The Golden Ratio

Aziza Mankenova
2020-2021 Fall
WHAT IS THE GOLDEN RATIO?

Golden ratio, also known as the golden section, golden mean, or divine proportion, in mathematics, the irrational number \((1 + \sqrt{5})/2\), often denoted by the Greek letter \(\phi\), and approximately equal to 1.618.
\[
\frac{a}{b} = \frac{a+b}{a} = 1.618... = \varphi
\]
Construction of the Golden Rectangle
The Golden Spiral
Relationship to Fibonacci sequence

Fibonacci Numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...

A closed-form expression for the Fibonacci sequence involves the golden ratio:

\[F(n) = \frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}} = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}} \]
The Golden ratio in Art

“Mona Lisa”

“Vitruvian Man”
The Golden Ration in Architecture

Parthenon in Athens

Egyptian Pyramid

$\frac{612.01}{377.9} = 1.61950\ldots$
The Golden Ratio in Human

The golden ratio is seen in the phalanges and the metacarpals of the hand.

facebook.com/ArtOfMathematics
The Golden Ratio in Nature
Applications

LOREM IPSUM DOLOR!

20 pt

\[
\frac{20}{12} \approx 1.6
\]

12 pt

Typography

Sizing/cropping images

Logo design
“Some of the greatest mathematical minds of all ages, from Pythagoras and Euclid in ancient Greece, through the medieval Italian mathematician Leonardo of Pisa and the Renaissance astronomer Johannes Kepler to present-day scientific figures such as Oxford physicist Roger Penrose have spent endless hours over this simple ratio and its properties. ... Biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is probably fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics.”

-Mario Livio
Resources and References

- https://www.goldennumber.net/
- https://slideuplifts.medium.com/learn-the-science-of-proportions-the-golden-ratio-5f6c0f1b576
- https://plus.maths.org/content/myths-maths-golden-ratio
- http://www.geom.uiuc.edu/~demo5337/s97b/art.htm
- http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html