Functions can be defined recursively. The simplest form of recursive definition of a function f on the natural numbers specifies a basis rule (B) the value $f(0)$

and a recursion rule (R) how to obtain $f(n)$ from $f(n - 1)$, $\forall n \geq 1$

Example 3.4.1: n-factorial $n!$

(B) $0! = 1$

(R) $(n + 1)! = (n + 1) \cdot n!$

However, recursive definitions often take somewhat more general forms.

Example 3.4.2: mergesort ($A[1\ldots2^n]$: real)

if $n = 0$

return(A)

otherwise

return(merge (m’sort(1st half), m’sort(2nd half)))
Since a sequence is defined to be a special kind of a function, some sequences can be specified recursively.

Example 3.4.3: Hanoi sequence
0, 1, 3, 7, 15, 31, ...

\[h_0 = 0 \]
\[h_n = 2h_{n-1} + 1 \text{ for } n \geq 1 \]

Example 3.4.4: Fibonacci seq
1, 1, 2, 3, 5, 8, 13, ...

\[f_0 = 1 \]
\[f_1 = 1 \]
\[f_n = f_{n-1} + f_{n-2} \text{ for } n \geq 2 \]

Example 3.4.5: partial sums of sequences

\[
\sum_{j=0}^{n} a_j = \begin{cases}
a_0 & \text{if } n = 0 \\
\sum_{j=0}^{n-1} a_j + a_n & \text{otherwise}
\end{cases}
\]

Example 3.4.6: Catalan sequence
1, 1, 2, 5, 14, 42, ...

\[c_0 = 1 \]
\[c_n = c_0c_{n-1} + c_1c_{n-2} + \cdots + c_{n-1}c_0 \text{ for } n \geq 1 \]
RECURSIVE DEFINITION of SETS

DEF: A *recursive definition of a set* \(S \) comprises the following:

(B) a *basis clause* that specifies a set of *primitive elements*;

(R) a *recursive clause* that specifies how elements of the set may be constructed from elements already known to be in set \(S \); there may be several recursive subclauses;

(E) an *implicit exclusion clause* that anything not in the set as a result of the basis clause or the recursive clause is not in set \(S \).

Backus Normal Form (BNF) is an example of a context-free grammar that is useful for giving recursive definitions of sets. In W3261, you will learn that context-free languages are recognizable by pushdown automata.
Example 3.4.7: a rec. def. set of integers

(B) $7, 10 \in S$

(R) if $r \in S$ then $r + 7, r + 10 \in S$

This reminds us of the postage stamp problem.

Claim $(\forall n \geq 54)[n \in S]$

Basis: $54 = 2 \cdot 7 + 4 \cdot 10$

Ind Hyp: Assume $n = r \cdot 7 + s \cdot 10$ with $n \geq 54$.

Ind Step: Two cases.

Case 1: $r \geq 7$. Then $n + 1 = (r - 7) \cdot 7 + (s + 5) \cdot 10$.

Case 2: $r < 7 \Rightarrow r \cdot 7 \leq 42 \Rightarrow s \geq 2$.

Then $n + 1 = (r + 3) \cdot 7 + (s - 2) \cdot 10$.

In computer science, we often use recursive definitions of sets of strings.

RECURSIVE DEFINITION of STRINGS

NOTATION: The set of all strings in the alphabet \(\Sigma \) is generally denoted \(\Sigma^* \).

Example 3.4.8: \(\{0, 1\}^* \) denotes the set of all binary strings.

DEF: *string in an alphabet* \(\Sigma \)

(B) (empty string) \(\lambda \) is a string;

(R) If \(s \) is a string and \(b \in \Sigma \), then \(sb \) is a string.

