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ABSTRACT

THEME SUPERVISED NONNEGATIVE MATRIX

FACTORIZATION FOR TOPIC MODELING

Topic models are often used to organize and interpret large and unstructured

corpora of text documents. They try to explain the topics that constitute the semantic

infrastructure of the document sets and try to find the distributions of these topics for

the documents. Because of its unsupervised nature, the outputs of a topic model has

to be interpretable to represent its success. However, the results of a topic model are

usually weakly correlated with human interpretation. In this thesis, we propose a semi-

supervised topic model called Theme Supervised Nonnegative Matrix Factorization that

can benefit from labeled documents to improve and facilitate the interpretation of the

topics. Our model constrains the representation of the topics to align with the labeled

documents and this enables the topics discovered by the model to be readily under-

stood. To utilize the labels provided by the documents more efficiently and to explore

the document sets in more depth, we used a hierarchical topic structure consisting of

themes, subtopics, and background topics in our model. We created layers under the

themes that permit unsupervised learning for subtopics. This hierarchical structure,

with the unsupervised learning capability it provides, enables our model, which was

restricted with supervision, to discover new dimensions and make more detailed clas-

sifications. We tested our model on Schwartz dataset we created, as well as Brown

and Reuters datasets with different supervision ratios.Our model estimates the topics

of the documents much better than the traditional nonnegative matrix factorization

and latent Dirichlet allocation for any situation; and besides, the effect of supervision

is noteworthy, especially at low ratios. Moreover, our new term scoring metric success-

fully alters the weights of significant and insignificant terms for each topic and makes

the topics easier to understand and interpret.
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ÖZET

KONU MODELLEME İÇİN TEMA DENETİMLİ NEGATİF

OLMAYAN MATRİS AYRIŞTIRMASI

Konu modelleri, büyük ve yapısal olmayan yazılı döküman setlerinin organize

edilip yorumlanmasında sıklıkla kullanılır. Doküman setlerinin anlamsal altyapısını

oluşturan konuları açıklamaya ve bu konuların dokümanlar üzerindeki dağılımlarını bul-

maya çalışırlar. Denetimsiz doğası nedeniyle, bir konu modeli başarısını gösterebilmesi

için, çıktılarının yorumlanabilir olması gerekir. Fakat, bir konu modelinin sonuçları

genellikle insan yorumuyla zayıf bir şekilde ilişkilendirilir. Bu tezde, konuların yorum-

lanmasını iyileştirmek ve kolaylaştırmak için etiketli belgelerden yararlanabilen, Tema

Denetimli Negatif Olmayan Matris Ayrıştırması adlı yarı denetimli bir konu modeli

öneriyoruz. Modelimiz, konuların temsilini etiketli belgelerle eşleşecek şekilde kısıtlar ve

bu, model tarafından keşfedilen konuların kolayca anlaşılmasını sağlar. Dokümanların

sağladığı etiketleri daha verimli kullanabilmek ve doküman setlerini daha derinleme-

sine inceleyebilmek için, modelimizde temalar, alt konular ve arka plan konularından

oluşan hiyerarşik bir konu yapısı kullandık. Temaların altında, alt konular içi dene-

timsiz öğrenmeye izin veren katmanlar olşturuyorduk. Bu hiyerarşik yapı, kendi içinde

sağladığı denetimsiz öğrenme kabiliyeti ile, denetim ile kısıtladığımız modelimizin yeni

boyutlar keşfedip, daha detaylı sınıflandırmalar yapabilmesine olanak sağlar. Mod-

elimizi, oluşturduğumuz Schwartz veri kümesinin yanı sıra Brown ve Reuters veri

kümelerinde farklı denetim oranlarıyla test ettik. Modelimiz, belgelerin konularını

geleneksel negatif olmayan matris ayrıştırmasından ve gizli Dirichlet tahsisi’nden her

koşulda çok daha iyi tahmin ediyor; ve bunun yanında, denetimin etkisi bir logaritmik

fonksiyon gibi davranır ve daha düşük oranlarda en fazla etkiye sahiptir. Ayrıca yeni

terim puanlama metriğimiz, her konu için önemli ve önemsiz terimlerin ağırlıklarını

başarıyla değiştirerek konuların anlaşılmasını ve yorumlanmasını kolaylaştırır.
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1. INTRODUCTION

In today’s world, where large and unstructured data are generated continuously

and often unwittingly; the need for computational methods to organize and interpret

the data has become an important priority. This requires reliable and fast automatic

classification and categorization methods for easier comprehension. For example, we

may want to classify comments made on a website according to the sentiments, or we

may want to organize our photo library according to people appearing in individual

snapshots, or we may want to categorize a large corpus of articles by subject.

Supervised machine learning (ML) algorithms are now able to perform classifi-

cation with very high test accuracy. However, the biggest problem of the supervised

methods is that they require explicit labels, that is, they need a significant amount of

high-quality manually labeled data. Although for several benchmark public datasets,

pretrained models can be obtained; for specific subjects, particularly with less popu-

lar languages, labeling becomes inevitable. One other important shortcoming of the

supervised methods is that they are often not very easy to interpret and trace how

a particular decision is arrived at. In other words, the classification performance of

supervised ML is high, but they do it as a black box.

There are also unsupervised methods, which are the version of ML that does

not need labeled data at all. Although unsupervised methods do not produce as ac-

curate classification results as supervised methods, they enable efficient analysis in

areas where labeled data are low or the subject is niche. They focus on clustering or

dimensionality reduction rather than classification. The main focus points of unsuper-

vised methods are clustering and dimensionality reduction rather than classification.

Examples of popular unsupervised ML algorithms are k-means [1] for clustering data,

singular value decomposition (SVD) for dimensionality reduction, and topic modeling

algorithms that enable analysis and categorization of written documents. Since there

is no label information to measure the success of an unsupervised model, it has to
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explain the data and the outputs in some way to show the success of the model.

In this thesis, we will focus on topic modeling, which is an ML and natural lan-

guage processing (NLP) technique that works on written documents and whose unsu-

pervised in nature. Topic models try to discover the semantic structure underlying a set

of documents by identifying and measuring the importance of topics in the documents.

Topic models represent the topics as term distributions and a topic can correspond to

any subject from the most general (e.g. food) to the most specific (e.g. one-horned

dinosaurs) one according to the interpretation of its term distribution. The first ex-

amples of topic models appear as latent semantic analysis (LSA) [2] and probabilistic

latent semantic analysis (PLSA) [3]. But, the most widely used topic models today are

latent Dirichlet allocation (LDA) [4] and nonnegative matrix factorization (NMF) [5].

Most studies in the topic modeling field are applications or extensions of NMF or LDA.

In Section 2.7, we detailed some of these extensions that are related to our work.

In this thesis, we chose to extend NMF which is a dimensionality reduction algo-

rithm that can maintain data’s nonnegativity property. In the real world, it is common

to see data that consist of nonnegative values such as texts, images, and audio. Factors

obtained from the traditional dimensionality reduction algorithms lack interpretability

for containing negative values; since it is not intuitive to use negative values while

combining parts to form a whole. The Nonnegativity constraint of NMF makes the

results much easier to analyze. NMF has also been successfully used in many fields

such as bioinformatics [6], image processing [7, 8] and recommender systems [9].

1.1. Motivation

Topic modeling is an unsupervised method and it requires human interpretation

to make its outputs meaningful. Although there is a topic distribution for each doc-

ument; in order to find out what each topic corresponds to, a human expert needs to

look at the term distributions of those topics and makes inferences. For example, if the

term distribution of a topic is listed as puppy, kitten, cute, and panda from important
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to unimportant; we can conclude that this topic is about cute animals. However, as

pointed out by [4, 6, 10, 11], evaluation of topic models often leads to results that are

weakly correlated with human interpretation. Because, we may not always have such

clear term distributions, or we may have multiple intertwined topics. So, what if we

could increase the interpretation power of topic models while having the classification

power of supervised methods? We asked exactly this question to ourselves and com-

bined the beauties of these two worlds to come up with a novel semi-supervised topic

model called Theme Supervised Nonnegative Matrix Factorization (TSNMF).

Semi-supervised methods do not have a clear definition like supervised or unsuper-

vised methods do. Any method that fills the gap between unsupervised and supervised

methods in different ways can be accepted as semi-supervised. Feeding labeled data

information to an unsupervised method is the most common approach for developing

a semi-supervised method [12]. However, since unsupervised methods do not use label

information by nature, it is possible to feed this information to the model in different

ways. The two most preferred approaches for converting a traditional unsupervised

NMF model to a semi-supervised one are as follows:

(i) Training the model with the supervision of document labels that indicates which

topics are permitted in which documents [13,14].

(ii) Using pairwise constraints on data objects such as; must-link (the two data points

must belong to the same class) and cannot-link (the two data points cannot belong

to the same class) constraints [15–17].

The primary objective of TSNMF is to facilitate and improve the interpretation

of the topics. TSNMF enables the user to provide documents with labels and con-

strains the representation of the topics to align with these labeled documents similar

to the first-mentioned approach. Thus, while examining the output of the model, the

interpretation of these topics will be readily understood. It is also possible to find

the topic distribution of a document for any topic set, as long as enough labeled data

about the topic set is collected. For example, assume that we want to estimate Twitter
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users’ zodiac signs from their tweets. If we directly feed the tweets into a traditional

topic model and train it, we can only get common topics like sports, politics, and food.

Instead, if we first collect labeled documents about zodiac signs and map topics of

a TSNMF model to zodiac signs through these labeled documents; then we can get

zodiac sign distributions of Twitter users.

Our results show that even with a small amount of supervision, we are able to

estimate the topics of the documents better than the traditional NMF. On the other

hand, supervised ML algorithms can probably handle this classification task with higher

accuracy. But it should not be forgotten that we aim to produce results that we can

interpret besides the classification, and TSNMF achieves both of this by compromising

only a small amount of classification success.

What makes TSNMF different from other semi-supervised models is that it has

a novel hierarchical topic structure. Instead of topics, TSNMF uses themes and sub-

topics of themes. While themes retain the semi-supervised structure of the model by

replacing topics, we create layers under the themes that permit unsupervised learning

for subtopics. Our aim here is to restore the ability of the model that we restricted

with supervision, to discover new dimensions via unsupervised learning. Therefore,

thanks to subtopics, TSNMF can obtain in-depth information about the themes as

well as more detailed classification results for documents. If we revisit the zodiac sign

example, instead of topics, now the themes correspond to the zodiac signs that we

have provided with labeled documents. The subtopics of each theme corresponds to

the specialized subjects of each zodiac sign. For example, for Aries, its subtopics can

be about individual sports and leadership; and for Virgo, its subtopics can be about

cleaning and healthy food.
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1.2. Contributions

The main contributions of this thesis are summarized as follows:

(i) A novel semi-supervised topic model based on NMF called TSNMF is proposed.

Labeled documents are utilized in the training of TSNMF to constrain the repre-

sentation of the topics to align with the labels. It is possible to train the model

fully supervised with only labeled documents or semi-supervised with the labeled

and unlabeled documents together (Chapter 3).

(ii) A hierarchical topic structure consisting of themes, subtopics of themes, and

background topics are introduced. This structure allows us to gain more insight

about the topics and documents (Chapter 3).

(iii) A new training scheme that trains and generates a separate model for each theme

is introduced. It is likened to the one-vs-all training procedure where each theme

is trained versus a background topic that tries to generalize all the themes (Chap-

ter 3).

(iv) An initialization method called bCool is proposed which initializes the topic-term

matrix to generate more consistent factors than random initialization. Results

show that bCool speeds up the training process at least 2 times and improves the

performance for some models over random initialization. (Chapter 4).

(v) A new scoring method called theme score is introduced to calculate the theme dis-

tributions of documents. It uses background topics to normalize subtopic scores

and chooses the highest-scoring subtopics to represent the themes (Chapter 5).

(vi) A new measure called purity is proposed to improve the intelligibility of term

distributions via ranking and scoring terms for a particular subtopic, theme, or

document. It helps us to adjust the tradeoff between the frequency and specificity

of a term to generate more interpretable subtopics and themes (Chapter 6).

(vii) A new evaluation metric called log rank accuracy is proposed to evaluate the

models. Log rank accuracy uses the logarithm function to calculate a score for

each document according to the ranking of the themes for the document. The im-

portant property of the method is that the penalty for misclassification decreases
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as the rank goes down (Chapter 7).

(viii) A genetic algorithm to find the best possible matching between the topics dis-

covered by the traditional NMF or LDA and the predefined topics (document

labels) is introduced. The objective function of the algorithm is to maximize

the log rank accuracy for the traditional models. We were able to compare the

traditional models with TSNMF thanks to this approach (Chapter 7).

(ix) Classification performances (log rank accuracy) of TSNMF models are investi-

gated under different supervision ratios. We observed that even a small set of

labeled documents can increase the performance of a topic model exponentially

(Chapter 8).

(x) The contributions of the hierarchical topic structure and the purity measure to

the interpretation of the topics are examined. The hierarchical structure helped

us to define the themes in depth. Purity measure was able to carry the terms that

are more significant to the themes to higher rankings, whereas it sent common

terms such as ”one” and ”may” down in rankings (Chapter 8).

(xi) A Python package for TSNMF is made available to the public [18].

