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Solutions

1. What is .. (Give short answers. Long answers do not get any credit. )

(a)

(i)

()

(k)

a data structure ?
A mathematical object that represents the organization of data, stored on a storage
medium such as RAM or disk.

an algorithm 7

A method for solving a computational problem expressed as a finite sequence of steps.
Each step can be specified by a list of well-defined instructions. The instructions de-
scribe a computation that, for a given initial state and admissible input, proceeds through
a well-defined series of successive states, eventually terminating in a final ending state.

a hash function ? A many to one function that maps a key to a storage index.

double hashing ? The use of two hash functions to resolve collisions

rehashing ? Resizing a hash table and remapping the elements

a binary heap 7 A complete binary tree with the convention that all parent and child
nodes satisfy a certain relation (often an ordering such as >)

d-ary heap ? A complete tree, where each node can have up to d children with the
convention that all parent and child nodes satisfy a certain relation (often an ordering
such as >)

an example application where a heap is useful ? Task manager in an operating system
where tasks are ordered according to their priority

a graph 7 A tuple G = (V, E) where V is a countable set and E C V x V

a sparse graph ? A graph G = (V, E) where |E| < |V|?

a hypergraph? A tuple G = (V, E) where V is a countable set and E C V xV xV x ...



Solutions 3

(1) a good data structure for the representation of a graph when the number of edges |E| =
O(|V]log |V|), where |V| is the number of vertices and space is an issue? Adjacency list

(m) a spanning tree?

(n) a minimum spanning tree?

(0) a Greedy algorithm?

(p) Prim’s algorithm?

(q) a Breadth first search ?

(r) a Depth first search 7

(s) what is a template in C+-+7

(t) what is a copy constructor?

(20 points)



Solutions 4

2. Given the input {4371, 1323,6173,4199, 4344, 9679, 1989} and a hash function hA(x) = z mod 10,
show the resulting?

(a) Separate Chaining hash table

(b) Hash table with linear probing

(c) Hash table with quadratic probing
)

(d) Hash table with second hash function hy(z) =7 — (x mod 7)

(20 points)



Solutions 5

3. Give an algorithm to find and print all nodes less than some given value X in a min-heap.
First, explain your idea in a few sentences.

e Your algorithm must be O(K) where K is the number of elements less than X.

e You should not modify the heap

(20 points)



Solutions 6

4. Write down an algorithm to topologically sort a graph represented by an adjacency list, modified
such that the algorithm prints out a cycle, if it is found. First, explain your idea in a few
sentences. (Don’t use depth first search, we want just a modification of the basic topological
sort.) (20 points) Solution:
If no vertex has indegree 0, we can find a cycle by tracing backwards through vertices with
positive indegree; since every vertex on the trace back has a positive indegree, we eventually
reach a vertex twice, and the cycle has been found.



Solutions 7

5. A undirected graph is k-colorable if each vertex can be given one of the k colors, and no edge
connects identically colored vertices. Give an efficient algorithm (linear in the number of edges)
to test a graph for 2-colorability. The graph is represented as an adjacency list. First, explain
your idea in a few sentences. Specify any additional data structures needed. (20 points)
Solution:

1) Use a depth-first search, marking colors when a new vertex is visited, starting at the root,
and returning false if a color clash is detected along a backedge.

2) Use Breadth first search, inserting unvisited nodes with the opposite color of their parent.
If a child node is already visited, check its color and return false if parent and child have the
same color. Return true if no such node is found.



