1.
 a) \(f(n) \in \Theta(g(n)) \) since \(\log n^2 = 2 \log n \).
 b) \(f(n) \in \Omega(g(n)) \) since \(n^c \) grows faster than \(c \log n \) for any \(c \).
 c) \(f(n) \in \Omega(g(n)) \). Dividing both sides by \(\log n \), we see that \(\log n \) grows faster than 1.
 d) \(f(n) \in \Omega(g(n)) \). If we take both \(f(n) \) and \(g(n) \) as exponents for 2, we get \(2^n \) on one side and \((2^{\log n})^2 = n^2 \) on the other, and \(n^2 \) grows slower than \(2^n \).
 e) \(f(n) \in \Omega(g(n)) \). Dividing both sides by \(\log n \) and throwing away the low order terms, we see that \(n \) grows faster than 1.
 f) \(f(n) \in O(g(n)) \). \(f(n) = 2 \log n \). Dividing both sides by \(\log n \), we see that \(\log n \) grows faster than 2.
 g) \(f(n) \in \Theta(g(n)) \) since \(\log 10 \) and 10 are both constants.
 h) \(f(n) \in \Omega(g(n)) \) since exponential function \(2^n \) grows faster than polynomial function \(10^n \).
 i) \(f(n) \in \Omega(g(n)) \). Take logarithm of both sides. \(f(n) = \log 2^n = n \), \(g(n) = \log (n \log n) = \log n + \log \log n \). Throwing away the low order terms, we see that \(n \) grows faster than \(\log n \).
 j) \(f(n) \in O(g(n)) \). \(3^n = 1.5^n 2^n \), and if we divide both sides by \(2^n \), we see that \(1.5^n \) grows faster than 1.

2.
 a) Master Theorem: Let \(x(n) \) be an eventually nondecreasing function that satisfies the recurrence relation
 \[x(n) = a x(n/b) + f(n), \quad n=b^k, \quad k \text{ is a positive integer}, \quad x(1)=c \]
 where \(a \geq 1, \quad b \geq 2, \quad c>0 \). If \(f(n) \in \Theta(n^d) \), where \(d \geq 0 \), then
 \[x(n) \in \Theta(n^d), \quad x(n) \in \Theta(n^d \log n), \quad x(n) \in \Theta(n^{\log a}) \]
 where \(d \geq 0 \).

 b) According to the theorem, \(a=3, \quad b=5, \quad d=2 \). Since \(3<5^2 \), \(T(n) \in \Theta(n^{2}) \).
 c) According to the theorem, \(a=2, \quad b=2, \quad d=1 \). Since \(2=2^1 \), \(T(n) \in \Theta(n \log n) \).
 d) By backward substitution,
 \[T(n) = 2 T(n/2) + n \]
 \[= 2 [2 T(n/4) + n/2] + n = 2^2 T(n/4) + 2 n/2 + n \]
 \[= 2^2 [2 T(n/8) + n/4] + 2 n/2 + n = 2^3 T(n/8) + 2^2 n/2^2 + 2 n/2 + n \]
 \[\ldots \]
 \[= 2^{\log n/2} T(n/2^{\log n/2靓}) + 2^{\log n/2^{\log n/2-1}-1} (n/2^{\log n/2^{\log n/2-1}}-1) + 2 n/2 + n \]
 So, \(T(n) = \sum_{i=0}^{\log n} 2^{i} 2^{\log n-i} = \sum_{i=0}^{\log n} 2^{\log n} = 2^{\log n} = n = (\log n+1) \in (n \log n) \)

3. (See the lecture notes)
function CountSort(L[1:n], Out[1:n], k)
 for i=1 to k do // initialize count array
 count[i] = 0
 endfor

 for i=1 to n do // calculate frequency for each list value
 count[L[i]] = count[L[i]] + 1 (*)
 endfor

 total = 1
 for i=1 to k do // calculate the starting index for each value
 temp = count[i]
 count[i] = total (*)
 total = total + temp
 endfor

 for i=1 to n do // copy the elements to output array
 Out[count[L[i]]] = L[i] (*)
 count[L[i]] = count[L[i]] + 1
 endfor
end

Complexity analysis:
We can take the assignments marked with (*) as the basic operation. So, the complexity is
f(n) = 2n+k ∈ (n+k)

This algorithm is efficient if k is not very large. For instance, when k<n, this is a linear
sorting algorithm. However, for instance if k=n^2, then it is a quadratic algorithm.