1.3. Thesis Outline

The rest of the thesis is organized as follows: Backgrounds on topic modeling,

NMF, LSA, PLSA and LDA are provided and the literature on the extensions of NMF

and LDA are considered in Chapter 2. Starting from the traditional NMF, we built

and explained our proposed TSNMF model step by step in Chapter 3. An initialization

method called bCool for TSNMF is proposed in Chapter 4. The theme-based scoring

method for documents is introduced in Chapter 5. A new term scoring scheme with

a new measure called purity is proposed in Chapter 6, which allows more tailored

terms for each topic and also for each document. We introduced our datasets and

explained evaluation metrics along with a genetic algorithm for topic matching for

traditional NMF and LDA in Chapter 7. Various types of experiments are conducted

and analyzed to show every aspect of our model in Chapter 8. Finally, conclusions are

drawn in Chapter 9.



7

2. BACKGROUND AND RELATED WORKS

In this chapter, first, we will explain topic modeling in detail with examples.

Then we will describe main topic modeling methods one by one. In the end, we will

go over some works that are closely related to our model.

2.1. Topic Modeling

Topic modeling is a machine learning (ML) and natural language processing

(NLP) technique for discovering hidden (latent) topics that occur in a set of docu-

ments. The underlying idea is that the semantics of documents are being governed by

some latent variables that we do not observe. The goal of topic modeling is to uncover

these latent variables - topics - that shape the meaning of documents. Topic models

scan a set of documents and find the distribution of terms under latent topics that best

characterize the documents using the statistics of the terms in the documents. There

are two assumptions that all topic models are based on:

• Each document consists of a mixture of topics.

• Each topic consists of a collection of terms.

Traditional topic models are unsupervised ML techniques and don’t use labeled

documents for training. Although this situation allows the model to produce results

faster with less preprocess; human interpretation takes an important role in the analysis

of the results, since we do not have any prior knowledge to verify them. It is necessary

to analyze the resulting term distributions of the topics to find out what each topic

corresponds to. But topic models often generate results that are difficult to interpret.

To remedy this problem, semi-supervised extensions of the traditional topic models

were introduced (see Section 2.7 for the extensions). Semi-supervised topic models

improve the interpretability of the topics by providing labeled documents to the model.

Then, constrain the representation of the topics to align with the labeled documents.
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This enables topics to be readily understood without the need to investigate the term

distributions.

Let’s see topic modeling on an example. Suppose you have the following set of

sentences:

• Sentence 1: My sister played the flute concerto of Mozart yesterday.

• Sentence 2: Mozart and Schubert were the composers of music’s classical period.

• Sentence 3: My father bought tomatoes and potatoes from the marketplace.

• Sentence 4: Tomatoes are fruits because they contain seeds.

• Sentence 5: Playing metal music to fruits accelerates their growth.

Given these sentences and asked for 2 topics, a topic model might produce something

like this:

• Sentences 1 and 2: 95% Topic A, 5% Topic B

• Sentences 3 and 4: 5% Topic A, 95% Topic B

• Sentence 5: 60% Topic A, 40% Topic B

• Topic A: 25% mozart, 20% music, 10% classical, 10% metal, . . . (at which point,

we could interpret topic A to be about music)

• Topic B: 30% tomato, 20% fruit, 15% potato, 10% seed, . . . (at which point,

we could interpret topic B to be about food)

As a result, we got topic mixtures for sentences that contain terms with certain prob-

abilities.

Topic modeling approaches can be divided into two categories: matrix decom-

position methods which try to find a low dimensional representation of data through

factorization into low-rank matrices, and probabilistic topic modeling methods, which

seeks generative statistical models. An early topic model called latent semantic anal-

ysis (LSA) that uses SVD was described by Deerwester et al [2]. Modifying LSA with
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a probabilistic approach, based on a multinomial model, Hofmann [3] proposed proba-

bilistic latent semantic analysis (PLSA). Lee and Seung [5] proposed a dimensionality

reduction method called nonnegative matrix factorization (NMF) as a topic model that

maintains nonnegativity property of data. NMF is also the technique that we use as

the basis of our model in this thesis. Last but not least Blei et al. [4] introduced a gen-

erative model called latent Dirichlet allocation (LDA) which is the most popular topic

model currently in use with NMF. LSA and NMF are decomposition-based methods.

PLSA lies between being a decomposition-based method and a generative one. LDA

is a generative model. Most other topic modeling approaches can be classified as the

extensions of these methods and we will briefly go over some of the related ones to our

model.

2.2. Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a group of algorithms where a matrix

is factorized into two low-rank matrices with the property that all three matrices have

no negative elements. This nonnegativity constraint makes the resulting matrices much

easier to analyze [5].

Given a nonegative matrix X, NMF seeks the nonnegative matrix factors W and

H such that:

X ≈ WH. (2.1)

NMF can be applied to topic modeling domain in the following manner: Given

a set of m-dimensional data vectors, the vectors are placed in the rows of an n × m

matrix X where n is the number of documents in the data set. This matrix is then

approximately factorized into an n× p matrix W and a p×m matrix H. For NMF to

generate factors with reduced dimensions compared to the original matrix, p is chosen

smaller than n or m.
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It is important to understand the approximation in Equation 2.1. We can rewrite

this equation row by row as xT ≈ wTH, where xT and wT are the corresponding rows

of X and W . Each data vector xT is approximated by a linear combination of the rows

of H, weighted by the components of wT . So H can be regarded as having the basis

vectors for the linear approximation of X. In other words, we can now reconstruct a

document (row vector) from our input matrix X by a linear combination of our features

(row vectors in H) where each feature is weighted by the feature’s cell value from the

document’s row in W (see Figure 2.1).

 

 

: Documents

T 1     T 2     T 3     T 4      ...     T M

W HX

: Topics T#: Terms

T 1     T 2     T 3     T 4      ...     T M

Figure 2.1. Illustration of NMF in terms of linear approximation of X

In topic modeling, W and H have distinctive interpretations where Wν,i shows

the relevance of topic i for document ν and Hi,τ shows the relevance of term τ in topic

i. It is also common to call W coefficient (or activation) matrix and H feature (or

basis) matrix. It is useful to think of each topic (row vector) in the feature matrix H

as a document archetype comprising a set of terms where each term’s cell value defines

the term’s rank in the topic: The higher a term’s cell value the higher the term’s rank

in the topic. A row in the coefficient matrix W represents an original document with

a cell value defining the rank of a topic for the document.

As a side note, it is more common to see a column-wise approach for the inter-

pretation of NMF where W is the basis matrix and H is the feature matrix. Instead

of rewriting the Equation 2.1 row by row as xT ≈ wTH, it can be rewritten column by
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column as x ≈ Wh, where x and h are the corresponding columns of X and H. This

difference comes from using the document-term layout instead of the term-document

layout for our data matrix X. There are two main reasons for us to adopt the row-wise

approach:

(i) We think that, as a human, it is easier to understand a data matrix that has

documents on the rows and terms on the columns like our interpretation of X.

A different example than document-term relation can be movie-rating relation.

Here again, it is more appropriate to place data vectors into the rows. So in our

opinion document-term layout is a more proper and easier to understand layout

for the topic modeling.

(ii) scikit-learn [19] is one of the most popular ML library in Python. Its NMF

implementation also uses a document-term layout for its data matrix. We made

us of scikit-learn’s NMF implementation in the source code of this thesis. To

make the thesis document and its code consistent and easy to follow we adopted

the document-term layout.

Now let’s see how to find W and H. The matrices W and H are estimated by

minimizing the following objective function:

(W,H) = arg min
W,H

D(X ‖ WH), subject to W,H > 0 (2.2)

where the function D is a suitably chosen cost function. There are several ways in

which the W and H may be found with different error functions. Lee and Seung’s

multiplicative update rule [20] has been a popular method due to the simplicity of

implementation and fast convergence. They show the multiplicative update rules for

two different cost functions: Square of the Euclidean distance and a form of Kullback-

Leibler (KL) divergence.
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2.2.1. Cost Function: Square of the Euclidean Distance

The square of the Euclidean distance between two matrices A and B is defined

as follows:

‖A−B‖2 =
∑
ij

(Aij −Bij)
2 . (2.3)

Euclidean distance is lower bounded by zero and becomes zero if and only if A = B.

Now we can show the multiplicative update rules for W and H under the Euclidean

distance as the cost function:

H ← H ◦ W TX

W TWH
(2.4)

W ← W ◦ XHT

WHHT
. (2.5)

where ◦ denotes the Hadamard (element-by-element) product. It is important to note

that the update rules are done on an element by element basis, not matrix multiplica-

tion.

2.2.2. Cost Function: Kullback-Leibler divergence

Another useful measure between two matrices A and B is defined as follows:

D(A ‖ B) =
∑
ij

(
Aij log

Aij
Bij

− Aij +Bij

)
. (2.6)

Like Euclidean distance, this is also lower bounded by zero and becomes zero if and

only if A = B. However, contrary to Euclidean distance this measure is not a distance

but a divergence, because it is not symmetric in A and B. It reduces to KL divergence

when
∑

ij Aij =
∑

ij Bij = 1, which can be considered as A and B being normalized

probability distributions. Now we can show the multiplicative update rules for W and
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H under the KL divergence as the cost function:

H ← H ◦
W T X

WH

W T1
(2.7)

W ← W ◦
X
WH

HT

1HT
. (2.8)

A detailed and very well explained derivation for both of these multiplicative

update rules can be found in the paper written by Burred [21].

2.3. Latent Semantic Analysis

Latent semantic analysis (LSA) is an unsupervised learning technique in NLP.

LSA is based on the distributional hypothesis which states that ”words which are

similar in meaning occur in similar contexts” [22]. LSA consists of three main steps

and the second step, dimensionality reduction, is the key part:

Creation of Document-Term Matrix: Like we have mentioned in topic mod-

eling, we first create our document-term matrix that contains term counts per docu-

ment. We treat documents like bag of words. We can also use metrics other than raw

term frequency to quantify the relevance of the terms to the documents.

Dimensionality Reduction: The document-term matrix is decomposed into

the product of 3 matrices (UΣV ) by using SVD. The U matrix corresponds to the

document-topic matrix and the V matrix corresponds to the topic-term matrix. Σ

matrix is guaranteed to be a diagonal matrix and the diagonal entries of Σ are known

as the singular values of our main document-term matrix. The number of non-zero

singular values is equal to the rank of our document-term matrix and LSA considers

them as potential topics found in the documents. If we keep largest p singular values

of Σ with the corresponding p columns of the document-topic matrix U and p rows of

the topic-term matrix V , we end up with the best p-dimensional approximation to the

original matrix, in the least squares sense [23]. In terms of topic modeling, it means
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that we obtained the p most prominent topics found in our original document-term

matrix. This is called truncated SVD since it does not keep all of the singular values

of the original matrix.

Evaluation: We use the vectors that make up the U and V matrices with dif-

ferent methods to assess the quality of topic assignments to the documents or term

distributions of topics or document similarities. The most common method is to use

cosine similarity to evaluate similarities between documents or terms. They are com-

pared by taking the cosine angle between any two vectors taken from U or V matrices,

respectively.

2.4. Probabilistic Latent Semantic Analysis

Modifying LSA with a probabilistic approach based on a multinomial model,

Hofmann proposed Probabilistic latent semantic analysis (PLSA) [3]. PLSA adopts a

probabilistic approach instead of SVD (like LSA does) to tackle the topic modeling

problem. PLSA models the probability of each co-occurrence P (D,T ) of documents

D and terms T as a mixture of conditionally independent multinomial distributions:

P (D,T ) = P (D)
∑
Z

P (Z|D)P (T |Z) (2.9)

P (D,T ) =
∑
Z

P (Z)P (D|Z)P (T |Z) (2.10)

with Z being the topics. The Equation 2.9 is the asymmetric formulation of PLSA

and it can be seen as the probabilistic spin-off of our basic topic modeling assumptions

about mixtures. For each document D, a topic Z is drawn from the document’s topic

distribution, P (Z|D), and a term T is drawn from the term distribution of the topic,

P (T |Z). P (D) can be directly determined from the corpus. Essentially the equation

tells us how likely to see the document D, and then how likely to find the term T in

that document D according to its topic distribution. You can see the plate notation of

the asymmetric formulation in Figure 2.2.
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M

N

Figure 2.2. Plate notation for the PLSA model (asymmetric formulation). The

document D and the term T are observable variables, the topic Z is a latent variable.

The parameters are learned using the Expectation-Maximization (EM) algorithm

[3]. EM is an iterative method for finding the likeliest estimates of parameters where

the model depends on unobserved latent variables (topics in our case). The number of

topics is a hyperparameter that must be chosen in advance and is not estimated from

the data.

The Equation 2.10 is the symmetric formulation of PLSA. If we say the asymmet-

ric formulation has the document perspective, then the symmetric formulation has the

topic perspective. Here we start with a topic using P (Z), then generate both document

D and term T independently from that topic with P (D|Z) and P (T |Z), respectively.

You can see the simple illustrations for both the asymmetric and symmetric generation

processes in Figure 2.3.

