Bogazici University, Dept. of Computer Engineering

CMPE 250, DATA STRUCTURES AND ALGORITHMS

Fall 2010, Midterm 2

Name:

Student ID:

Signature:

Please print your name and student ID number and write your signature to indicate that you accept
the University honour code.

During this examination, you may not use any notes or books.

Read each question carefully and WRITE CLEARLY. Unreadable answers will not get any
credit.

There are 5 questions. Point values are given in parentheses.

You have 120 minutes to do all the problems.

Q 1 2 3 4 5 Total
Score
Max | 20 20 20 20 20 100

Solutions

1. What is .. (Give short answers. Long answers do not get any credit.)

(a)

(i)

()

(k)

a data structure ?
A mathematical object that represents the organization of data, stored on a storage
medium such as RAM or disk.

an algorithm 7

A method for solving a computational problem expressed as a finite sequence of steps.
Each step can be specified by a list of well-defined instructions. The instructions de-
scribe a computation that, for a given initial state and admissible input, proceeds through
a well-defined series of successive states, eventually terminating in a final ending state.

a hash function ? A many to one function that maps a key to a storage index.

double hashing ? The use of two hash functions to resolve collisions

rehashing ? Resizing a hash table and remapping the elements

a binary heap 7 A complete binary tree with the convention that all parent and child
nodes satisfy a certain relation (often an ordering such as >)

d-ary heap ? A complete tree, where each node can have up to d children with the
convention that all parent and child nodes satisfy a certain relation (often an ordering
such as >)

an example application where a heap is useful ? Task manager in an operating system
where tasks are ordered according to their priority

a graph 7 A tuple G = (V, E) where V is a countable set and E C V x V

a sparse graph ? A graph G = (V, E) where |E| < |V|?

a hypergraph? A tuple G = (V, E) where V is a countable set and E C V xV xV x ...

Solutions 3

(1) a good data structure for the representation of a graph when the number of edges |E| =
O(|V]log |V|), where |V| is the number of vertices and space is an issue? Adjacency list

(m) a spanning tree?

(n) a minimum spanning tree?

(0) a Greedy algorithm?

(p) Prim’s algorithm?

(q) a Breadth first search ?

(r) a Depth first search 7

(s) what is a template in C+-+7

(t) what is a copy constructor?

(20 points)

Solutions 4

2. Given the input {4371, 1323,6173,4199, 4344, 9679, 1989} and a hash function hA(x) = z mod 10,
show the resulting?

(a) Separate Chaining hash table

(b) Hash table with linear probing

(c) Hash table with quadratic probing
)

(d) Hash table with second hash function hy(z) =7 — (x mod 7)

(20 points)

Solutions 5

3. Give an algorithm to find and print all nodes less than some given value X in a min-heap.
First, explain your idea in a few sentences.

e Your algorithm must be O(K) where K is the number of elements less than X.

e You should not modify the heap

(20 points)

Solutions 6

4. Write down an algorithm to topologically sort a graph represented by an adjacency list, modified
such that the algorithm prints out a cycle, if it is found. First, explain your idea in a few
sentences. (Don’t use depth first search, we want just a modification of the basic topological
sort.) (20 points) Solution:
If no vertex has indegree 0, we can find a cycle by tracing backwards through vertices with
positive indegree; since every vertex on the trace back has a positive indegree, we eventually
reach a vertex twice, and the cycle has been found.

Solutions 7

5. A undirected graph is k-colorable if each vertex can be given one of the k colors, and no edge
connects identically colored vertices. Give an efficient algorithm (linear in the number of edges)
to test a graph for 2-colorability. The graph is represented as an adjacency list. First, explain
your idea in a few sentences. Specify any additional data structures needed. (20 points)
Solution:

1) Use a depth-first search, marking colors when a new vertex is visited, starting at the root,
and returning false if a color clash is detected along a backedge.

2) Use Breadth first search, inserting unvisited nodes with the opposite color of their parent.
If a child node is already visited, check its color and return false if parent and child have the
same color. Return true if no such node is found.