Railroad Normal Form for strings

```
\begin{array}{c}
\lambda \\
\end{array} \\
\begin{array}{c}
\text{character} \\
\end{array}
```

Example 3.4.9: BNF for strings

\[
\langle \text{string} \rangle ::= \lambda \mid \langle \text{string} \rangle \langle \text{character} \rangle
\]
RECURSIVE DEFINITION of IDENTIFIERS

DEF: An *identifier* is (for some programming languages) either
(B) a letter, or
(R) an identifier followed by a digit or a letter.

![Diagram of recursive definition of identifiers]

Example 3.4.10: BNF for identifiers

\[
\begin{align*}
\langle \text{lowercase_letter}\rangle &::= a \mid b \mid \cdots \mid z \\
\langle \text{uppercase_letter}\rangle &::= A \mid B \mid \cdots \mid Z \\
\langle \text{letter}\rangle &::= \langle \text{lowercase_letter}\rangle \mid \langle \text{uppercase_letter}\rangle \\
\langle \text{digit}\rangle &::= 0 \mid 1 \mid \cdots \mid 9 \\
\langle \text{identifier}\rangle &::= \langle \text{letter}\rangle \mid \langle \text{identifier}\rangle \langle \text{letter}\rangle \\
&\quad \mid \langle \text{identifier}\rangle \langle \text{digit}\rangle
\end{align*}
\]
ARITHMETIC EXPRESSIONS

DEF: *arithmetic expressions*

(B) A numeral is an arithmetic expression.

(R) If e_1 and e_2 are arithmetic expressions, then all of the following are arithmetic expressions:

$$e_1 + e_2, e_1 - e_2, e_1 \times e_2, e_1 / e_2, e_1 ** e_2, (e_1)$$

Example 3.4.11: Backus Normal Form

$$\langle expression \rangle ::= \langle numeral \rangle$$

$$| \langle expression \rangle + \langle expression \rangle$$

$$| \langle expression \rangle - \langle expression \rangle$$

$$| \langle expression \rangle \times \langle expression \rangle$$

$$| \langle expression \rangle / \langle expression \rangle$$

$$| \langle expression \rangle ** \langle expression \rangle$$

$$| (\langle expression \rangle)$$
EXAMPLE 3.4.12: binary strings of even length
(B) \(\lambda \in S \)
(R) If \(b \in S \), then \(b00, b01, b10, b11 \in S \).

EXAMPLE 3.4.13: binary strings of even length that start with 1
(B) \(10, 11 \in S \)
(R) If \(b \in S \), then \(b00, b01, b10, b11 \in S \).

DEF: A *strict palindrome* is a character string that is identical to its reverse. (In natural language, blanks and other punctuation are ignored, as is the distinction between upper and lower case letters.)

Able was I ere I saw Elba.
Madam, I’m Adam.
Eve.

EXAMPLE 3.4.14: set of binary palindromes
(B) \(\lambda, 0, 1 \in S \)
(R) If \(x \in S \) then \(0x0, 1x1 \in S \).
LOGICAL PROPOSITIONS

DEF: *propositional forms*

(B) p, q, r, s, t, u, v, w are propositional forms

(R) If x and y are propositional forms, then so are $\neg x, x \land y, x \lor y, x \rightarrow y, x \leftrightarrow y$ and (x).

Propositional forms under basis clause (B) are called **atomic**.

Remark: Recursive definition of a set facilitates proofs by induction about properties of its elements.

Proposition 3.4.1. Every proposition has an even number of parentheses.

Proof: by induction on the length of the derivation of a proposition.

Basis Step. All the atomic propositions have evenly many parentheses.

Ind Step. Assume that propositions x and y have evenly many parentheses. Then so do propositions $\neg x, x \land y, x \lor y, x \rightarrow y, x \leftrightarrow y$ and (x).

\[\diamond\]
CIRCULAR DEFINITIONS

DEF: A would-be recursive definition is \textit{circular} if the sequence of iterated applications it generates fails to terminate in applications to elements of the basis set.

Example 3.4.15: a circular definition from Index and Glossary of Knuth, Vol 1.

Circular Definition, 260

see Definition, circular

Definition, circular,

see Circular definition