The significance of the symmetric formulation is its resemblance with the LSA

formulation. The probability of the topics P (Z) corresponds to the diagonal matrix

of singular topic probabilities, the probability of documents given the topic P (D|Z)

corresponds to the document-topic matrix U , and the probability of terms given the

topic P (T |Z) corresponds to our topic-term matrix V .

PLSA becomes much more flexible than LSA with the probabilistic treatment of

topics and terms. But it still has a particular shortcoming: It is not a proper generative

model for new documents because it doesn’t have a parameter for P (D).
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Figure 2.3. Illustrations of asymmetric and symmetric formulation processes of PLSA.

2.5. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [4] is the Bayesian version of PLSA where

LDA assumes that the topic distribution for a document and the term distribution for

a topic have sparse Dirichlet prior. That assumption of Dirichlet prior for documents

and topics is what makes LDA a real generative model.

LDA assumes documents are generated in the following fashion: For each docu-

ment

(i) Choose the number of terms M the document will have.

(ii) Choose a topic mixture for the document. As an example, assume that we have

the topics that we gave as an example in Section 2.1: music and food. So, one

might choose the document to consist of 60% music and 40% food.

(iii) Generate each term τ in the document by:

(a) Pick a topic according to the multinomial distribution that we sampled

above; we might get the music topic with 60% probability and the food

topic with 40% probability.
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(b) Use the selected topic to generate the term itself according to the topic’s

multinomial distribution of terms; if we selected the food topic, we might

generate the word “tomato” with 30% probability, “fruit” with 20% proba-

bility, and so on.

LDA then backtracks this generative process to find a set of topics that are likely to

have generated the document collection.

Zθα T

φβ
P

M
N

Figure 2.4. Plate notation for the LDA model.

Figure 2.4 is the plate notation representing the LDA model. The variable names

are defined as follows:

• P denotes the number of topics

• N denotes the number of documents

• M is the number of terms in a given document

• α is the parameter of the Dirichlet prior on the per-document topic distribution

• β is the parameter of the Dirichlet prior on the per-topic term distribution

• θi is the topic distribution for document i

• ϕp is the term distribution for topic p

• zij of Z is the topic for the jth term in document i

• tij of T is the specific term.
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T being grayed out means that the terms are the only observable variables. α

and β are the two hyperparameters that control document and topic similarities, re-

spectively. A low value of α will assign fewer topics to each document whereas a high

value of α will assign more. A low value of β will use fewer terms to model a topic

whereas a high value will use more terms, thus making topics more similar between

each other. The most widely applied variant of LDA today uses sparse Dirichlet priors

as suggested in the original paper [4]. The sparse Dirichlet priors encode the intuition

that documents cover only a small set of topics and that topics use only a small set

of terms frequently. It is also helpful to think θ and ϕ as the matrices created by the

decomposition of the original document-term matrix as we demonstrated with NMF. θ

corresponds to the document-topic matrix and ϕ corresponds to the topic-term matrix.

For LDA, the posterior is intractable to compute and an approximation must be

applied. Modern approximate posterior inference algorithms fall into two categories:

sampling approaches that are based on Markov chain Monte Carlo (MCMC) sampling

and optimization approaches that are based on variational inference. The original

LDA paper uses a variational Bayes (VB) algorithm which is the Bayesian version

of the variational inference [4]. An alternative inference technique is Gibbs sampling

which is a MCMC algorithm [24]. VB is shown to be much more favorable against

Gibbs sampling because of the faster convergence and similar accuracy [25,26].

2.6. Relations Between NMF, PLSA, and LDA

NMF with the objective function as generalized KL divergence can be shown to

be equivalent to PLSA. The two approaches only differ in how inference proceeds,

but the underlying model is the same [27, 28]. On the other hand, LDA has been

developed to address an often-criticized shortcoming of PLSA, namely that it is not

a proper generative model for new documents. LDA adds a sparse Dirichlet prior on

the per-document topic distribution on top of PLSA. So, PLSA simply becomes the

special case of LDA where we assume the Dirichlet prior in the data generating process

for LDA is uniform [29].
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2.7. Related Extensions

In this section, we will go over some extensions to NMF and LDA that are related

to our semi-supervised topic modeling approach.

MacMillan et al. [13] proposed a semi-supervised NMF method called Topic Su-

pervised NMF which can be regarded as one of the most similar studies to ours in

the literature. They use the square of the Euclidean distance as the cost function and

multiplicative update as the update rule. They first create a supervision matrix that

shows which topics are permitted in which documents and then they apply the update

rules with the supervision matrix. This structure enables the model to learn topics

from specific documents. To measure the success, they calculate a similarity matrix

that expresses the Jaccard distance between the identified and true document-topic

matrices.

A semi-supervised NMF model proposed by Lee et al. [14] tries a joint factoriza-

tion of the data matrix and the label matrix which holds topic labels of documents.

They consider two tasks in their experiments:

• Supervised feature extraction for classification: Split data as train and test. Ob-

tain feature matrices using the semi-supervised NMF model then train a classifier

with these feature matrices. Lastly, show the results in terms of classification ac-

curacy.

• Semi-supervised clustering: Apply k-means on the feature matrix learned by the

semi-supervised NMF model and the traditional NMF to see the differences. As

the output, they plot clustering accuracy to the ratio of known labels which goes

from 0 (unsupervised) to 100 (fully supervised).

Wang et al. [15] proposed a semi-supervised NMF method with pairwise con-

straints that propagates both the must-link and cannot-link constraints from the con-

strained samples to unconstrained samples. Using this information, they adjust the
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data weight matrix and apply it as a regularization term to the NMF objective func-

tion.

Another constraint-based semi-supervised NMF method that focuses on multi-

label learning is proposed by Liu et al. [16]. They define input-based similarity and

class-based similarity which correspond to the similarity between input data and the

similarity of labels assigned to these data, respectively. They build the model upon

the assumption of if the label assignments of the documents were logical, then the

similarities defined above should be also consistent with each other.

Several semi-supervised data clustering methods using NMF are also trying to

achieve a similar goal as ours. The common approach is to use two types of pairwise

constraints on data objects: must-link (the two data points must belong to the same

class) and cannot-link (the two data points cannot belong to the same class). Chen et

al. [17,30] perform trifactorizations on the data matrices with a newly learned distance

metric based on the pairwise constraints to improve the quality of clustering. On top

of must and cannot link constraints, Wang et al. [31] use inter-type and intra-type

relationship constraints to further guide the clustering algorithm.

Blei et al. [32] showed a successful hierarchical topic model with hierarchical latent

Dirichlet allocation (hLDA). However because this model is unsupervised, it can’t make

use of any information from hierarchical labels. Petinot et al. [33] proposed a supervised

version of hLDA called hierarchical labeled latent Dirichlet allocation (hLLDA) to be

able to use the hierarchical label information to automatically generate corresponding

topics. But being a supervised model, hLLDA cannot discover new latent topics. To

tackle all the shortcomings of both model, Mao et al. [34] proposed a semi-supervised

hierarchical topic model that is the generalized version of both hLDA and hLLDA

called semi-supervised hierarchical latent Dirichlet allocation. The model makes use of

the hierarchical labels and can discover new latent topics.
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Another supervised LDA model proposed by Blei et al. [35] focuses on prediction

problems and handles them like a regression model. They add a response variable to

LDA associated with each document and jointly model the responses and documents to

discover latent topics. They compare their supervised LDA with a modern regularized

regression and a traditional unsupervised LDA followed by a separate regression.

Labeled LDA proposed by Ramage et al. [36] claims to improve previous super-

vised LDA models by enabling each document to have more than one label (topic).

They focus on the credit attribution task which is matching parts of a document with

the most appropriate labels. To achieve this, labeled LDA constrains the traditional

LDA by defining a one-to-one correspondence between the latent topics learned by the

model and user labels.
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3. THEME SUPERVISED NONNEGATIVE MATRIX

FACTORIZATION

Our proposed Theme Supervised Nonnegative Matrix Factorization (TSNMF)

model is a semi-supervised variation of the traditional NMF. Instead of giving the

final model directly, we will build and explain our model step by step starting from

traditional the NMF. We will demonstrate all the steps on a particular example that

will evolve with each step. For the examples; suppose we have 5 documents with a

dictionary of M terms. The number of topics will be two in each step. The sentences

that represent the documents are as follows:

• Document 1: Pineapple pizza is the best.

• Document 2: Eggplant is an underrated vegetable.

• Document 3: Brontosaurus are like ancient giraffes.

• Document 4: Baby shark is safe at last.

• Document 5: There is an owl in the chimney of my house.

Note 1: For the following figures, a cell’s value is greater than or equal to zero if it is

not specifically indicated.

Note 2: We use percentages to show topic distributions of documents and term distri-

butions of topics in demonstrations for easier understanding. However, the resulting

matrices from decompositions don’t need to include proper distributions. We discuss

these issues in Chapter 5 and Chapter 6 in detail.

3.1. Step 1: Traditional Nonnegative Matrix Factorization

Given a set of m-dimensional data vectors, the vectors are placed in the rows of an

n×m matrix X where n is the number of documents. The data is generally represented

as bag-of-words with either their term frequency (tf) or term frequency–inverse docu-
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ment frequency (tf-idf) values. The tf, the number of times a term occurs in a given

document, is multiplied with idf component to calculate tf-idf, which are computed as

follows:

idf (τ) = log
1 + n

1 + df (τ)
+ 1 (3.1)

tf-idf (τ, d) = tf (τ, d)× idf (τ) (3.2)

where n is the total number of documents in the document set, and df (τ) is the

number of documents in the document set that contain term τ . This matrix is then

approximately factorized into an n× p matrix W and a p×m matrix H. For NMF to

generate factors with reduced dimensions compared to the original matrix, p is chosen

smaller than n or m.

In topic modeling, W and H have distinctive interpretations where Wν,i shows

the relevance of topic i for document ν and Hi,τ shows the relevance of term τ in topic

i. It is also common to call W coefficient (or activation) matrix and H feature (or

basis) matrix. It is useful to think of each topic (row vector) in the feature matrix H

as a document archetype comprising a set of terms where each term’s cell value defines

the term’s rank in the topic: The higher a term’s cell value the higher the term’s rank

in the topic. A row in the coefficient matrix W represents an original document with

a cell value defining the rank of a topic for the document. The matrices W and H are

estimated by minimizing the following objective function:

(W,H) = arg min
W,H

D(X ‖ WH), subject to W,H > 0 (3.3)

where the function D is a suitably chosen cost function. We use both square of the

Euclidean distance and KL divergence as the cost function in our experiments. We use

the multiplicative update rule to find the best W and H.
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3.1.1. Demonstration

You can see the demonstration of traditional NMF with 2 topics In Figure 3.1.

There is no supervision or prior information in this model. Let’s analyze the decom-

position closer with the example that we gave at the beginning of this chapter.

• To understand what topics represent, we need to analyze topic-term matrix H:

– Topic A: 20% pizza, 15% best, 15% eggplant, 5% giraffe, 5% pineapple, . . .

(at which point, we could interpret topic A to be about food)

– Topic B: 25% shark, 20% owl, 10% like, 5% vegetable, 5% brontosaurus, . . .

(at which point, we could interpret topic B to be about animals)

• In document-topic matrix, W , it is highly likely to see topic distributions like

this:

– Documents 1 and 2: 85% Topic A, 15% Topic B

– Documents 3, 4 and 5: 20% Topic A, 80% Topic B

Even in this simple example, we needed to analyze both matrices simultaneously

to understand the general structure of the document set. There is a lot of room for

ambiguity caused by the terms that can belong to multiple topics.

 

 

: Documents

T 1     T 2     T 3     T 4      ...     T M

W HX

: Topics T#: Terms

T 1     T 2     T 3     T 4      ...     T M

Figure 3.1. Demonstration of Step 1: Traditional Nonnegative Matrix Factorization



25

3.2. Step 2: Supervision

Supervision enables the user to provide documents with labels and constrains the

representation of the topics to align with these labeled documents. Supervision can

be represented by the n× p topic supervision matrix S. The elements of S are of the

following form:

Sν,i =

1 if topic i is permitted in document ν

0 if topic i is not permitted in document ν.

(3.4)

We use the supervision matrix S to constrain the coefficient matrix W . For all

pairs (ν, i) such that Sν,i = 0, we enforce that Wν,i must also be 0. This constraint can

be viewed from two different perspectives. First, the labeled documents must lie in the

subspace of their assigned topics. Second, the topics must adapt to the documents they

are permitted to. The supervision matrix also allows documents to belong to multiple

topics.

Let ◦ denotes the Hadamard (element-by-element) product. For a term-document

matrix X and supervision matrix S, the new NMF with supervision seeks matrices W

and H that minimize:

(W,H) = arg min
W,H

D(X ‖ (W ◦ S)H), subject to W,H > 0. (3.5)

The change in the objective function does not affect the derivation of the multi-

plicative update rules. We only need to replace W with W ◦ S in the updates.
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Multiplicative update with square of Euclidean distance as the cost function:

H ← H ◦ (W ◦ S)TX

(W ◦ S)T (W ◦ S)H
(3.6)

W ← W ◦ (XHT ) ◦ S)

((W ◦ S)HHT ) ◦ S
. (3.7)

Multiplicative update with KL divergence as the cost function:

H ← H ◦
(W ◦ S)T X

(W◦S)H

(W ◦ S)T1
(3.8)

W ← W ◦

(
X

(W◦S)HH
T
)
◦ S)

(1HT ) ◦ S
. (3.9)

3.2.1. Demonstration

Before training the model, the topics of Documents 1, 2, 3, and 4 were given

to us. Documents 1 and 2 are about food. Documents 3 and 4 are about animals.

