.
4. For all edges (U, V) update the indegree of V, and put V in the queue if the updated indegree is 0.

Repeat steps 3 and 4 while the queue is not empty.
| $V|$ - number of vertices,
| $E|$ - number of edges.

Operations needed to compute the indegrees:
- Adjacency lists: $O(|E|)$
- Adjacency Matrix representation: $O(|V|^2)$

Complexity of the improved algorithm
- Adjacency lists: $O(|E| + |V|)$,
- Adjacency Matrix representation: $O(|V|^2)$

Note that if the graph is complete $|E| = O(|V|^2)$