TÜRKİYE ATOM ENERJİSİ KURUMU

II. ULUSAL NÜKLEER
BİLİMLER KONGRESİ

10 - 12 Ekim 1984

PROGRAM

Çekmece Nükleer Araştırma ve Eğitim Merkezi - İSTANBUL
BİLGİSAYAR YARDIMIYLA GAMA SPECTRUM ANALİZİ

M. LEVENT AKIN
Bogaziçi Üniversitesi Mühendislik Fakültesi, İstanbul

ÖZET
Sintilasyon detektörlerinin geliştirilmesinden bu yana karmaşık gama spektrumlarının analizinde giderek artan oranlarda bilgisayarlardan yararlanılmaktadır. Bu bildiride gama spektrumlarının hassas analizinde kullanılmak üzere hazırlanan bir bilgisayar program paketi tanıtılmaktadır.

GİRİŞ
Yaklaşık onuz yıllık bir geçmiş olan bilgisayarla gama spektrum analizi bugünkü konumuna birbirine paralel bir kaç gelişmenin yardımıyla gelmiştir. Yarı iletken detektörlerin geliştirilmesi, elektronikteki gelişmeler ve bilgisayar yazılım ve donanımdaki gelişmeler.

Bir gama spektrumunun incelediğinde iki karakteristik göze çarpar; aranan bilgiyi içeren sinyal ve bu sinyali örtüne sürekli ya da kesikli gürültü. Spektrumda sinyal ki zaman fotopik olarak nitelendirilen tepeler halinde, gürültü ise genellikle Compton kontinüumu ve radyoaktif bozunmanın ve elektronik sistemlerin karakterinden ileri gelen istatistiksel dalgalanmalar olarak görünür. Analizin başarılı olabilmesi için sinyal/gürültü oranının yüksek olması gerekir, bu oran sayım ve deteksiyon koşullarıyla belirlenir, daha sonra ne kadar etkin bir matematiksel yöntem kullanılrsa kullanılsın artırılamaaz.

Bundan sonra tepe olarak nitelendirileceğimiz sinyal hem nitel hem de nicel bilgi içerir. Nitel bilgi, tepenin oluşmasına neden olan izotop ya da izotopların tanımmasında, nicel bilgi ise bunların incelenen örnekteki miktarlarının saptanmasında kullanılır. Elde edilen tüm sayısal değerler olayın istatistiksel karakteri nedeniyle ancak gerçek değerlerin tahminle-
ridir, tahminlerin hassaslığının bir ölçüsü olan standard sapmalar kullanılarak yönteme bağlı olarak hesaplanarak verilir.

Özellikle yari iletken detektörlerden elde edilen ve çok sayıda tepe içeren karmaşık gama spektrumlarının yukarıda deşifrelenen sınırlamalar da göz önünde alınarak mümkün olduğu kadar hassas analizi, verilerin çokluğu ve uzun hesaplamalar gerektiren matematiksel yöntemler kullanılarak dolaylı artıks genelliğe bilgisayarlarla yapılmaktadır.

Genel olarak bilgisayarla analizdeki adımlar aşağıdaki gibi sıralanabilir: (a) Tepe tanımması, (b) tepelere eğri uydurulması, (c) enerji ve verim kalibrasyonu, (d) spektrumu oluşturan nüklitlerin tanımması ve miktarlarının hesaplanması.

PROGRAM PAKETİ BUCAASA'NIN TANITIMI

Bugüne kadar bilgisayarlarla gama spektrumu analizinde kullanılmak üzere çok sayıda program hazırlanmıştır. Bu programlar temelde tepe tanımması ve tepelere eğri uydurulmasında farklılıklar gösterir. Ayrıca programların ve uyarlandıkları ortama nitelikine göre analizin otomatik olarak yapılmasını da değişen oranlarda gerçekler. Paket hazırlanırken kullanımın kolay olması, hızlı çalışması ve hassas sonuçlar vermesi gibi karakterlerinden dolayı birbirleriyle iletişim ana gerçeklendirmesi gereken tasarım koşullarından hareket edilerek mümkün olduğu kadar uygun bir kombinasyon elde edilmesine çalışılmıştır.