We accepted Topic A as the food and Topic B as the animal topics (can also be the

opposite). We permit Topic A in Documents 1 and 2 but not Topic B, vice versa

for Documents 3 and 4. Because the theme of Document 5 is unknown, we permit

both Topic A and B in Document 5. You can see the demonstration of NMF with

supervision in Figure 3.2. When we check the Document 5, we can see that it is more

similar to Documents 1 and 2 than Documents 3 and 4. In other words, Document 5

is more about animals than food. Thus, we expect to see higher values in its Topic A

score than Topic B score.

When we analyze the decomposition closer, the main difference from the unsuper-

vised version is that topic distributions of labeled documents are preset - they have to

be in the latent subspace of the topics they are assigned to. (The only uncertainty can

occur when a document has multiple labels where the labels can get different weights.)
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We get two major benefits out of this approach: First, better term distributions for

topics. Second, unlabeled documents can be categorized into topics that we chose via

labeled documents. We no longer need to rely on topic models to find meaningful top-

ics. We showed the second benefit in the introduction part via the zodiac sign example

and in this demonstration, we emphasized the first benefit.

• We already know what topics represent, but with supervision we get more precise

topic representations where more specific terms get higher percentages:

– Topic A (food): 25% pizza, 20% eggplant, 10% pineapple, 5% best, . . .

– Topic B (animal): 30% shark, 20% owl, 10% giraffe, 5% brontosaurus, . . .

• We check the document-topic matrix, W , to see the topic distribution of Docu-

ment 5:

– Documents 1 and 2: 100% Topic A, 0% Topic B

– Documents 3 and 4: 0% Topic A, 100% Topic B

– Document 5: 4% Topic A, 96% Topic B
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Figure 3.2. Demonstration of Step 2: Supervision
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3.3. Step 3: Themes and Subtopics

In traditional NMF, there need not be a direct connection between topics. Every

topic tries to cover different aspects of the document set and some topics can hold

more information than others. For example, there could be a topic about music which

includes metal and classical music at the same time. There could also be another topic

just about cats. If we increase the topic count, then we may get 2 separate topics about

classical music and metal music plus the cats topic. But actually, we can not be sure

about what will be the contents of the new topics when we increase the topic count

in the unsupervised setting. This situation is also more interesting for the case with

the supervision because we increase the topic count to discover new topics, but at the

same time, supervision forces a restriction on the topics.

We propose a new hierarchical topic structure that consists of themes and sub-

topics. Themes are a direct replacement of topics; but unlike topics, a theme consists

of a collection of subtopics. Every theme has the same number of subtopics. If we

set the number of subtopics to one, then the model becomes the regular topic model

where each theme is represented by one subtopic. Instead of permitting topics in the

documents, we permit themes and their subtopics in the documents. This structure

allows a better interpretation and representation of topics and documents. Subtopics

are not predetermined and we only know the themes that subtopics are connected to.

So, each subtopic can reflect different aspects of a theme.

With themes, we can now safely take the music topic as a theme and train

the model with two subtopics to obtain two different implications of music: Classical

and metal. The concept of themes and subtopics is useful when it is used with the

supervision which helps to better understand the provided topics.
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3.3.1. Demonstration

Now food and animal are not topics, but themes. Theme A is the food theme and

Theme B is the animal theme. Both themes have 3 subtopics. We permit Theme A and

its three subtopics in Documents 1 and 2 but not Theme B, vice versa for Documents

3 and 4. Because the theme of Document 5 is unknown, we permit both Theme A and

B in Document 5. You can see the demonstration of NMF with supervision, themes,

and subtopics in Figure 3.3.

Also before themes, analyzing the topic distribution of the labeled documents

was redundant. But now with themes and subtopics, we can analyze how labeled

documents that belong to the same theme differentiate from each other and what their

specialized subtopics are.

• To understand what subtopics represent, we need to analyze topic-term matrix

H (subtopic names next to arrows are the most likely predictions based on the

term distributions):

– Subtopic A1: 70% pizza, 15% pineapple, 10% pasta, . . . → Italian Food

– Subtopic A2: 50% pineapple, 30% apple, 5% eggplant, . . . → Fruits

– Subtopic A3: 60% vegetable, 25% eggplant, 10% onion, . . . →Vegetables

– Subtopic B1: 50% brontosaurus, 40% t-rex, 5% giraffe, . . . → Dinosaurs

– Subtopic B2: 70% baby shark, 20% kitten, 5% safe, . . . → Cute Animals

– Subtopic B3: 55% owl, 30% canary, 10% chimney, . . . → Birds

• We check the document-topic matrix W , to see the subtopic distributions of the

documnets:

– Document 1: 70% Subtopic A1, 25% Subtopic A2, 5% Subtopic A3

– Document 2: 5% Subtopic A1, 10% Subtopic A2, 85% Subtopic A3

– Document 3: 85% Subtopic B1, 10% Subtopic B2, 5% Subtopic B3

– Document 4: 10% Subtopic B1, 90% Subtopic B2, 0% Subtopic B3

– Document 5: 4% Theme A; 6% Subtopic B1, 20% Subtopic B2, 70% Sub-

topic B3
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Figure 3.3. Demonstration of Step 3: Themes and Subtopics

3.4. Step 4: Background Topic

In NLP, cleaning the common and unnecessary terms out of the documents has

always been an occurring issue. There are NLP methods like removing stopwords or

removing terms that have less than some number of letters. These methods are useful

but they don’t use any context from the documents.

We introduce a static topic called background topic to the model that is permitted

in every document. Unlike themes, background topic learns from every document.

The background topic tries to generalize things that are common for every document.

By doing that, the background topic removes the common and generally unwanted

information from the environment; and helps themes to carry more exclusive meanings.

In other words, themes can focus on more important terms in the documents to which

they are assigned, thanks to the background topic. Also background topic is not a

theme because there is no supervision and we don’t need a hierarchical structure for

it. With the addition of the background topic, we have completed the first version of

our proposed model and it is called Combined Theme Supervised Nonnegative Matrix

Factorization.
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Note: Throughout this thesis, even though TSNMF uses themes, subtopics, and

background topics instead of topics, we will continue to use the term topic as a concept

that encompasses all of these structures.

3.4.1. Demonstration

Here we added the background topic to the previous model. Background topic is

permitted in every document. You can see the demonstration of Combined TSNMF in

Figure 3.4. As explained above, the background topic boosts the importance of theme-

specific terms by collecting common terms on itself. An example term distribution for

background topic can be as follows: 10% all, 8% use, 6% like, 5% time, . . .
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Figure 3.4. Demonstration of Step 4: Background Topic

3.5. Step 5: Separation

The last step is the separation of themes. The motivation is imitating the one vs

all training procedure. Instead of training all the themes and the background topic to-

gether, we train a different model for each theme with a background topic. The binding

part between the models is the background topics because the background topics are

permitted in every document and every model has the same background topic struc-

ture. As we have mentioned, the procedure is like one-vs-all: theme-vs-background.
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This final version of our proposed model is called Separated Theme Supervised Non-

negative Matrix Factorization and we will use this model while explaining methods in

the upcoming chapters.

3.5.1. Demonstration

In the Separated TSNMF, we train a separate model for each theme. Instead of

one distribution over all subtopics in one model, we get separate subtopic distributions

with a background topic for each theme. To understand which theme a document

belongs to, we first calculate a score for each theme by comparing subtopic values to

background topic value in each W . We expect higher values in subtopic values relative

to background topic value if the document belongs to this theme. Then we compare

those calculated scores to find the theme of documents. You can see the demonstration

of Separated TSNMF in Figure 3.5. Let’s have a more detailed look at W1 and W2

matrices for Document 5:

• W1 (Theme A - Food): 2% Subtopic A1, 5% Subtopic A2, 3% Subtopic A3,

90% Background Topic

• W2 (Theme B - Animals): 5% Subtopic B1, 17% Subtopic B2, 75% Subtopic

B3, 3% Background Topic

Because Document 5 is about animals and more specifically birds, subtopic scores

in W2 are higher than the background topic score, while in W1, background topic score

is higher than the subtopic scores. More detail about theme scoring for documents will

be in Chapter 5.
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Figure 3.5. Demonstration of Step 5: Separation

3.6. Extension: Fully Supervised

Fully supervised approach can be likened to supervised ML approaches where the

data is separated into training and test datasets. Here we take labeled documents as

the training dataset and unlabeled documents as the test dataset. To train the model,

we only use the labeled documents. The purpose of the training is to obtain theme-term

matrices, H (those matrices represent what themes are). We don’t need the resulting

document-theme matrices, W , because we already know the labels of the documents

that we used in training. But one may still want to inspect the resulting document-

theme matrices to see the subtopic distribution of the documents to gain more insight

about the labeled documents. After the training process, we create a new data matrix

(document-term matrix), X, from unlabeled documents. Then we decompose this new

X matrix using TSNMF, but this time we fix theme-term matrices to the matrices
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that we have obtained from the training. With this, we obtain theme distributions of

every unlabeled document via document-theme matrices.

This approach restricts us in two ways: First, it restricts us to use only the

predefined labels (topics). So, we can not discover any new topics. Second, it restricts

the training dataset to consist of labeled documents. So, we can not add terms from

the test dataset to the dictionary. But, using only labeled documents in the training

process gives us more precise theme-term matrices and better-identified themes.

3.6.1. Demonstration

You can see the demonstration of a fully supervised version of Separated TSNMF

in Figure 3.6. The first part of the figure demonstrates the training procedure. The only

difference from Step 5 is that we only use labeled documents to learn the themes. Thus,

Document 5 is not involved in the first part. We store the theme-term matrices, H1

and H2, to use in the testing part. In the second part, we first generate our data matrix

(Xtest) from the unlabeled documents. Under normal conditions, TSNMF decomposes

the data matrix to find both W and H. However, this time we have already obtained

our theme-term matrices, H1 and H2, in the first part. Thus, we fix H matrices and

TSNMF finds only document-theme matrices, Wtest1 and Wtest2 . Finally, we calculate

the theme scores of Document 5 using these matrices.
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3.7. Extension: New Topics

In this extension, we will show how TSNMF can explore new topics from unlabeled

documents. To explore new topics, we first need to decide on the number of new topics.

Then instead of creating a separate theme for each new topic, we create only one theme

and accept new topics as the subtopics of this theme. So, if we anticipate there could

be four new topics, we create a theme with four subtopics and a background topic

to discover these four new topics. Finally, we permit new topics in only unlabeled

documents (and maybe in some labeled documents that may have extra topics but this

is a rare case).

3.7.1. Demonstration

In this example, we are searching for 2 new topics and we also add one new

unlabeled document to the document set:

• Document 6: Classical music is metal music before electricity.

You can see the demonstration of exploring new topics with Separated TSNMF

in Figure 3.7. The main difference from the original example is that we have a third

theme with two subtopics that represents the new topics. The 2 new topics are only

permitted in two unlabeled documents. In the examples without new topics, Document

5 was put under Theme B (animal theme), because it is about birds. Here, Document

5 will also get high scores for Theme B. But, one of the new topics (e.g. the first new

topic) can also specialize in Document 5 and this new topic can be about owls. For

Document 6, it belongs to neither Theme A nor Theme B. So we expect the other new

topic (e.g. the second new topic) to be about Document 6 which is music.
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Figure 3.6. Demonstration of the fully supervised version of TSNMF
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Figure 3.7. Demonstration of exploring new topics with TSNMF
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4. BCOOL INITIALIZATION

NMF has distinct advantages in matrix factorization: The factorized matrices

maintain sparsity and nonnegativity of the data matrix, X, which enables them to be

more interpretable [5]. However, NMF has also its disadvantages. The optimization

problem for Equation 4.1 has been shown to generalize k-means clustering problem

which is known to be NP-complete [37]. The multiplicative update rule for this op-

timization problem only guarantees to find a local minimum, rather than a global

minimum, since it is convex in either W or H, but not both.

(W,H) = arg min
W,H

D(X ‖ WH), subject to W,H > 0 (4.1)

In practice, it is possible to run NMF with different initial setups and choose

the one with the best local minimum. However, this reduces the replicability of the

solution where even a slight change in parameters may produce different NMF factors.

Thus, the initialization of the model is critical to obtain consistent results.

The most simple and preferred initialization method is random initialization

where coefficient and feature matrices are initialized as dense matrices of random

numbers between 0 and 1. However, since each random initialization may end up

at a different local minimum, we propose a very inexpensive and highly consistent

semi-deterministic initialization method called bCool to initialize the feature matrix H

(inspired by the works of Langville et al. [38]).

bCool makes use of the structure of our proposed TSNMF model to initialize

the topic-term matrix, H. Rather than initializing H with a dense random matrix, it

makes more sense to initialize it using the given sparse document-term matrix X. bCool
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initializes each row of H by averaging specific rows of X. It uses document vectors

(row vectors of X) that belong to a specific theme to initialize the theme-related rows

of H, and a sample from all documents to initialize background topic related row of

H. The steps to initialize H with bCool are as follows:

(i) Group documents by their themes. If a document has multiple themes, then add

this document to multiple groups.

