
Boğaziçi University, Dept. of Computer Engineering

CMPE 250, DATA STRUCTURES AND ALGORITHMS

Fall 2010, Midterm 2

Name:

Student ID:

Signature:

• Please print your name and student ID number and write your signature to indicate that you accept
the University honour code.

• During this examination, you may not use any notes or books.

• Read each question carefully and WRITE CLEARLY. Unreadable answers will not get any
credit.

• There are 5 questions. Point values are given in parentheses.

• You have 120 minutes to do all the problems.

Q 1 2 3 4 5 Total
Score
Max 20 20 20 20 20 100

Solutions 2

1. What is .. (Give short answers. Long answers do not get any credit.)

(a) a data structure ?
A mathematical object that represents the organization of data, stored on a storage
medium such as RAM or disk.

(b) an algorithm ?
A method for solving a computational problem expressed as a finite sequence of steps.
Each step can be specified by a list of well-defined instructions. The instructions de-
scribe a computation that, for a given initial state and admissible input, proceeds through
a well-defined series of successive states, eventually terminating in a final ending state.

(c) a hash function ? A many to one function that maps a key to a storage index.

(d) double hashing ? The use of two hash functions to resolve collisions

(e) rehashing ? Resizing a hash table and remapping the elements

(f) a binary heap ? A complete binary tree with the convention that all parent and child
nodes satisfy a certain relation (often an ordering such as >)

(g) d-ary heap ? A complete tree, where each node can have up to d children with the
convention that all parent and child nodes satisfy a certain relation (often an ordering
such as >)

(h) an example application where a heap is useful ? Task manager in an operating system
where tasks are ordered according to their priority

(i) a graph ? A tuple G = (V,E) where V is a countable set and E ⊂ V × V

(j) a sparse graph ? A graph G = (V,E) where |E| ≪ |V |2

(k) a hypergraph? A tuple G = (V,E) where V is a countable set and E ⊂ V × V × V × . . .

Solutions 3

(l) a good data structure for the representation of a graph when the number of edges |E| =
O(|V | log |V |), where |V | is the number of vertices and space is an issue? Adjacency list

(m) a spanning tree?

(n) a minimum spanning tree?

(o) a Greedy algorithm?

(p) Prim’s algorithm?

(q) a Breadth first search ?

(r) a Depth first search ?

(s) what is a template in C++?

(t) what is a copy constructor?

(20 points)

Solutions 4

2. Given the input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function h(x) = x mod 10,
show the resulting?

(a) Separate Chaining hash table

(b) Hash table with linear probing

(c) Hash table with quadratic probing

(d) Hash table with second hash function h2(x) = 7− (x mod 7)

(20 points)

Solutions 5

3. Give an algorithm to find and print all nodes less than some given value X in a min-heap.
First, explain your idea in a few sentences.

• Your algorithm must be O(K) where K is the number of elements less than X.

• You should not modify the heap

(20 points)

Solutions 6

4. Write down an algorithm to topologically sort a graph represented by an adjacency list, modified
such that the algorithm prints out a cycle, if it is found. First, explain your idea in a few
sentences. (Don’t use depth first search, we want just a modification of the basic topological
sort.) (20 points) Solution:
If no vertex has indegree 0, we can find a cycle by tracing backwards through vertices with
positive indegree; since every vertex on the trace back has a positive indegree, we eventually
reach a vertex twice, and the cycle has been found.

Solutions 7

5. A undirected graph is k-colorable if each vertex can be given one of the k colors, and no edge
connects identically colored vertices. Give an efficient algorithm (linear in the number of edges)
to test a graph for 2-colorability. The graph is represented as an adjacency list. First, explain
your idea in a few sentences. Specify any additional data structures needed. (20 points)
Solution:
1) Use a depth-first search, marking colors when a new vertex is visited, starting at the root,
and returning false if a color clash is detected along a backedge.

2) Use Breadth first search, inserting unvisited nodes with the opposite color of their parent.
If a child node is already visited, check its color and return false if parent and child have the
same color. Return true if no such node is found.