Paketin başlangıç noktası, Çiftçioglu tarafından hazırlanan ve UAEA tarafından düzenlenen G-1 karşılaştırma programında başarılı sonuçlar alan CAASA programında kullanılan yöntemler olmuştur. Kanıtlarca programın en önemli özelliği Çiftçioglu tarafından geliştirilen tepe fonksiyonudur (1).

BUCAASA, dört ana program ve onsekiz altprogramdan oluşmuş ve standart FORTRAN 77 programlama diliyle yazılrmıştır. Şekil 1 de sematik organizasyonu verilmektedir.

BUCAASA/FIND: Bir ana program ve iki altprogramdan oluşur. Spektrumu oluşturan gerçek tepelerin tanımması işlemini yerine getirir.
Şekil-1. BUCAASA'nın şematik organizasyonu
lerin etkisini azaltmak için Savitzky ve Golay (2) tarafından geliştirilen konvolüsyonla veri düzgünleştirilmesi yapılır, aynı yöntemle düzgünleştirilmiş birinci türev spektrumu elde edilir. Eğer sayı sayısı kanal numarasının sürekli bir fonksiyon olarak kabul edilirse birinci türevin tepe noktasında işaret değiştirilmesi, tepeye yakın kanallarda pozitif, tepeden sonraki kanallarda negatif olması özelliğinden yararlanarak tepeler saptanabilir. Bu yöntem çoklu tepelerin belirlenmesine yarayan bazı eklerle birlikte BUACAASA da kullanılmaktadır.

BUACAASA/FIT: Bir ana program, beş altprogram ve bir fonksiyondan oluşur; tepelerin yerlerini ve altlarında kalan alanın hassas bir şekilde belirlenmesi için Çiftçioğlu tarafından geliştirilen tepe fonksiyonunun(detektör cevap fonksiyonunun) verilere uydurulması ve standard sapmaların hesaplanmasında kullanılır.

Tepe fonksiyonu, spektrumdaki çizgi şeklini oluşturan fiziksel etkenler göz önünde alınarak elde edilmiştir ve bugüne kadar geliştirilen fonksiyonların en iyilerinden biridir. Teorik olarak Dirac δ-fonksiyonu şeklinde olan detektör cevabının Gauss görüntüyüyle genişlemesini, trapping etkinin, Compton kontinüumu ve tekenerjili fotonların tepenicin yüksek enerji tarafından deteksiyonu olması için daha yüksek bölümü temsil eden dört fonksiyonun birleştirilmesi sonucu oluşan dört fonksiyonun lineer kombinasyonunun oluşur. En genel halde, çoklu bir tepe grubu için

\[
F(x) = \sum_{i=1}^{3} a_i x^{-i} + \sum_{j=1}^{2} \left\{ a_3 \text{erfc} \left(\frac{x-x_3}{\alpha_3} \right) + A_{1j} \exp \left[B (x-x_j) \right] \right\} - \exp \left[-\frac{1}{2} \left(\frac{x-C_{1j}}{\alpha_1} \right)^2 \right] + A_{2j} \exp \left[-\frac{1}{2} \left(\frac{x-C_{2j}}{\alpha_2} \right)^2 \right]
\]

şeklinde yazılabilir.

Eğri uydurulmasında nonlineer bir enküçük kareler yöntemi olan değişken metrik minimizasyon kullanılır

\[
\chi^2 = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \left[y_i - F(x_i) \right]^2
\]

fonksiyonunun minimize edilerek parametrelerin optimum değerlerinin elde edilmesine çalışılır. Eğri uydurmanın nitelğini bir ölçütü \(\chi^2 \) nin degerinin küçük olmasıdır.
BUCAASA/CALIBR: Bir ana program ve dört altprogramdan oluşur, gerekli enerji ve verim kalibrasyonlarını yapar.

Programda enerji-kanal ilişkisinin bir polinomla(genellikle parabolik), enerji-verim ilişkinin de üstel bir fonksiyona (100 KeV- 3 MeV arasında) ifade edilebileceği kabul edilmiştir. Kalibrasyon verileri, kullanılan deteksiyon-sayım sistemine göre programa kullanıcı tarafından verilir.