(ii) Sort each group in descending order according to the documents’ densities which

is simply the number of unique terms in a document (or typically the row length

for sparse matrices).

(iii) Keep the densest half of the documents for each group. Discard the other halves.

(iv) Split each group into NI subgroups where the cumulative density of each subgroup

is approximately equal (NI is the number of latent topics).

(v) If there is not enough document for each subgroup (number of documents is less

than the number of latent topics), then assign documents - from any theme -

randomly with direct proportion to their densities. So the denser a document is,

the higher probability it will be chosen. The number of documents to be assigned

to a subgroup is proportional to the ratio between the size of the training data

and the number of themes.

(vi) Calculate average row vectors for each subgroup by taking the mean of corre-

sponding rows of X for each document in the subgroup. Then assign those

average row vectors to the related rows of H matrix.

• As an example assume that there is a theme called food, there are 90 doc-

uments with food theme, and the number of subtopics is 3. First, we sort

these 90 documents in descending order according to their densities and elim-

inate the last half. Then, split the remaining 45 documents into 3 (number

of subtopics) subgroups where the cumulative density of each subgroup is

approximately equal. Calculate 3 separate average row vectors for each sub-

group using the data matrix X. Last, if it is a Separated TSNMF model,

assign those vectors to the first 3 (number of subtopics) rows of the food

theme’s H. If it is Combined TSNMF model, assign those row vectors to
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food theme-related rows of H.

(vii) For the background topic, take quarter of the densest documents from each group

(theme). Calculate the average row vector by taking the mean of all the chosen

documents using X matrix, then assign it to the background topic related row

of H. So, for the Separated TSNMF model, initial values of background topic

related row for all H matrices will be the same. For the Combined TSNMF

model, there is only one H matrix and it has only one row for the background

topic.
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5. SCORING OF DOCUMENTS

The main objectives of topic modeling are discovering latent topics from a set of

documents and clustering those documents under the discovered latent topics. Then it

is important to express the connection between documents and topics with comprehen-

sible methods and to find a good way to represent your outcomes. We will deal with

the representation of the outcomes, especially topics, in the next chapter (Scoring of

Terms). In this chapter, we will focus on document-topic relation and present a novel

idea for scoring documents using subtopics and themes.

The document-topic distribution matrix, W , holds the distribution over topics

for each document. Each row vector is the topic distribution of a document. However,

these distributions don’t have to be proper probability distributions where the values

don’t have to sum up to 1. Higher the value of a cell on a row means the document

is more related to the corresponding topic. In traditional NMF, row vectors of the

document-topic matrix are used to rank topics for each document. Table 5.1 shows a

simple case with 4 documents and 3 topics (the table is just an easier to understand

version of a document-topic matrix). While some documents belong exactly to one

topic like Document 1 ← Topic A, some documents have multiple topics like Docu-

ment 3 ← Topic B & C and Document 4 ← Topic A & B. The ranking gives us an

easy to understand representation. But using just rankings and omitting the numeri-

cal values cause us to lose the significance of topics for each document. On the other

hand, if we try to use the values of topic scores directly; because the values range from

0 to +infinity, it is near impossible to make sense of these individual scores. For exam-

ple; in Table 5.1, when we examine Document 3 and Document 4, even though they

both have two topic scores that are close to each other and greater than the other topic

score; topic scores of Document 4 are strictly greater than topic scores of Document

3. This situation should be included in the representation. Then we need to find a

way that preserves the numerical significance of scores while keeping topic scores more
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Table 5.1. Values of an example document-topic matrix.

Topic A Topic B Topic C

Document 1 100 2 5

Document 2 3 4 3

Document 3 1 45 54

Document 4 25 25 1

understandable for human interpretation.

The most standard method is normalizing W matrix over topics for each doc-

ument which is the same thing as normalizing each row separately. This is a pretty

simple and effective method that converts all the scores to a range between 0 and 1

while conserving their rankings. However, it fails to preserve the numerical significance

of the scores because the normalization happens separately for each row. When we nor-

malize the W matrix in Table 5.1, we get the topic scores for each document as shown

in the Table 5.2 and as you can see, the difference between the topic scores of Document

3 and Document 4 is not carried to the final scores with standard normalization.

Table 5.2. Normalized values of the example document-topic matrix.

Topic A Topic B Topic C

Document 1 0.93 0.02 0.05

Document 2 0.30 0.40 0.30

Document 3 0.01 0.45 0.54

Document 4 0.49 0.49 0.02
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5.1. Theme Score

Before moving on to our scoring method, it is important to remember that our

main Separated TSNMF model generates a different document-theme matrix, W k, for

each theme k. If there are 3 subtopics in a theme, then we will have 3 different topic

scores (plus a background topic score) for each theme. (As a reminder, we don’t count

background topics as subtopics of themes, because their main purpose is to regularize

subtopics by representing all the documents and themes.) These subtopic scores are

useful but eventually, we need one comprehensive score, namely the theme score, to

represent the importance of the themes for the documents. We can choose the subtopic

with the highest value to represent the theme and use its score. The problem with this

approach is that we will end up with values from different document-theme matrices

which may have different boundaries and such. So it is not reasonable to compare these

values to rank themes for documents.

Therefore we need to convert subtopic scores to a more workable format before

choosing the highest one, then we can compare scores from other themes. Here we

propose our document scoring method that utilizes hierarchical topic structure and

background topics of TSNMF to overcome foretold problems. We first apply normal-

ization to subtopic scores using the background topic score separately for each theme.

This normalization converts subtopic scores to a more comprehensible and comparable

format. Then we choose the highest valued normalized subtopic scores to be the theme

scores of documents. The normalization also enables the comparison of different theme

scores possible, because it projects all the values to the same boundaries, between 0

and 1. We normalize the subtopic score of subtopic i under theme k for document ν

as
Wk
ν,i

Wk
ν,i+W

k
ν,¬I

. Then the theme score of theme k for document ν forms as follows:

theme score , max
i

W k
ν,i

W k
ν,i +W k

ν,¬I
(5.1)

where ¬I represents the background topic. W k
ν,i is the raw score of subtopic i under

theme k for document ν that shows how important this subtopic is for this document.
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W k
ν,¬I is the score of the background topic for theme k and document ν. We use

background topics as the representation of recurring terms for all the documents. When

a document has terms that are specific to a theme k, the subtopic scores for theme

k should get higher scores than the background score of theme k. Or at least the

subtopic-background ratio for theme k should be higher than other themes’ ratios.

Here in the theme score formulation, we represented this ratio between the subtopic

score and the background score of a theme like a normalization term so that all the

scores can have values between 0 and 1 and can be easily compared. After normalizing

all the subtopic scores, we choose the highest subtopic score for each theme to become

its theme score. Table 5.3 shows some document scores before and after applying theme

scoring, respectively.

The power of this method comes from the background topics’ being both a sep-

arate local variable for each theme and a global variable by representing all the docu-

ments and themes at the same time. However, for the Combined TSNMF model, there

is only one document-theme matrix, W , and because of that, there is only one back-

ground topic score for each document. For that reason, we won’t observe that much of

an effect of our theme scoring scheme on the Combined TSNMF model. Because we

are losing the local property of the background topics and theme scoring becomes a

simple normalization that divides all the subtopic scores of a document with the same

value.
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Table 5.3. Top table shows the subtopic scores of some documents before any process.

Bottom table shows the subtopic scores after applying theme scoring scheme. Bold

scores are the theme scores of the documents.

Theme A Theme B

A1 A2 AB B1 B2 BB

Document 1 100 2 5 3 4 3

Document 2 45 54 1 25 25 1

Document 3 2 1 20 5 8 40

Theme A Theme B

A1 A2 AB B1 B2 BB

Document 1 0.95 0.28 - 0.50 0.57 -

Document 2 0.98 0.98 - 0.96 0.96 -

Document 3 0.09 0.05 - 0.11 0.17 -
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6. SCORING OF TERMS

The power of NMF comes from its interpretability. The training of the model

forms the topic-term matrix, H, which is a distribution over terms for each latent topic.

While it is possible to use the values from H matrix directly to rank the terms; our

model TSNMF offers much more thanks to its semi-supervised nature and theme-based

structure. Using these advantages, we present a new measure called purity and a new

term scoring scheme called Theme Term Score (TTS) which allows more tailored terms

for each latent topic and also for each document.

6.1. Purity and Theme Term Score

In the traditional NMF model, topic-term matrix H is fundamentally used for

understanding what each latent topic represents and to show the importance of each

term for these latent topics. To interpret a topic, one typically analyzes a ranked list of

the most probable terms in that topic. The problem with interpreting topics this way

is that common terms in the corpus often appear near the top of such lists for multiple

topics, making it hard to differentiate the meanings of the topics. Also, this approach

alone doesn’t provide us a way to make a direct connection between documents and

terms.

Taddy [39] defined a quantity called lift to rank the terms within a topic, which

is the ratio of a term’s probability within a topic to its margin probability across the

corpus. It gives higher rankings to rare terms that belong to specific topics and also

decreases the rankings of globally common terms.

Bischof et al. [40] proposed a method to rank the terms for a given topic that

uses the terms’ frequency in that topic as well as the terms’ exclusivity to the topic. A

term’s exclusivity to a topic is its frequency in that topic relative to a set of comparison

topics. They developed hierarchical Poisson convolution model (a generative model
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for labeled corpora that exploits the known topic hierarchy) to infer these relations

and introduced a univariate scoring measure called FREX (Frequency-Exclusivity) to

summarize performance in both frequency and exclusivity dimensions.

Likewise, Sievert et al. [41] proposed a measure similar to exclusivity that is called

relevance. It is a weighted average of the logarithms of a term’s probability under a

topic and its lift. They also created a web-based interactive visualization tool called

LDAvis to visualize topics estimated using LDA model and relevance measure.

Here we propose a similar measure called purity that benefits from the theme

structure and the background topic of our TSNMF model to rank terms. As we have

mentioned before, the terms with higher frequencies tend to have higher scores even

though they do not represent the characteristics of a theme. It doesn’t mean that these

generic terms are not important, but one may want to observe terms that are more

specific to a theme. We define the purity of term τ for subtopic i under theme k as:

purity (k, i, τ) =
Ĥk
i,τ

Ĥk
i,τ + Ĥk

¬I,τ
(6.1)

where ¬I represents the background topic. Ĥ matrix is the normalized version of H

matrix over terms for each topic. Ĥk
i,τ is the raw score of term τ for subtopic i under

theme k that represents how important term τ is for subtopic i. Ĥk
¬I,τ is the score of

term τ for the background topic of theme k that represents how important term τ is

for all the themes in the dataset. It is important to remember that our main Separated

TSNMF model generates a different theme-term matrix, Ĥk, for each theme k. So,

Ĥk
¬I,− vector will be different for each theme, but will be the same for every subtopic

in a theme. (For the Combined TSNMF model, there is only one topic-term matrix,

Ĥ, and because of that we have only one Ĥk
¬I,− vector for all the topics.)

For simplicity and easier further use, let’s call Ĥk
i,τ as Direct Term Score (DTS)

of term τ for subtopic i under theme k and Ĥk
¬I,τ as Background Term Score (BTS) of
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term τ for theme k. We can also define purity using DTS and BTS as follows:

DTS (k, i, τ) = Ĥk
i,τ (6.2)

BTS (k, τ) = Ĥk
¬I,τ (6.3)

purity (k, i, τ) =
DTS (k, i, τ)

DTS (k, i, τ) + BTS (k, τ)
. (6.4)

Purity can have values between 0 and 1. If we have a very common term in our hand, it

means that it will probably have both high DTS and BTS and its purity will be around

0.5. If we have a term that is specific to our interested subtopic, then it will probably

have a high DTS but a low BTS for that subtopic and its purity will be near 1. Last, if

we have a term that is irrelevant to our interested subtopic, then it will probably have

a low DTS but a high BTS for that subtopic and its purity will be near 0.

purity brings us to the definition of Purity Term Score (PTS) which is the last

step before TTS. We define PTS of term τ for subtopic i under theme k as:

PTS (k, i, τ) = purity (k, i, τ) Ĥk
i,τ . (6.5)

PTS is simply multiplication of a term’s purity and its DTS. We use purity like a

regularizer for DTS to fix the frequency problem. Finally, we define the TTS of term

τ for subtopic i under theme k given a weight parameter λ called purity ratio (where

0 ≤ λ ≤ 1) as:

TTS (k, i, τ | λ) = (1− λ) Ĥk
i,τ + λ purity (k, i, τ) Ĥk

i,τ , or (6.6)

TTS (k, i, τ | λ) = (1− λ) DTS (k, i, τ) + λ PTS (k, i, τ) (6.7)

where λ determines the weight given to the DTS of term τ for topic i under theme

k relative to its PTS. Setting λ = 0 results in the traditional ranking of terms in

decreasing order of their DTS, and setting λ = 1 ranks terms entirely by their PTS

which is our regularized version of DTS.
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It is important to note that, when a theme has more than one subtopic, the

method will generate subtopic count of different term distributions for the theme in-

stead of one inclusive term distribution. So we can analyze each subtopic separately.

But if one wants to obtain a single term distribution for a theme, different approaches

can be utilized:

• Max: For each term, take the maximum score over the subtopics in a theme.

TTSmax (k, τ | λ) = max
i

TTS (k, i, τ | λ) (6.8)

• Sum: For each term, take the summation of all scores over the subtopics in a

theme.

TTSsum (k, τ | λ) =
∑
i

TTS (k, i, τ | λ) (6.9)

6.1.1. Scoring Terms for Each Document

TTS offers great help to understand and interpret topics. But when it comes to

documents, there is no direct way to find defining terms of a document. The most

apparent method is to find the topic distributions of the documents first. Then ac-

cording to these distributions and TTS of terms, one can figure out the defining terms

of the documents. Even though the methodology seems straightforward, it is not easy

to derive a comprehensive ranking among terms for a document for such reasons:

• A document generally doesn’t include all the terms in a dictionary. But term

distributions of topics are over all the terms. A document may not include the

highest-ranking terms for the topic that it belongs to.

• Every topic has a different term distribution on the same dictionary. A term τ

can rank high for one topic i1, but low for another topic i2. However, a document

ν may belong to both of these topics, i1 and i2, and has the term τ . So, it is

tricky to evaluate the importance of the term τ for the document ν.
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We propose a very simple method to overcome these problems. In our method, we

only redefine our building blocks DTS and BTS of term τ in document ν for subtopic

i under theme k as follows:

DTS (k, i, τ, ν) = 1(Xν,τ > 0) Ŵ k
ν,iĤ

k
i,τ (6.10)

BTS (k, τ, ν) = 1(Xν,τ > 0) Ŵ k
ν,¬IĤ

k
¬I,τ (6.11)

where X is our main data matrix, 1(Xν,τ > 0) is an indicator function and Ŵ is

the normalized coefficient matrix over topics for each document. X matrix holds the

document-term relationship which is generally tf or tf-idf values of the terms for the

documents. The indicator function 1(Xν,τ > 0) evaluates to 1 when Xν,τ > 0 and 0

otherwise. Xν,τ being greater than 0 means that document ν includes term τ . So, if

term τ doesn’t exist in document ν, then its DTS and BTS evaluates to 0 and term τ

is eliminated from the term ranking of document ν (even if the term τ is a high ranked

term in a topic that document ν belongs to). The multiplication of Ĥ with Ŵ allows

the term scores to change according to the documents’ topic distributions.

Definitions of purity, PTS and TTS also change according to the new definitions

of DTS and BTS as follows:

purity (k, i, τ, ν) =
DTS (k, i, τ, ν)

DTS (k, i, τ, ν) + BTS (k, τ, ν)
(6.12)

PTS (k, i, τ, ν) = purity (k, i, τ, ν) DTS (k, i, τ, ν) (6.13)

TTS (k, i, τ, ν | λ) = (1− λ) DTS (k, i, τ, ν) + λ PTS (k, i, τ, ν) . (6.14)

Besides the addition of the new parameter ν which corresponds to documents, the

motivation behind purity, PTS and TTS stays the same.

It is important to note that, with Equation 6.7 we have generated a new score

for each subtopic-term pair which corresponds to a 2D matrix as a whole. But with

Equation 6.14, it is now a new score for each subtopic-term-document triplet which
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corresponds to a 3D tensor as a whole. Each document will have a separate ranking

for each subtopic. These rankings will only consist of terms that take place in the

corresponding documents. Most importantly, rankings from different subtopics for a

document will be comparable. Also, term distributions for themes can be obtained

by applying the methods shown in Equations 6.8 or 6.9. As a result, with document-

specific TTS, we will be able to rank the terms and identify the most important ones

for documents.
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7. PREPARATION FOR EXPERIMENTS

We are approaching the chapter of tables and plots. But, before diving into the

excitement of the results, we will show behind the scenes. We will start with how

documents are processed before entering the model, and continue with the datasets.

Then, we will explain our evaluation metric along with the genetic algorithm that is

introduced to make the traditional NMF and LDA models comparable to the TSNMF

model.

7.1. Text Preprocessing

Before applying any major NLP techniques to the documents, we tried to fix some

wording and text emoticons using a manually crafted dictionary, such as ”isn’t” to ”is

not” and ”:)” to ”smile”. Then, each document is tokenized while removing stopwords,

punctuation, numbers, and any token with fewer than 3 characters long. Tokens are

lemmatized using Wordnet lemmatizer of Natural Language Toolkit (NLTK) [42] to

obtain the base form of tokens. Finally, we removed documents that have less than 25

words.

To create a document-term matrix (data matrix), an n-gram word model is used

combining unigrams, bigrams, and trigrams to generate a dictionary. To prevent over-

populating the dictionary, only the most frequent 10,000 terms are considered. We

used both tf and tf-idf (with L2-normalization) separately to encode documents into

the document-term matrix in our experiments.

7.2. Datasets

We used 3 document datasets in our experiments: Brown Corpus, Reuters Cor-

pus, and Schwartz’s Theory of Basic Human Values Dataset. Table 7.1 summarizes

the basic statistics of the datasets after applying text preprocessing.
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Table 7.1. Basic statistics of the datasets after applying text preprocessing.

Dataset # docs # topics

Brown 500 15

Reuters 8,159 90

Schwartz 433 10

7.2.1. Brown Corpus

The Brown Corpus contains 500 documents, and the documents have been cate-

gorized by 15 topics, such as adventure, editorial, fiction, and so on. Every document

is labeled with only one topic. The Brown Corpus is included in NLTK text corpora.

7.2.2. Reuters Corpus

The Reuters Corpus contains 10,788 (8,159 after text preprocessing) news docu-

ments that have been classified into 90 topics. Unlike the Brown Corpus, categories in

the Reuters Corpus overlap with each other, simply because a news story often covers

multiple topics. Thus, a document in the Reuters Corpus can have multiple topics.

The Reuters Corpus is also included in NLTK text corpora.

7.2.3. Schwartz’s Theory of Basic Human Values Dataset

The Theory of Basic Human Values, developed by Shalom H. Schwartz, tries

to measure universal values that are recognized throughout all major cultures [43].

Schwartz’s theory identifies ten such motivationally distinct values and also categorizes

them in five higher order groups:

• Openness to change: Self-Direction and Stimulation.

• Self-enhancement: Achievement and Power.
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• Hedonism: Hedonism (considered to be shared among Openness to change and

Self-enhancement).

• Conservation: Security, Conformity, and Tradition.

• Self-transcendence: Benevolence and Universalism.

To better describe these relationships graphically, the theory organizes ten values in a

circular structure shown in Figure 7.1.

Figure 7.1. The relationships among the basic human values and higher order groups

in Schwartz’s Theory of Basic Human Values.

This dataset was created in one of our previous related study [44]. To obtain

the dataset, Wikipedia articles were crawled for the ten basic human values. For each

value, a few key seed articles were qualitatively selected to construct a value-specific

corpus of Wikipedia articles. The Short Schwartz Values Survey which is a validated

tool based on the original Schwartz Values Survey was used to select seed documents. A

custom crawler was developed that exploits the structural characteristics of Wikipedia

articles. It traverses the URLs within the See also, Relevant topics and References

sections of documents. In this work, only the seed articles and articles that are one
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hop away from the seed articles are used (433 documents). Table 7.2 shows the number

of documents for each basic human value.

Table 7.2. Number of documents for each basic human value (BHV) in the Schwartz

dataset.

BHV # docs BHV # docs

Universalism 136 Power 21

Benevolence 45 Achievement 44

Conformity 32 Hedonism 76

Tradition 17 Stimulation 7

Security 28 Self-direction 27

7.3. Evaluation Metrics

Evaluating an unsupervised topic model is not a straightforward task. Because

there is no certain correct output for an input. Without ground truth, there is always

room for interpretation. One model can find more distinct topics, while another model

can explain the topics better. We also couldn’t find a standard evaluation metric for

topic models in the literature.

In our problem setting, we have document labels in advance. So, we could use

evaluation metrics that are used in supervised ML literature such as accuracy and

F1 score. However, we don’t think these metrics do justice for topic models. Because

topics are not strictly separated objects and can be related to each other. For example,

assume that we knew Document 1 is about Topic A, but the topic model gives Topic A

the second-highest score for Document 1. In terms of accuracy, it is a misclassification.

But if there are tens of topics, then having the second-highest score should not be

regarded as a misclassification. Using the topic rankings of documents, we propose a

novel evaluation metric called log rank accuracy to assess semi-supervised topic models.



56

It should be pointed out that the topic distribution of documents is just one side

of the coin; on the other side, we have the term distribution of topics, also known as

the topic descriptions. So, for a better assessment of topic models, one should also

always analyze the topics themselves, and we will do it at the end of Chapter 8.

7.3.1. Log Rank Accuracy

Log rank accuracy evaluates a score for each document using the ranked list of

themes according to their theme scores (Equation 5.1) to calculate the document’s

theme assignment accuracy. Log rank accuracy of each document is calculated as

follows:

(i) Sort the themes in descending order using theme scores.

(ii) Find the ranks of the themes that are assigned to the document and store in the

list R (ranking starts from 1).

(iii) Log rank score for the document is
∑

r∈R lnP − ln r, where P is the total number

of themes of the dataset.

(iv) Calculate the maximum log rank score that the document can have and take the

ratio of the log rank score of the document and the maximum possible log rank

score to achieve the document’s log rank accuracy as it is shown in Equation 7.1

(if a document has more than one theme, then we expect these themes to have

the highest scores without any ordering between them).

Log Rank Accuracy ,

∑
r∈R lnP − ln r∑|R|
i=1 lnP − ln i

(7.1)

The reason of the last step is that, for each document, the maximum possible

score changes with respect to the number of themes in the dataset and the number of

themes that the document assigned to: A document with one assigned theme can get

the maximum score of lnP where P is the total number of themes. But no one likes

scoring schemes that do not have a fixed scale, because they are harder to interpret

and compare with each other. So we fixed the scoring range between 0 and 1 with the
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last step where log rank accuracy of 1 means perfect theme assignment.

Here is an example to show how log rank accuracy works: Assume that we have

20 themes and 2 documents (Document 1 and Document 2) in our test dataset. We

knew that Document 1 is labeled with only Theme A, while the labels of Document

2 are both Theme A and Theme B. When we run our model for Document 1 and

Document 2, we get the following outputs:

• Document 1: The model says Theme A has the second highest score for Docu-

ment 1. Log rank score of Document 1 becomes ln 20− ln 2. Because Document 1

has only one theme, the max possible log rank score for it is ln 20− ln 1. To calcu-

late the log rank accuracy, we take the ratio of these two scores: ln 20−ln 2
ln 20

= 76.9%.

• Document 2: The model says Theme B has the highest score and Theme A has

the third-highest score for Document 2. Log rank score of Document 2 becomes

(ln 20 − ln 1) + (ln 20 − ln 3). Because Document 2 has two themes, the max

possible log rank score for it is (ln 20− ln 1) + (ln 20− ln 2). To calculate log rank

accuracy, we take the ratio of these two scores: (ln 20−ln 1)+(ln 20−ln 3)
(ln 20−ln 1)+(ln 20−ln 2)

= 92.3%.

We used a logarithmic function that utilizes the ranking of the themes to solve

the problem that we have mentioned about the accuracy. Instead of a logarithmic

function, one can also consider using a linear function. But, we wanted to reflect

the idea that the importance of a rank should decrease when the rank gets lower

(worse). In other words, the difference between being the first or second should be

more important than the difference between being the last or second from the last.

Contrary to a normal logarithm function, our log rank accuracy function is convex and

acts like an exponential function; because we are subtracting logarithm of each rank

from the logarithm of the number of themes. And this property enabled the change

in the log rank accuracy in the higher ranks to be more than the change in the lower

ranks (see Figure 7.2). For example, the difference between being rank 1 and rank

2 is greater than the difference between being rank 19 and rank 20 for a theme that

should be in the first place. To calculate the log rank accuracy of a dataset, we take
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the average of log rank accuracy of all the documents in it.
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Figure 7.2. Change in the log rank accuracy with respect to the change in the ranking

of an assigned theme in a dataset with 20 themes.

7.3.2. Genetic Algorithm for Traditional NMF and LDA

After applying traditional NMF or LDA to a corpus, it is not an easy task to

identify what the topics correspond to. Under unsupervised conditions, a human expert

needs to find a meaningful label for each topic. But in our problem setting, the topics

are predefined. So, to be able to compare the TSNMF with the traditional NMF and

LDA we need to find the best possible matching between the topics discovered by the

traditional NMF or LDA and the predefined topics.

When the number of topics is too small, the matching problem is not a hard

task to accomplish for a human. But the problem gets exponentially bigger with the

number of topics because the number of possible matching is the factorial of the number

of topics. To solve this combinatorial matching problem, we propose a metaheuristic

called genetic algorithm [45] that is inspired by the process of natural selection where
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the fittest individuals are selected for reproduction to produce offspring of the next

generation.