BUCAASA/NUCLIDE: Bir ana program ve sekiz altprogramdan oluşur ve spektrumu meydana getiren nüklitlerin tanınmasını, olası nüklitlerin gama çizgi enerjilerini, dallanma oranlarını, yarım ömürlerini içeren bir kütük yardımcı ile Koskello et al. tarafindan geliştirilen birleşik çizgiler (associated lines) yöntemini kullanarak yapar; SAMPO80 kısım III'ün uyarlanmış ve kısmen değiştirilmiş şeklidir.

SONUÇLAR

Program paketi bir bütün olarak etkileşimli, formatsız veri girişine sahiptir; bununla kullanıcının veri hazırlama için harcayacağı zamanı minimuma indirmek amaçlanmıştır. Paketin dört ana programdan oluşması özel- likle mikrobilgisayarlara uyaranmasını kolaylaştırmaktadır. Programlar rasında veri aktarımı açılıp kapanmaları ana programlardan kontrol edilen doğrudan erişimli kütükler aracılığıyla yapılmaktadır.

Tepe tanımması kısmı, birbirine çok yakın (1:4 kanal) ve genlik oranları büyük (10:1) çoku tepeler dışında başarılı bir şekilde çalışmakta ve performansı kullanıcı tarafından ayarlanabilmektedir.

Bu tür programların en sorunlu kısmı olan nonlineer enkücük kareler yöntemiyle eği uydurma kısmı da kullanılan fonksiyonun karmaşıklığına ve parametre sayısının çokluğuına rağmen uygun seçilmiş ilk değerlerle çok şabuk sonuca gitmektedir. 4096 kanallı, yarı iletken detektörlerden elde edilmiş bir gama spektrumunun analizi veri girisleriyle birlikte Boğaziçi Üniversitesi'nde kurulu bulunan CDC Cyber 170/815 bilgisayar sisteminde 30 ila 60 dakika arasında sonuçlandırılmaktadır. Bu sırada kullanılan Merkezi İşlem Birimi(CPU) zamanı iki dakikayi geçmemektedir.

Bölümünde bilgisayarla sayım sistemi(Cök kanallı analizör) arasında bağlantı(interface) kurulmadığından yeterli veri üzerinde çalışılamamıştır.
Ancak bu alanda bugün en iyi program olarak kabul edilen SAMPO80'in verileri kullanılarak elde edilen sonuçlar programın SAMPO80 den daha iyi sonuçlar verdiğiğini göstermektedir (Tablo 1).

TABLO 1. BUCAASA ve SAMPO80'in eğri uyurma rutinlerinin karşılaştırılması (5)
(Veriler UAEA G-2 programı 2 numaralı kaynağının spektrumundan alınmıştır.)

<table>
<thead>
<tr>
<th>TEPE</th>
<th></th>
<th>Tepe Kanalı BUCAASA</th>
<th>SAMPO80</th>
<th>Tepe Alanı BUCAASA</th>
<th>SAMPO80</th>
<th>x² BUCAASA</th>
<th>SAMPO80</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>370.658</td>
<td>370.661</td>
<td>5705474</td>
<td>5381146</td>
<td>426</td>
<td>1080</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>837.415</td>
<td>837.376</td>
<td>343154</td>
<td>352240</td>
<td>14</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>917.398</td>
<td>917.376</td>
<td>812008</td>
<td>813671</td>
<td>25</td>
<td>305</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1078.145</td>
<td>1078.129</td>
<td>2306940</td>
<td>2317276</td>
<td>194</td>
<td>1760</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1162.313</td>
<td>1162.301</td>
<td>308453</td>
<td>309687</td>
<td>13</td>
<td>194</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1546.815</td>
<td>1546.852</td>
<td>156717</td>
<td>103390</td>
<td>21</td>
<td>6550</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2526.870</td>
<td>2526.842</td>
<td>1637565</td>
<td>1633791</td>
<td>35</td>
<td>747</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>3376.860</td>
<td>3376.819</td>
<td>1225050</td>
<td>1222545</td>
<td>53</td>
<td>885</td>
</tr>
</tbody>
</table>

Yapılan çalışmalar, yalnızca matematiksel hesaplamalara dayanan bu tür programlarla elde edilecek sonuçların her zaman bir deteksiyon limitinin üstündede olacağını ve tecrübeli bir araştırmıcının analizdeki öneminin yadsına-

KAYNAKLAR