The process of natural selection usually starts from a randomly generated popu-

lation where each iteration of the population is called generation. In each generation,

the fitness of every individual in the population is evaluated; the fitness is usually the

value of the objective function in the optimization problem being solved. The more

fit individuals are stochastically selected from the current population as parents. The

parents produce offspring which inherit the modified (recombined and mutated) char-

acteristics of the parents. The offspring are then used in the next iteration of the

algorithm. The algorithm terminates when either a maximum number of generations

has been produced or a satisfactory fitness level has been reached. A typical genetic

algorithm requires two objects:

• Solution Representation: We used an integer list for the permutation of topic

ids as the representation. The list represents the topic matching. The elements

and the indices of the list correspond to the topic ids of the traditional NMF or

LDA and the predefined topic ids respectively. For example; the list [3, 2, 0, 1]

implies that Topic 3 of traditional NMF corresponds to the predefined Topic 0,

Topic 2 of traditional NMF corresponds to the predefined Topic 1, and so on.

• Objective and Fitness Function: We used log rank accuracy as our objective

and fitness function. The goal was to maximize the log rank accuracy.

Our genetic algorithm consists of 6 steps:

(i) Initialization: Generate M number of individuals for the initial population

using a greedy approach. For each individual, visit their genes (indices of the

solution) in random order and assign topic ids that give the highest fitness.

(ii) Selection: Select M pairs of individuals (parents) from the current population
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according to the selection probability:

p(k) =
2k

M(M + 1)
(7.2)

where M is the number of individuals and k is the kth individual in ascending

order of fitness. This implies that the median value has a chance of 1
M

of being

selected, while the M th (the fittest) has a chance of 2
M+1

, roughly twice that of

the median.

(iii) Crossover: Apply two-point crossover to each of the selected pairs in Step 2 to

generate M offspring with the crossover probability Pc. If the crossover operator

is not applied, then one parent remains as the new offspring. In the two-point

crossover, two points are randomly selected for dividing one parent. The numbers

outside the selected two points are always inherited from one parent to the child,

and the other numbers are placed in the order of their appearance in the other

parent (see Figure 7.3).

1 2 3 4 5 6 7 8

5 2 7 3 1 4 8 6

1 2 5 3 4 6 7 8

Figure 7.3. Two-point crossover

(iv) Mutation: Apply shift change mutation to each of the produced M offspring

with the mutation probability Pm. If the mutation operator is not applied, the

offspring remains the same. In shift change mutation, a number at one position is

removed and put at another position. Then all other numbers shifted accordingly.
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The two positions are randomly selected. (see Figure 7.4).

1 2 3 4 5 6 7 8

1 7 2 3 4 5 6 8

Figure 7.4. Shift change mutation

(v) Elitist Update: Randomly remove one individual from the current population

and add the best individual from the previous population to the current one.

(vi) Termination: Total number of generations used as the stopping condition.
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8. EXPERIMENTS AND RESULTS

We have finally reached the chapter of tables and plots. In this chapter, we first

determined the best parameter settings for our models to not overpopulate the figures

and tables. To increase the consistency of the results, we repeated each training process

5 times with different train-test sets similar to the k-fold cross-validation, and then we

presented the results as the average of these 5 experiments. While splitting train-test

sets, we always made sure that each topic was represented in both sets at least by one

document. To measure the effect of supervision, we tested our models with different

supervision ratios that are the ratio of the training set size to the whole corpus size.

Except for the last section, we used 3 subtopics for the themes and log rank accuracy

as the evaluation metric to compare the results of the models. After choosing the best

parameters, we conducted 3 experiments that are about:

• The comparison of bCool initialization with random initialization.

• The comparison of TSNMF models among themselves and with traditional NMF

and LDA.

• The effect of our proposed hierarchical topic structure and term scoring methods

(purity measure) on the interpretation of topics.

We used both Separated and Combined TSNMF models in the experiments. The

models are trained in both semi-supervised and supervised fashions which are explained

in Sections 3.5 and 3.6 in detail. To remind briefly, in semi-supervised training, all the

documents in the dataset enter the training process and there is no testing phase;

because the model discovers the theme distributions of unlabeled documents in the

training phase. On the other hand, in supervised training, only the labeled documents

enter the training process and the theme assignments of the unlabeled documents are

handled in a separate testing phase. The four TSNMF models that have been used in

the experiments are as follows:
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• Semi-supervised Separated TSNMF (demonstrated in Figure 3.5)

• Semi-supervised Combined TSNMF (demonstrated in Figure 3.4)

• Supervised Separated TSNMF (demonstrated in Figure 3.6)

• Supervised Combined TSNMF

8.1. Finding The Best Parameter Settings

We start the experiments by deciding which cost function (square of Euclidean

distance or KL divergence) and text encoding technique (tf or tf-idf) to use for each

model and method. We didn’t include the combination of the square of Euclidean

distance and tf-idf because it didn’t produce meaningful results for our model. Square

of Euclidean distance with the tf got the worst scores, while KL divergence with tf had

the edge over KL divergence with tf-idf. Actually, KL divergence with tf-idf got higher

scores than KL divergence with tf for some settings, but we decided to use tf encoding

for two reasons: it is simpler than tf-idf and background topics in our model try to

accomplish a similar idea with tf-idf.

Table 8.1 shows the comparison between each setup for Separated TSNMF model

with bCool initialization on Brown corpus with the supervision ratios of 30% and 70%.

We can see that the KL divergence with tf encoding always has the edge over the other

two setups. It is important to mention that, we didn’t decide to use KL divergence

with tf by only analyzing this table. We conducted every possible configuration on

every dataset and decided by analyzing all of them together. Table 8.1 is just a sample

from all these results.

8.2. How to Initialize: bCool vs Random

We tested the impact of bCool initialization against random initialization. Figure

8.1 shows the results in three separate bar charts for three datasets. In the charts,

heights of the bars represent the difference between log rank accuracy of bCool and

random initialization; and supervision ratio increases from left to right.
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Table 8.1. The comparison between 3 different cost function and text encoding

combinations. Scores are obtained using Separated TSNMF model with bCool

initialization on Brown corpus.

Method Supervision Cost Encoding Log Rank Accuracy

Semi-supervised 30% Euclidean tf 59.26%

Semi-supervised 30% KL tf 64.06%

Semi-supervised 30% KL tf-idf 62.06%

Supervised 30% Euclidean tf 65.23%

Supervised 30% KL tf 69.78%

Supervised 30% KL tf-idf 69.76%

Semi-supervised 70% Euclidean tf 68.43%

Semi-supervised 70% KL tf 74.05%

Semi-supervised 70% KL tf-idf 72.73%

Supervised 70% Euclidean tf 73.23%

Supervised 70% KL tf 75.67%

Supervised 70% KL tf-idf 74.33%

From charts, we can see that semi-supervision heavily favors bCool initialization

over random initialization; especially for the semi-supervised Separated TSNMF. This

extreme difference is due to the random initialization working very poorly for the model,

not because bCool for this model gives better results than any other model. For the

supervised setup, random initialization seems to perform slightly better; especially at

low supervision ratios.

The reason for bCool to perform better than random initialization with semi-

supervision and worse in lower supervision ratios with supervised models stems from

the same particular operation in bCool : When the supervision ratio is low, the number

of documents per theme decreases and this causes the partitions to not have enough

documents. To solve this problem, we assign documents randomly from any theme
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with direct proportion to their densities. For this last part, for the supervised setup,

the documents to be selected are restricted with the training (labeled) documents; for

the semi-supervised setup, because all the documents are in the model, the documents

can be selected from the whole corpus. While this is a great advantage for the semi-

supervised setup, it creates a small disadvantage for the supervised setup at the low

supervision ratios. So, one can use random initialization for supervised models in lower

supervision ratios and switch back to bCool initialization in higher supervision ratios

for other benefits of bCool.

Besides scoring, when we use bCool, the models converge at least 2 times faster

than the random initialization. For the following Experiment sections, we will always

show the results that we obtained using bCool initialization.

-20

-10

0

10

20

30

40

50

10% 20% 30% 40% 50% 60% 70% 80% 90%

D
if

fe
re

n
ce

 B
et

w
ee

n
 L

o
g 

R
an

k 
A

cc
u

ra
cy

Supervision Ratio

bCool vs Random Initialization (Brown)

Semi-supervised Separated TSNMF Semi-supervised Combined TSNMF Supervised Separated TSNMF Supervised Combined TSNMF

Figure 8.1. Difference between log rank accuracy of bCool and random initialized

models on all datesets.
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Figure 8.1. Difference between log rank accuracy of bCool and random initialized

models on all datesets. (cont.)
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8.3. How to Model: Novel vs Traditional

We ran all four of our TSNMF models on all three datasets with bCool initial-

ization, KL divergence cost function, tf encoding, and 3 subtopics. We tested the

models for different supervision ratios. To generate baseline scores, we also ran tradi-

tional NMF and LDA on the same setups. Because NMF and LDA are unsupervised

methods, the training (decomposition) part was the same for all the supervision ratios.

Without any labeling or theme hierarchy, all the documents are fed into the model and

trained. The slight difference in scores between the supervision ratios came from the

genetic algorithm that we used to find topic matching. Our genetic algorithm tries to

find the optimal match between the topics found by the traditional NMF or LDA and

the document labels that maximize the log rank accuracy. In the genetic algorithm,

to find the best topic matching, we only used the training data that is restricted by

the supervision ratio. Using supervision in the genetic algorithm didn’t affect the final

results that much, because having one correctly classified document is enough for the

algorithm to make the right matching. Increasing the ratio just helped the algorithm

to be more robust. But we wanted to make everything as even as possible.

Table 8.2 shows the log rank accuracy of every experiment for different supervision

ratios for Brown, Reuters, and Schwartz datasets, respectively. Figure 8.2 demonstrates

the results as line plots. We got very promising results and here are the main takeaways:

• Effect of supervision is noteworthy, especially at low ratios. But the effect de-

creases with the increasing ratio. Even if we have a small set of labeled documents,

it makes a huge improvement. Particularly for large datasets such as Reuters

where 20% supervision ratio helped us to identify nearly the whole dataset. So,

the improvement may not be parallel to the ratio of training set size and dataset

size but the number of documents in the training set.

• As the supervision ratio increases, the log rank accuracy does not always increase,

occasional slight decreases may occur. The main reason for this is that the test set

shrinks and misclassification becomes much more expensive. We see that the most
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Table 8.2. Log rank accuracy of TSNMF models and the traditional NMF-LDA

models on Brown, Reuters, and Schwartz datasets, respectively. The top row

indicates the change in supervision ratio. GA corresponds to our genetic algorithm.

Scores are in percentage format.

Brown 10% 20% 30% 40% 50% 60% 70% 80% 90%

Ss S-TSNMF 38 55 64 67 71 72 74 76 73

Ss C-TSNMF 54 63 67 66 70 71 71 72 72

S S-TSNMF 48 64 70 71 73 74 76 78 76

S C-TSNMF 53 62 67 68 70 72 73 74 74

NMF with GA 46 49 48 48 49 51 51 50 48

LDA with GA 41 45 45 48 46 49 51 50 47

Reuters 10% 20% 30% 40% 50% 60% 70% 80% 90%

Ss S-TSNMF 79 86 87 89 90 91 92 90 89

Ss C-TSNMF 43 44 45 47 50 50 56 57 54

S S-TSNMF 74 81 83 86 89 90 91 90 89

S C-TSNMF 64 69 69 72 74 76 77 76 74

NMF with GA 31 30 31 35 35 34 38 30 34

LDA with GA 37 36 35 35 33 34 37 38 36

Schwartz 10% 20% 30% 40% 50% 60% 70% 80% 90%

Ss S-TSNMF 53 66 70 79 81 81 84 84 85

Ss C-TSNMF 60 66 69 74 75 75 77 78 78

S S-TSNMF 64 70 76 80 82 83 86 87 87

S C-TSNMF 60 67 70 75 76 77 79 80 82

NMF with GA 53 53 53 54 54 56 55 52 55

LDA with GA 52 54 54 57 56 53 52 56 58

Ss: Semi-supervised, S: Supervised, S-TSNMF: Separated TSNMF, C-TSNMF: Combined TSNMF
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successful results are around 70% supervision ratio and this is expected because

while training any ML algorithm, it is a best practice to divide the dataset into

70% train and 30% test sets. Another possible reason is that with the changing

supervision ratio, train and test documents also change; and worse documents

(which have less information) may have come to the training set, which may have

reduced the score. However, these fluctuations seem to be negligibly low.

• Separated models give much better results than Combined models. This was

something we expected because the separation was already a step we took to

develop the model and it is reflected in these results. Separated models are better

than Combined models since they can use the background topic and the document

scoring (see Chapter 5) method more effectively.

• Supervised models give much better results than semi-supervised models. While

supervised models have some disadvantages such as not being able to learn new

topics and not being able to access the terms of the documents in the test set; the

results show that the supervised models can learn themes much better and match

them correctly for documents. On the other hand, we can see the shortcomings of

the supervised model from getting lower scores than the semi-supervised models

sometimes in places where the supervision ratio is low. But still, if we are not

aiming to discover a new topic, the supervised models give very accurate results.

• Genetic algorithm matches the topics of traditional methods with the predefined

labels near optimal. We could understand it by comparing the log rank accuracy

of traditional methods and semi-supervised methods at lower supervision ratios.

Because semi-supervised version is more similar to the traditional methods than

supervised version. Except Reuters Corpus (for the reason we explained in the

first item), traditional methods got similar results. We also checked the topic

matchings manually and we have only managed to make little improvements

(2% - 3%).
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Figure 8.2. Plots of log rank accuracy of TSNMF models and traditional NMF-LDA

on all datasets with respect to the change in supervision ratio.
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Figure 8.2. Plots of log rank accuracy of TSNMF models and traditional NMF-LDA

on all datasets with respect to the change in supervision ratio. (cont.)

8.4. How to Interpret: Themes vs Topics

In previous sections, we compared different models in terms of classification per-

formance using log rank accuracy. In this section, we will change our focus to the

interpretation of the themes. In topic modeling, topics are represented with term

distributions. In traditional NMF, because of its unsupervised nature, one needs to

analyze each topic’s term distribution to understand what they correspond to. For our

TSNMF model, we determine this relation before the training starts. So without the

need to make guesses, we knew which topic corresponds to which term distribution af-

ter the training. For any topic model, unsupervised or supervised, the information that

we obtain from the topic-term relation is vital. Because although the main objective

of topic models seems to be the categorization of documents, what gives them the edge

is that topic models can also express this relationship between topics and terms. We

used 5 different model setups to show how our proposed theme-subtopic structure and

term scoring methods (purity measure) improve the term distributions of the themes:
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• Traditional NMF.

• Separated TSNMF with 1 subtopic and purity ratio of 0.

• Separated TSNMF with 1 subtopic and purity ratio of 1.

• Separated TSNMF with 3 subtopics and purity ratio of 0.

• Separated TSNMF with 3 subtopics and purity ratio of 1.

For demonstration, we used universalism and hedonism themes from Schwartz

dataset. Universalism is the understanding, appreciation, tolerance, and protection for

the welfare of all people and for nature. Hedonism is pleasure or sensuous gratification

for oneself. It is important to know these definitions to be able to interpret the results.

We chose universalism and hedonism because they have much more distinct meanings

and also have more documents in the dataset than other Schwartz values. All TSNMF

models were trained with 100% supervision to generate the most accurate term distri-

butions. We calculated TTS of each term for each topic-term distribution, and then

the topmost 5 terms were chosen to represent the corresponding theme or subtopic.

In the figures below, blue bars next to the terms represent the relative importance of

the term for the model. A longer bar corresponds to a term that has a higher TTS

for that model. Every model was scored separately from each other. Purity measure

and TTS are the term scoring methods that we have introduced in Chapter 6 and the

formulation can be found in Equation 6.7.

Figure 8.3 shows 4 different topics’ topmost 5 terms for the traditional NMF.

Because the traditional NMF is unsupervised, we have to match the term distributions

with our themes. However, there was no clear term distribution representing any of our

themes. Instead, we found two candidate topics for each of both the universalism and

hedonism themes. Other than some common terms such as state, one, and human; and

unrelated terms to hedonism such as law and court, the terms are pretty determinative.

However, if those 4 distributions only belong to 2 themes, then it means that we need to

match 6 distributions with the remaining 8 themes for Schwartz dataset. This situation

reveals the problem of traditional NMF. Topics are blended in term distributions and

this makes it very difficult to identify them.
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Universalism 1

Traditional NMF with Candidate Topics

Figure 8.3. The topmost 5 terms of four topics from Schwartz dataset that could be

interpreted as universalism and hedonism themes for the traditional NMF model.

In the figures of TSNMF models below, terms of background topics are not rep-

resented. Because, for all the models and themes, background topics gave more or less

the same term distribution and we didn’t want to populate the figures unnecessarily

by giving background topics’ term distributions for every figure. So, before moving on

to the results of TSNMF models, here are the 9 topmost terms of background topics:

• one

• social

• use

• also

• may

• state

• human

• people

• individual

Figure 8.4 shows topmost 5 terms for the Separated TSNMF models with 1 sub-

topic and purity ratio of 0 and 1, respectively. Thanks to supervision, we know exactly

which term distributions correspond to universalism and hedonism themes. Since the

models have only 1 subtopic, there is one term distribution for universalism and one

term distribution for hedonism.
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Figure 8.4. The topmost 5 terms of universalism and hedonism themes from Schwartz

dataset for the Separated TSNMF models with 1 subtopic and purity ratio of 0 and 1.

In Figure 8.4, when the purity ratio is 0, the topmost 3 terms of the hedonism

theme belong to the background topic. Universalism does a better job by having a

good highest scored topmost term, but it also has 2 terms that belong to the back-

ground topic. When we increase the purity ratio to 1, all the terms that belong to the

background topic vanish while maintaining the orders of the significant terms. Our

term scoring method cancels the noise caused by the frequent but insignificant terms

and present tailor-made term distributions for the themes. This example demonstrates

that our term scoring method is working as intended by improving the interpretation

of the themes via generating better term distributions.

Figures 8.5 and 8.6 show topmost 5 terms for the Separated TSNMF models with

3 subtopics and purity ratio of 0 and 1, respectively. Having 3 subtopics enabled these

models to represent each theme with 3 different term distributions. In addition to these,

we obtained 2 more term distributions by aggregating subtopic-term distributions with

maximum and summation operations to represent a theme with one term distribution

using Equations 6.8 and 6.9, respectively.
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Figure 8.5. The topmost 5 terms of universalism and hedonism themes from Schwartz

dataset for the Separated TSNMF model with 3 subtopics and purity ratio of 0.
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The theme-subtopic structure reflects different aspects of themes with each sub-

topic. This distinction enables us to interpret themes much better and classify docu-

ments in more detail. The first subtopic of the universalism theme is about collective

struggles such as war and peace, while the second subtopic is about equality and the

third subtopic is about the environment. For the hedonism theme, we can say that

the first subtopic is about personal feelings and pleasures, and the second subtopic is

more about social emotions. However, it is hard to determine a meaningful label for

the third subtopic, because the scores of all the terms are pretty low and close to each

other, and also the topmost terms are all from the background topic.

The effect of purity ratio can again be clearly observed from the term distri-

butions of the second and third subtopics of the hedonism theme as in the previous

demonstration. The effect is more apparent for the sum aggregation where the terms

from the background topic dominate the rankings for the model with purity ratio of

0. The reason for that is, even though background topic terms are not the dominant

terms for the subtopics, they have consistently high scores for all the subtopics which

cause their summation to pass the scores of the terms that high scores in one subtopic.

So, the sum aggregation gives higher ranks to the terms that have relatively high scores

for all the subtopics. While it fails miserably for the model with purity ratio of 0 as

we have mentioned; it works very well for purity ratio of 1 where we can observe terms

from different subtopics in high rankings. On the other hand, max aggregation picks

each term’s highest score among the subtopics. This method generates successful term

distributions even for the model with purity ratio of 0. Because, our model still gives

the top scores to theme-specific terms, even though term rankings are mostly filled

with background topic terms. For the purity ratio of 1, if the score gap between high

ranked terms of different subtopics is considerable (like hedonism), then the ranking

prone to the most represented subtopic; but if the subtopics are more or less evenly

distributed in terms of score, then the max aggregation gives similar term rankings as

summation (like universalism).
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Figure 8.6. The topmost 5 terms of universalism and hedonism themes from Schwartz

dataset for the Separated TSNMF model with 3 subtopics and purity ratio of 0.
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9. CONCLUSION AND DISCUSSION

In this thesis, we proposed a semi-supervised topic model based on NMF called

Theme Supervised Nonnegative Matrix Factorization (TSNMF) that can utilize labeled

documents to improve the interpretation of the topics. TSNMF constrains the repre-

sentation of the topics to align with the labeled documents and enables the topics

discovered by the model to be readily understood. This approach eliminates the de-

pendence on human interpretation on the outputs of traditional unsupervised topic

models. We made it is possible to train TSNMF fully supervised with only labeled

documents or semi-supervised with the labeled and unlabeled documents together. In

fully supervision, using only labeled documents results in better-identified topics but

the model can not discover new topics. On the other hand, semi-supervision allows

the discovery of new topics and have an expanded term dictionary. The part so far

was the semi-supervised topic model definition that could be found as a standard in

the literature. Then, we introduced different structures and methods to improve this

standard model.

Our novel hierarchical topic structure that consists of themes and subtopics is

the key element of TSNMF as its name suggests. Creating unsupervised subtopic

layers under the themes enabled the model to discover different aspects of themes.

Then we combined the hierarchical topic structure with the separated training process

and the background topics, for our model to reach its full potential. The background

topic tries to generalize all the themes and acts as a regularizer in our scoring metrics.

In separated training process every theme is trained separately similar to one-vs-all

approach via utilizing background topics (theme-vs-background).

To generate more consistent and less varying factors, we proposed a new semi-

deterministic initialization method called bCool that exploits the structure of TSNMF.

Besides consistency, bCool sped up the training process at least 2 times and improved

the results for the semi-supervised versions of the model over random initialization. For
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the fully supervised versions of the model, bCool gave worse results than the random

initialization when the supervision ratio was low. The reasons are that when the

supervision ratio is low for the fully supervised version, we end up with very few training

documents to use for the initialization and we introduce some forced randomness. For

future work, we could try to find a better algorithm for bCool to apply in this situation.

To evaluate the models, we introduced log rank accuracy that uses the logarithm

function to calculate a score for each document according to the ranking of their themes.

For the log rank accuracy, the penalty for misclassification decreases as the rank goes

down. So the biggest drop in score occurs when we choose a theme that should be

in the first place, in second place. The difference between choosing the same theme

last or the second last is negligible. This approach has its advantages and drawbacks

over using a linear scoring function. As a drawback, a linear function is simpler and

it results in higher scores than our method. Because a theme that should be first is

unlikely to be placed in a very low rank by TSNMF and the penalty will always be

higher for log rank accuracy than a linear function. Although we knew we would get

lower scores and it may not seem good on the thesis, we developed and used log rank

accuracy because we think it better reflects the importance placed on ranking in real

life.

It is natural to compare TSNMF with its ancestor methods NMF and LDA. But

these methods are unsupervised. So, it was not that fair and possible to compare them

with our semi-supervised approach. Because, unsupervised topic models need manual

topic naming which corresponds to matching term distributions to document labels in

our case. However, it was not feasible to do this matching for document sets with a

large number of topics. Therefore, we wrote a genetic algorithm to match the resulting

topics of traditional NMF and LDA with our document labels. The method was like a

post-supervision process where we add supervision to the results instead of the training

process.
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For the experiments, we considered 4 different versions of TSNMF to demonstrate

the effect of every step we took to build the model. To not overpopulate the thesis

with plots and tables, we first decided the best parameter settings for these models and

showed the results only using them. We chose KL divergence as the cost function and

tf as the text encoding technique. Actually, tf-idf gave better results for some setups,

but we decided to use tf encoding because of its simplicity, and also background topics

in our model try to accomplish a similar idea with tf-idf.

For the experiments, we used Brown Corpus, Reuters Corpus, and Schwartz

dataset. Brown Corpus has well-defined documents and labels, but it is relatively small.

Reuters Corpus is a multi-labeled dataset and has more documents and labels but not

as well-defined as Brown Corpus. Schwartz dataset is a product of our previous work,

that has documents about Schwartz’s Theory of Basic Human Values and was collected

semi-automatically. We plan to test our model on many more different datasets.

We tried different supervision ratios in our experiments to find a balance between

the labeling cost and improvement in the model. The effect of supervision was note-

worthy, especially at low ratios. 30% to 40% ratio could be considered as a general

balance point. After these ratios, the rate of improvement slows down. And at 70%

ratio, the improvement reaches its limit. But for Reuters Corpus which is larger than

the other two datasets, improvement limit was reached at much earlier supervision

ratios. So, the improvement may not be parallel to the training set and dataset size

ratio but the number of documents in the training set. In other words, the effect of

supervision can be independent of the dataset size which makes sense; because similar

to supervised ML, we are actually training a model. After the model learns from suf-

ficient amount of labeled documents, it can be applied to datasets with any size. The

crucial part is to have labeled documents that come from a balanced topic distribu-

tion in terms of quality and quantity. Another result is that the separated models are

superior to the combined models; because separated models can benefit from the back-

ground topic more effectively. Also, supervised models gave much better results than

semi-supervised models; since they learned the topics better without the interference
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of the unlabeled documents.

Along with the new hierarchical topic structure, to improve the interpretation

of the topics, we introduced a novel measure called purity and implemented a new

scoring scheme called Theme Term Score (TTS) using purity that alters the weights

of terms for each topic’s term distribution. We analyzed universalism and hedonism

themes from Schwartz dataset using different models. We observed that supervision

in TSNMF solved the topic and term distribution matching problem that we were

facing in traditional methods. Subtopics successfully discovered different aspects of

themes with their unsupervised nature which opens up different kinds of analysis on

both labeled and unlabeled documents such as more detailed labeling. However, the

real improvement in interpretation happened when we applied our new term scoring

method to the outputs. The weights of the terms that are significant to subtopics were

increased, while the weights of the common terms which are related to the background

topics were decreased. So, we ended up with better-identified topics. We also used

aggregation methods such as summation and maximum to represent themes as one

topic instead of several subtopics and especially the max aggregation summarized the

themes over subtopics pretty good.
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